JP2984741B2 - Non-contact measurement method and apparatus for the amount of substances adhering to an object surface - Google Patents

Non-contact measurement method and apparatus for the amount of substances adhering to an object surface

Info

Publication number
JP2984741B2
JP2984741B2 JP2243478A JP24347890A JP2984741B2 JP 2984741 B2 JP2984741 B2 JP 2984741B2 JP 2243478 A JP2243478 A JP 2243478A JP 24347890 A JP24347890 A JP 24347890A JP 2984741 B2 JP2984741 B2 JP 2984741B2
Authority
JP
Japan
Prior art keywords
light
amount
laser light
salt
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2243478A
Other languages
Japanese (ja)
Other versions
JPH04121643A (en
Inventor
三男 前田
克紀 村岡
親久 本田
晋一郎 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP2243478A priority Critical patent/JP2984741B2/en
Publication of JPH04121643A publication Critical patent/JPH04121643A/en
Application granted granted Critical
Publication of JP2984741B2 publication Critical patent/JP2984741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は物体の表面に付着した物質量の非接触測定方
法およびその装置に関し、特に碍子の表面に付着した塩
分量の非接触測定方法およびその装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method and an apparatus for non-contact measurement of the amount of a substance attached to the surface of an object, and more particularly to a method and apparatus for non-contact measurement of the amount of salt attached to the surface of an insulator. Regarding the device.

(従来の技術) 物体の表面に付着した物質量を非接触遠隔測定するこ
とは種々の分野で必要とされている。特に送配電技術の
分野では、送電線用鉄塔に取付けられた碍子の表面に付
着した塩分量が多くなると、閃絡事故などの危険がある
ため、前記塩分量を測定し、予定量を超えているときは
当該碍子を洗浄するなどの対策が必要である。
(Prior Art) Non-contact remote measurement of the amount of a substance attached to the surface of an object is required in various fields. Especially in the field of power transmission and distribution technology, if the amount of salt attached to the surface of the insulator attached to the transmission line tower increases, there is a danger of flashover, etc., so measure the amount of salt, exceeding the expected amount If it is, it is necessary to take measures such as cleaning the insulator.

このために従来は、実使用碍子と形状および表面状態
を同等としたパイロット碍子(例えば、特公昭63−2426
6号公報参照)を、実使用碍子と同一条件下で、送電線
鉄塔などに取付けて自然暴露させ、パイロット碍子表面
に付着した汚損塩分量から実使用碍子の汚損状態を推定
することが普通に行なわれている。
For this reason, conventionally, a pilot insulator (for example, Japanese Patent Publication No. Sho 63-2426) having the same shape and surface condition as an actual insulator has been used.
Under the same conditions as the actual insulator, it is common practice to attach it to a power transmission tower or the like and allow it to be naturally exposed, and to estimate the contamination state of the actual insulator from the amount of fouled salt attached to the surface of the pilot insulator. Is being done.

例えば、特公昭61−28306号公報、特公昭61−30710号
公報などには、送電線鉄塔に取付けたパイロット碍子を
適当な時機に鉄塔から取外してその表面を人工的に一様
に湿潤させた後、予めパイロット碍子に設けられている
測定用電極間の電気抵抗を測定し、この測定結果に基づ
いて、予め準備された電気抵抗対付着(汚損)塩分量関
係カーブからパイロット碍子表面に付着した汚損塩分量
を推定し、これからさらに実使用碍子表面に付着した汚
損塩分量を推定、検出することが行なわれている。
For example, JP-B-61-28306 and JP-B-61-30710 disclose that a pilot insulator attached to a transmission line tower is removed from the tower at an appropriate time and the surface is artificially and uniformly wetted. After that, the electric resistance between the measurement electrodes provided on the pilot insulator was measured in advance, and based on the measurement result, the electric resistance was attached to the surface of the pilot insulator from the previously prepared electric resistance versus adhesion (fouling) salt content relationship curve. The amount of fouled salt is estimated, and the amount of fouled salt attached to the surface of the actually used insulator is further estimated and detected.

(発明が解決しようとする課題) このように、パイロット碍子に設けられている測定用
電極間の電気抵抗を測定するための装置としては、パイ
ロット碍子を送電線鉄塔に取付け、取外すための碍子上
下機構、被測定パイロット碍子の表面を一様に湿潤させ
るための湿潤室や水蒸気供給装置などの大掛かりな設備
が必要となり、またそのための広大な場所が占有される
という問題がある。
(Problems to be Solved by the Invention) As described above, as a device for measuring the electric resistance between the measurement electrodes provided on the pilot insulator, the insulator for mounting and removing the pilot insulator on the power transmission tower is used. There is a problem that a large-scale facility such as a wetting chamber and a water vapor supply device for uniformly wetting the surface of the pilot insulator to be measured is required, and a large space is occupied.

のみならず、パイロット碍子の取外しや湿潤時に、被
測定パイロット碍子の表面汚損(塩分付着)状態が変化
してしまい、付着塩分量の正確な測定ができなくなる可
能性がある。
Not only that, when the pilot insulator is removed or wetted, the state of surface contamination (adhesion of salt) of the pilot insulator to be measured changes, and it may not be possible to accurately measure the amount of attached salt.

また、一旦パイロット碍子を送電線鉄塔から取外して
付着塩分量を測定すると、湿潤などによって塩分付着状
態が変化してしまうので、これを再び送電線鉄塔に取付
けて付着塩分量の経時変化を測定することが事実上不可
能であるという問題もある。
Also, once the pilot insulator is removed from the power transmission tower and the amount of deposited salt is measured, the state of salt deposition changes due to wetting and the like, so this is attached to the power transmission tower again and the change over time in the deposited salt content is measured. There is also the problem that this is virtually impossible.

本発明の目的は、このような問題を解決し、物体の表
面に付着した物質量を非接触で測定するための方法およ
びその装置を提供することにある。
An object of the present invention is to solve such a problem and to provide a method and an apparatus for non-contactly measuring the amount of a substance attached to the surface of an object.

また本発明の特定の目的は、パイロット碍子を用いる
ことなく、実使用碍子そのものの表面に付着した塩分量
を、当該碍子を送電線鉄塔に取付けたまま、遠方から、
しかも高電圧が印加された状態でも測定できる、碍子表
面の付着塩分量の非接触測定方法およびその装置を提供
することにある。
Also, a specific object of the present invention is to use a pilot insulator without using a salt, the amount of salt attached to the surface of the actual insulator itself, while the insulator is attached to a power transmission tower, from a distance.
In addition, it is an object of the present invention to provide a non-contact measurement method and an apparatus for measuring the amount of salt attached to the insulator surface, which can be measured even when a high voltage is applied.

なお、以下の説明では、本発明を碍子表面の付着塩分
量の非接触測定に適用した例について述べるが、碍子表
面の付着塩分量に限らず、レーザ光の照射によって加熱
蒸発(昇華)される際に特定波長の光(輻射線)を発生
する物質であれば、その物質量の測定に本発明が適用で
きることは当然であり、本発明はこのような物質量の測
定方法および装置をも包含するものである。
In the following description, an example in which the present invention is applied to non-contact measurement of the amount of salt attached to the insulator surface will be described. However, the present invention is not limited to the amount of salt attached to the insulator surface, and is heated and evaporated (sublimated) by laser light irradiation. Naturally, the present invention can be applied to the measurement of the amount of a substance as long as the substance generates light (radiation rays) of a specific wavelength, and the present invention also includes such a method and apparatus for measuring the amount of the substance. Is what you do.

(課題を解決するための手段) 前記目的を達成するために、本発明は、レーザ光を物
体の表面に指向させて照射し、前記物体の表面にある被
検物質を加熱蒸散させて、当該被検物質に特有の波長を
有する励起発光を生じさせる工程と、前記励起発光が減
衰して消滅するのに必要な前記レーザ光の照射光量累算
値、または/および前記励起発光が消滅するまでの前記
励起発光の光量累算値を検出する工程と、予め求められ
たレーザ光の照射光量累算値対被検物質量の関係、また
は/および前記励起発光の光量累算値対被検物質量の関
係から、前記表面の被検物質量を求める工程とを具備し
た点に特徴がある。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method in which a laser beam is directed to a surface of an object and irradiated, and a test substance on the surface of the object is heated and evaporated to obtain the target. A step of generating excitation light having a wavelength specific to the test substance, and an irradiation light amount cumulative value of the laser light necessary for the excitation light to attenuate and disappear, and / or until the excitation light disappears. Detecting the accumulated light quantity of the excitation light, and the relationship between the accumulated irradiation light quantity of the laser light and the amount of the test substance, or / and the accumulated light quantity of the excited light versus the test substance. Determining the amount of the test substance on the surface from the relationship between the amounts.

また本発明は、上記の工程を実施するために、レーザ
光を発生するレーザ光源と、レーザ光を被検物体の表面
に指向させて集光、照射する手段と、被検物体表面のレ
ーザ光照射位置にある被検物質から発生された特定波長
光の強度を測定する手段と、前記特定波長光の強度を減
衰させて零にするのに要するレーザ光の累算照射量を求
める手段と、求められたレーザ光の累算照射量に基づい
て、被検物体の表面上にあって特定波長光を発生した被
検物質の量を求める手段、あるいはその代わりに、前記
特定波長光の強度が減衰して零になるまでの特定波長光
の累算発光量を求める手段と、求められた特定波長光の
累算発光量に基づいて、被検物体の表面上にあって特定
波長光を発生した被検物質の量を求める手段とを具備し
た点に特徴がある。
According to the present invention, there is provided a laser light source for generating a laser beam, means for directing the laser beam to the surface of the object to be focused, and irradiating the laser beam, and a laser beam on the surface of the object to be performed. Means for measuring the intensity of the specific wavelength light generated from the test substance at the irradiation position, and means for determining the cumulative irradiation amount of the laser light required to attenuate the intensity of the specific wavelength light to zero. Based on the obtained cumulative irradiation amount of laser light, means for determining the amount of the test substance that has generated a specific wavelength light on the surface of the test object, or, instead, the intensity of the specific wavelength light is Means for calculating the accumulated light emission of the specific wavelength light until it attenuates to zero, and generates the specific wavelength light on the surface of the test object based on the calculated accumulated light emission of the specific wavelength light And a means for determining the amount of the test substance.

(作用) 本発明によれば、物体の表面に付着した物質の量を非
接触で遠隔測定することができるので、測定を安全かつ
迅速に、かつ手軽に行なうことができる。また非接触測
定ができるので、被検体の表面状態に与える影響や擾乱
が少なく、被検物質量付着の経時変化の測定、監視も可
能になる。
(Operation) According to the present invention, the amount of the substance adhering to the surface of the object can be remotely measured without contact, so that the measurement can be performed safely, quickly, and easily. In addition, since non-contact measurement can be performed, there is little influence or disturbance on the surface state of the test object, and measurement and monitoring of a change with time in the amount of the test substance attached can be performed.

(実施例) 第1図は本発明の1実施例を示すブロック図である。
パルス駆動装置15によって間欠的に駆動されるレーザ光
源1から発生されたパルス状のレーザ光は、ビームスプ
リッタ10を通った後、コリメータ2で集光されて被検体
3の表面の物質量測定目標位置に指向される。ここで
は、被検体は送電線鉄塔に取付けられた実使用碍子であ
ると仮定する。
(Embodiment) FIG. 1 is a block diagram showing one embodiment of the present invention.
The pulsed laser light generated from the laser light source 1 intermittently driven by the pulse driving device 15 passes through the beam splitter 10 and is condensed by the collimator 2 to measure the amount of the substance on the surface of the subject 3. Directed to position. Here, it is assumed that the subject is a practical insulator attached to a power transmission tower.

実使用碍子が被検体である場合は、風向きや地形など
を考慮し、塩分が最も付着しやすい表面位置にレーザ光
照射位置を設定するのがよい。従来よりの実験によれ
ば、測定点すなわち前記レーザ光照射位置は、例えば碍
子の裏面に形成されたひだの風下側部分であって、かつ
碍子の中心側の表面が適当である。
When the actual insulator is the subject, it is preferable to set the laser beam irradiation position to a surface position where salt is most likely to adhere in consideration of the wind direction and the topography. According to a conventional experiment, the measurement point, that is, the laser beam irradiation position is, for example, a leeward portion of a fold formed on the back surface of the insulator and a surface on the center side of the insulator is appropriate.

レーザ光照射によって、その位置の物質が加熱蒸発
(昇華)される際、熱的励起、共鳴的吸収、多光子励
起、プラズマ化励起などによって、その物質に特有の波
長をもった光(輻射線)が発生される。碍子表面に付着
した塩分の場合は、Na原子の熱的励起による発光(Naの
D1線=589.6nmまたはD2線=589.0nm)が生ずる。
When a material at that position is heated and evaporated (sublimated) by laser light irradiation, light (radiation radiation) having a wavelength specific to the material is generated by thermal excitation, resonance absorption, multiphoton excitation, plasma-induced excitation, etc. ) Is generated. In the case of salt attached to the insulator surface, light emission due to thermal excitation of Na atoms (Na
D 1 line = 589.6 nm or D 2 lines = 589.0nm) occurs.

前記の発光は望遠鏡4で取込まれ、入射角制限用のア
パーチャ5を介して光学フィルタ6に供給される。光学
フィルタ6で選択された波長(この場合は、D1線または
D2線)の光は光電変換器7で電気信号に変換される。
The emitted light is captured by a telescope 4 and supplied to an optical filter 6 through an aperture 5 for limiting an incident angle. The wavelength selected by the optical filter 6 (in this case, D 1 line or
The light of D 2 line) is converted by the photoelectric converter 7 into an electric signal.

一方、周囲光またはレーザ光照射位置近傍からの光
を、前記光学フィルタ6と同じフィルタ特性の第2の光
学フィルタ8で濾波して得られる光も、同様に第2の光
電変換器7で電気信号に変換される。2つの光電変換器
7、9の出力信号はノイズ除去装置11に供給され、光電
変換器7の出力信号に含まれるノイズ成分の除去が行な
われる。
On the other hand, light obtained by filtering ambient light or light from the vicinity of the laser light irradiation position by the second optical filter 8 having the same filter characteristics as the optical filter 6 is also electrically converted by the second photoelectric converter 7. Converted to a signal. The output signals of the two photoelectric converters 7 and 9 are supplied to a noise elimination device 11, where noise components included in the output signals of the photoelectric converter 7 are removed.

実際には、光電変換器7の測定信号から光電変換器9
の出力信号を減算して周囲光に起因する誤差成分を除去
する。ノイズ除去された光電変換器7の測定信号は零検
出器12に供給される。
In practice, the measurement signal of the photoelectric converter 7 is
Is subtracted to remove an error component caused by ambient light. The measurement signal of the photoelectric converter 7 from which noise has been removed is supplied to the zero detector 12.

レーザ光源1からのパルス状レーザ光が繰返し発生さ
れると、レーザ光照射位置における付着塩分が徐々に蒸
散されて減少するので、Na原子の熱的励起による発光
も、第2図に示すように徐々に(指数関数的に)減少
し、付着塩分が実質上全て蒸散されてしまうと、ノイズ
除去された光電変換器7の出力信号が事実上零になる。
When the pulsed laser light from the laser light source 1 is repeatedly generated, the attached salt at the laser light irradiation position is gradually evaporated and reduced, so that the light emission due to the thermal excitation of the Na atom also becomes as shown in FIG. When the salt is gradually (exponentially) reduced and substantially all of the attached salt is evaporated, the output signal of the photoelectric converter 7 from which noise has been removed becomes substantially zero.

この時、零検出器12が出力を生じ、これに応答してパ
ルス駆動装置15の動作が制御され、レーザ光源1からの
パルス状レーザ光発生が停止される。
At this time, the zero detector 12 generates an output, and in response to this, the operation of the pulse driving device 15 is controlled, and the generation of pulsed laser light from the laser light source 1 is stopped.

それまでに発生された全レーザ光量がレーザ光量累算
器13で累算される。この実施例では、ビームスプリッタ
10で分割されたレーザ光を光量検出器18に導いて電気信
号に変換し、これをレーザ光量累算器13で累算する。そ
の代りに、1パルス毎に放射されるレーザ光量を一定と
し、これに放射したパルス数を積算してレーザ光量累算
値を求めてもよい。また、熱的励起発光すなわちノイズ
除去装置11の出力を発光量累算器19で累算することもで
きる。
All the laser light amounts generated so far are accumulated by the laser light amount accumulator 13. In this embodiment, the beam splitter
The laser light divided by 10 is guided to a light quantity detector 18 to be converted into an electric signal, and this is accumulated by a laser light quantity accumulator 13. Instead, the amount of laser light radiated for each pulse may be fixed, and the number of radiated pulses may be integrated to obtain the accumulated value of laser light. Further, the thermal excitation light emission, that is, the output of the noise removing device 11 can be accumulated by the light emission amount accumulator 19.

その後、累算器13または19の出力は変換出力装置14に
供給される。変換出力装置14には、予め実験的または経
験的に求められた照射レーザ光量または励起発光量の累
算値対塩分量変換カーブ(その1例を第3図に示す)が
準備されているので、入力された累算値から付着塩分量
を求めて出力することができる。付着塩分量が予定値以
上であるときは、警報や洗浄要求信号を発生することも
できる。
Thereafter, the output of the accumulator 13 or 19 is supplied to the conversion output device 14. The conversion output device 14 is provided with a conversion curve of the cumulative value of the irradiation laser light amount or the excitation light emission amount which is obtained in advance experimentally or empirically with respect to the salt content (an example of which is shown in FIG. 3). The amount of attached salt can be obtained from the input accumulated value and output. When the amount of attached salt is equal to or more than the predetermined value, an alarm or a cleaning request signal can be generated.

この場合、レーザ光照射位置は1点に限られるのでは
なく、数点を選んで上述の測定を繰返し実施し、これら
の測定値に基づいて(例えば、その平均値または最大値
をとって)付着量を求めるようにしてもよい。
In this case, the irradiation position of the laser beam is not limited to one point, but several points are selected and the above-described measurement is repeatedly performed. Based on these measured values (for example, by taking the average or the maximum value), The amount of adhesion may be obtained.

この実施例によれば、送電線鉄塔に取付けられた実使
用碍子の表面の付着塩分を、高電圧を印加した通常動作
状態において、非接触で直接遠隔測定することができる
ので、測定が安全、迅速かつ手軽に実施できるのみなら
ず、パイロット碍子そのものが不要となり、その取付
け、取外しの手数や、湿潤のための設備、手数も不要と
なるので、管理コストも著しく低減される。
According to this embodiment, the attached salt on the surface of the actually used insulator attached to the power transmission tower can be directly measured in a non-contact and remote manner in a normal operation state where a high voltage is applied, so that the measurement is safe. Not only can it be carried out quickly and easily, but also the pilot insulator itself is not required, and the number of installation and removal steps, the equipment for wetting, and the number of steps are not required, so that the management cost is significantly reduced.

また、レーザ照射位置以外では碍子表面の塩分付着状
態が事実上乱されないので、前回のレーザ照射位置を除
く位置(しかし、なるべくはその近傍)で、同様の測定
を予定期間毎に行なうことにより、汚損(塩分付着)状
態の経時変化を監視することが容易になる効果も期待で
きる。
In addition, since the salt attached state on the surface of the insulator is not substantially disturbed at positions other than the laser irradiation position, the same measurement is performed at a position excluding the previous laser irradiation position (but preferably in the vicinity thereof) at every scheduled period. The effect of facilitating monitoring of the change over time in the fouling (salt attached) state can also be expected.

(変形例) 上記実施例では、付着塩分が実質上全て蒸散されてし
まうまでレーザ光照射を続けるものとしたが、パルス状
レーザ光の発生回数とNa原子の熱的励起による発光強度
との間には、第2図に示したような関係があり、この関
係は予め知ることができるから、この関係を用いて付着
塩分が実質上全て蒸散されてしまうまでに必要なレーザ
光照射量や回数などを推定し、これに基づいてレーザ光
量累算値を求めたり、あるいは熱的励起発光強度の減衰
状態から直接前記レーザ光量または熱的励起発光の累算
値を求めたりすることもできる。
(Modification) In the above embodiment, the laser beam irradiation is continued until substantially all of the attached salt is evaporated, but the number of times of generation of the pulsed laser beam and the emission intensity due to the thermal excitation of Na atoms are reduced. Has a relationship as shown in FIG. 2, and since this relationship can be known in advance, the amount of laser beam irradiation and the number of times required until substantially all of the attached salt is evaporated using this relationship. It is also possible to estimate the laser light amount or the cumulative value of the laser light amount or the thermal excitation light emission directly from the attenuated state of the thermal excitation light emission intensity.

上記実施例では、ノイズ除去のために独立の光学フィ
ルタ8および光電変換器9を設けたが、ノイズ除去装置
11の関連部分を第4図のように構成すれば、これらを省
略して構成を簡略化することができる。
In the above embodiment, the independent optical filter 8 and the photoelectric converter 9 are provided for removing noise.
If the related parts 11 are configured as shown in FIG. 4, they can be omitted and the configuration can be simplified.

第4図では、光電変換器7の出力が切換スイッチ16を
介してノイズ除去装置11Aに供給される。パルス駆動装
置15はレーザ光源装置1を間欠的に駆動してパルス状レ
ーザ光を発生させる一方、これと同期して切換スイッチ
16を端子S側とN側に交互に切換える。
In FIG. 4, the output of the photoelectric converter 7 is supplied to the noise removing device 11A via the changeover switch 16. The pulse driving device 15 intermittently drives the laser light source device 1 to generate a pulsed laser beam, and in synchronization with this, a changeover switch
16 is alternately switched between the terminal S side and the N side.

切換スイッチ16がレーザ光の発生期間中は端子S側に
接続され、レーザ光の休止期間中は端子N側に接続され
るとすれば、端子SにはNa原子の熱的励起による発光と
周囲光(すなわちノイズ光)との和に相当する信号が、
また端子Nには周囲光のみに依存する信号がそれぞれ発
生されるので、ノイズ除去装置11Aで両者の差を取れ
ば、第1図に関して前述したのと同様の、ノイズ除去さ
れた信号が得られる。
If the changeover switch 16 is connected to the terminal S during the period of generation of laser light, and connected to the terminal N during the pause of laser light, the terminal S emits light by thermal excitation of Na atoms and the surroundings. The signal corresponding to the sum of the light (that is, the noise light)
Further, since a signal depending only on the ambient light is generated at the terminal N, a noise-removed signal similar to that described above with reference to FIG. .

なお、以上では、碍子に付着した塩分量の測定に本発
明を適用した例について述べたが、他の物質であって
も、熱的励起発光を生ずるものであれば本発明を適用で
きることは明らかであろう。
In the above, the example in which the present invention is applied to the measurement of the amount of salt attached to the insulator has been described. However, it is clear that the present invention can be applied to other substances as long as they generate thermally excited light emission. Will.

(発明の効果) 以上の説明から明らかなように、本発明によれば、物
体の表面に付着した物質の量を非接触で遠隔測定するこ
とができるので、測定を安全かつ迅速に、かつ手軽に行
なうことができる。また非接触測定ができるので、被検
体の表面状態に与える影響や擾乱が少なく、被検物質量
付着の経時変化の測定、監視も可能になる。
(Effects of the Invention) As is clear from the above description, according to the present invention, the amount of the substance adhering to the surface of the object can be remotely measured without contact, so that the measurement can be performed safely, quickly, and easily. Can be performed. In addition, since non-contact measurement can be performed, there is little influence or disturbance on the surface state of the test object, and measurement and monitoring of a change with time in the amount of the test substance attached can be performed.

特に、送電線鉄塔などに取付けられた実使用碍子に本
発明を適用した場合には、高電圧を印加した通常動作状
態において、その表面に付着した塩分を、非接触で直接
遠隔測定することができるので、測定が安全、迅速かつ
手軽に実施できるのみならず、パイロット碍子そのもの
が不要となり、その取付け、取外しの手数や、湿潤のた
めの設備、手数も不要となるので、管理コストが著しく
低減される。
In particular, when the present invention is applied to a practically used insulator attached to a transmission line tower or the like, in a normal operation state where a high voltage is applied, it is possible to directly and remotely measure the salt attached to the surface without contact. Not only can the measurement be performed safely, quickly and easily, but also the pilot insulator itself is not required, and there is no need for installation and removal, as well as equipment for wetting, so the management cost is significantly reduced. Is done.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例を示すブロック図である。第
2図は被測定物質が塩分である場合の熱的励起発光量
(強度)とパルスレーザ光照射回数との関係例を示すグ
ラフである。第3図は照射レーザ光累算値と被測定物質
(塩分)量との関係例を示すグラフである。第4図は本
発明の他の実施例の要部を示すブロック図である。 1……レーザ光源、2……コリメータ、3……被検体、
4……望遠鏡、5……アパーチャ、6、8……光学フィ
ルタ、7、9……光電変換器、10……ビームスプリッ
タ、11、11A……ノイズ除去装置、12……零検出器、13
……レーザ光量累算器、14……変換出力装置、15……パ
ルス駆動装置、18……光量検出器、19……発光量累算器
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a graph showing an example of the relationship between the amount of thermal excitation light emission (intensity) and the number of pulsed laser beam irradiations when the substance to be measured is a salt. FIG. 3 is a graph showing an example of the relationship between the cumulative value of the irradiation laser beam and the amount of the substance to be measured (salt). FIG. 4 is a block diagram showing a main part of another embodiment of the present invention. 1 ... laser light source, 2 ... collimator, 3 ... subject,
4 ... telescope, 5 ... aperture, 6, 8 ... optical filter, 7, 9 ... photoelectric converter, 10 ... beam splitter, 11, 11A ... noise removal device, 12 ... zero detector, 13
…… Laser light amount accumulator, 14 …… Conversion output device, 15 …… Pulse drive device, 18 …… Light amount detector, 19 …… Emission amount accumulator

フロントページの続き (56)参考文献 特開 昭60−179633(JP,A) 藤吉晋一郎、「レーザー塩害観測装置 の開発」、レーザー研究、社団法人レー ザー学会発行、第20巻、第12号、平成4 年12月29日発行、第955−962ページ (58)調査した分野(Int.Cl.6,DB名) G01N 21/62 - 21/74 Continuation of the front page (56) References JP-A-60-179633 (JP, A) Shinichiro Fujiyoshi, "Development of Laser Salt Observation System", Laser Research, Japan Society of Laser Science, Vol. 20, No. 12, Issued December 29, 1992, pp. 955-962 (58) Fields surveyed (Int. Cl. 6 , DB name) G01N 21/62-21/74

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザ光を発生するレーザ光源と、 レーザ光を被検物体の表面に指向させて集光、照射する
手段と、 被検物体表面のレーザ光照射位置にある被検物質から発
生された特定波長光の強度を測定する手段と、 前記特定波長光の強度が減衰して零になるまでの特定波
長光の累算発光量を求める手段と、 求められた特定波長光の累算発光量に基づいて、被検物
体の表面上にあって特定波長光を発生した被検物質の量
を求める手段とを具備した物体表面付着物質量の非接触
測定装置。
1. A laser light source for generating laser light, means for directing and irradiating the laser light to the surface of a test object, and means for generating the laser light from a test substance at a laser light irradiation position on the surface of the test object Means for measuring the intensity of the specified wavelength light, means for calculating the accumulated light emission amount of the specific wavelength light until the intensity of the specific wavelength light is attenuated to zero, and accumulation of the obtained specific wavelength light. Means for determining the amount of the test substance which has generated light of a specific wavelength on the surface of the test object based on the amount of light emission.
【請求項2】レーザ光を物体の表面に指向させて照射
し、前記物体の表面にある被検物質を加熱蒸散させて、
当該被検物質に特有の波長を有する励起発光を生じさせ
る工程と、 前記励起発光が減衰して消滅するまでに発生される前記
励起発光の光量累算値を検出する工程と、 予め求められた前記励起発光の光量累算値対被検物質量
の関係から、前記表面の被検物質量を求める工程とから
なることを特徴とする物体表面付着物質量の非接触測定
方法。
2. A method of irradiating a laser beam directed to a surface of an object to heat and evaporate a test substance on the surface of the object,
A step of generating an excitation light emission having a wavelength specific to the test substance; anda step of detecting a cumulative light intensity value of the excitation light emission generated before the excitation light emission is attenuated and disappeared. Obtaining a quantity of the test substance on the surface from the relationship between the cumulative light quantity of the excitation light emission and the quantity of the test substance.
JP2243478A 1990-09-13 1990-09-13 Non-contact measurement method and apparatus for the amount of substances adhering to an object surface Expired - Fee Related JP2984741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243478A JP2984741B2 (en) 1990-09-13 1990-09-13 Non-contact measurement method and apparatus for the amount of substances adhering to an object surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243478A JP2984741B2 (en) 1990-09-13 1990-09-13 Non-contact measurement method and apparatus for the amount of substances adhering to an object surface

Publications (2)

Publication Number Publication Date
JPH04121643A JPH04121643A (en) 1992-04-22
JP2984741B2 true JP2984741B2 (en) 1999-11-29

Family

ID=17104490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243478A Expired - Fee Related JP2984741B2 (en) 1990-09-13 1990-09-13 Non-contact measurement method and apparatus for the amount of substances adhering to an object surface

Country Status (1)

Country Link
JP (1) JP2984741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297091A (en) * 1995-04-26 1996-11-12 Kansai Tec:Kk Method and apparatus for measurement of mass of stuck substance on surface of object
JP2013015404A (en) * 2011-07-04 2013-01-24 Institute For Laser Technology Deposition density measuring method for deposit on insulator surface, and measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤吉晋一郎、「レーザー塩害観測装置の開発」、レーザー研究、社団法人レーザー学会発行、第20巻、第12号、平成4年12月29日発行、第955−962ページ

Also Published As

Publication number Publication date
JPH04121643A (en) 1992-04-22

Similar Documents

Publication Publication Date Title
EP1000316A1 (en) Apparatus and method for measuring a property of a structure
JP2002527770A (en) Method and apparatus for improved film thickness measurement
KR950034499A (en) Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
EP0922197A1 (en) Improved method and apparatus for measuring material properties using transient-grating spectroscopy
JPH10512958A (en) Apparatus and method for time-resolved optical measurement
JP2012516041A (en) Method and apparatus for irradiating the surface of a semiconductor material with laser energy
Duggal et al. Real‐time characterization of acoustic modes of polyimide thin‐film coatings using impulsive stimulated thermal scattering
JP2984741B2 (en) Non-contact measurement method and apparatus for the amount of substances adhering to an object surface
JP6565798B2 (en) Film removal device
JP2006292424A (en) Optical fiber monitoring system and laser beam machining system
JP3775840B2 (en) Pulse X-ray irradiation device, X-ray reduction exposure device
JP3646164B2 (en) Fluorescence image measuring device
CA1262291A (en) Method and apparatus for measuring the ion implant dosage in a semiconductor crystal
JPH08297091A (en) Method and apparatus for measurement of mass of stuck substance on surface of object
Lai et al. Pulsed laser‐induced damage threshold studies of thin aluminum films on quartz: simultaneous monitoring of optical and acoustic signals
JP2010219164A (en) Method of detecting damage to optical element
JP3646453B2 (en) Etching end point detection method
Mann et al. Setup of a damage testing facility for excimer laser radiation
JPH05303999A (en) X-ray generating device
Melninkaitis et al. Adaptive laser-induced damage detection
JPS6018288A (en) Monitoring method of laser working device
JPH073389B2 (en) Water quality inspection method and apparatus
JPH10232197A (en) Laser durability estimating method
JP2000146755A (en) Method and apparatus for measuring light absorption
JPH1183812A (en) Ultrasonic wave detecting method by laser beam and device therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees