JP2982291B2 - Field effect transistor logic circuit - Google Patents

Field effect transistor logic circuit

Info

Publication number
JP2982291B2
JP2982291B2 JP2306473A JP30647390A JP2982291B2 JP 2982291 B2 JP2982291 B2 JP 2982291B2 JP 2306473 A JP2306473 A JP 2306473A JP 30647390 A JP30647390 A JP 30647390A JP 2982291 B2 JP2982291 B2 JP 2982291B2
Authority
JP
Japan
Prior art keywords
node
power supply
supply terminal
mesfet
electrode connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2306473A
Other languages
Japanese (ja)
Other versions
JPH04178022A (en
Inventor
正 前多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2306473A priority Critical patent/JP2982291B2/en
Publication of JPH04178022A publication Critical patent/JPH04178022A/en
Application granted granted Critical
Publication of JP2982291B2 publication Critical patent/JP2982291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ論理回路に関し、特に
基準電圧発生回路を付加した電界効果トランジスタ論理
回路に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor logic circuit, and more particularly to a field effect transistor logic circuit to which a reference voltage generation circuit is added.

〔従来の技術〕[Conventional technology]

GaAs半導体はSiに比べ電子の移動度が数倍速く、更に
半絶縁性基板を容易に得ることができるために、集積化
を図る際に回路の寄生容量を低減出来、高速論理動作が
可能との考えから各所で精力的な研究開発が行なわれて
きている。GaAs半導体は一部市販が開始されているが、
その品種は主としてSSIからMSIクラスであり、次期開発
品種として1Kビットから4Kビットのメモリや数千ゲート
規模のゲートアレイ型集積回路に期待が集まっている。
特に、デプレーション型ショットキゲート電界効果トラ
ンジスタ(MESFET)を用いたBFL(Buffered FET Logi
c)回路は、大負荷を駆動する場合でも高速論理動作が
可能であり、GaAsLSIの設計に用いられてきている。
GaAs semiconductors have several times faster electron mobility than Si and can easily obtain a semi-insulating substrate, which can reduce the parasitic capacitance of the circuit during integration and enable high-speed logic operation. Based on this idea, vigorous R & D has been conducted in various places. Some GaAs semiconductors have been commercially available,
The varieties are mainly from SSI to MSI class, and the next development varieties are expected to be 1K to 4K bit memories and gate array type integrated circuits with several thousand gates.
Especially, BFL (Buffered FET Logi) using depletion type Schottky gate field effect transistor (MESFET).
c) The circuit is capable of high-speed logic operation even when driving a large load, and has been used for designing GaAs LSIs.

従来、GaAsBFL回路は、第3図に示すようにインバー
タ回路とレベルシフト型バッファ回路から成り、バッフ
ァ回路で大負荷を駆動する方式がとられていた。第3図
において、FET1のドレイン電極が電源端子100に接続さ
れ、ソース及びゲート電極は節点11に接続され、FET2の
ドレイン電極は節点11に接続され、ゲート電極は入力端
子10に接続され、ソース電極は電源端子101に接続され
ており、これらFET1及び2はインバータ回路を構成して
いる。FET3はドレイン電極が電源端子100に接続され、
ゲート電極がインバータ回路の出力の節点11に接続さ
れ、ソース電極が節点12に接続されている。ダイオード
4は、アノードが節点12に接続され、カソードが出力端
子20に接続され、FET5のドレイン電極は出力端子20に接
続され、ソース及びゲート電極は電源端子102に接続さ
れており、これらFET3,ダイオード4,FET5はバッファ回
路を構成している。特に、FET5は定電流源として用いて
おり、FET3のドレイン電流とのバランスで出力端子20の
電位が決定されている。
Conventionally, a GaAs BFL circuit has an inverter circuit and a level shift type buffer circuit as shown in FIG. 3, and a method of driving a large load by the buffer circuit has been adopted. In FIG. 3, the drain electrode of FET1 is connected to power supply terminal 100, the source and gate electrodes are connected to node 11, the drain electrode of FET2 is connected to node 11, the gate electrode is connected to input terminal 10, and the source electrode is connected to input terminal 10. The electrodes are connected to a power supply terminal 101, and these FETs 1 and 2 constitute an inverter circuit. FET3 has its drain electrode connected to the power supply terminal 100,
The gate electrode is connected to the node 11 of the output of the inverter circuit, and the source electrode is connected to the node 12. The diode 4 has an anode connected to the node 12, a cathode connected to the output terminal 20, a drain electrode of the FET 5 connected to the output terminal 20, a source and a gate electrode connected to the power supply terminal 102, and these FETs 3, 3. The diode 4 and the FET 5 constitute a buffer circuit. In particular, the FET 5 is used as a constant current source, and the potential of the output terminal 20 is determined by the balance with the drain current of the FET 3.

この様なBFL回路はインバータ回路のゲインを向上さ
せるために、FET1の電流供給能力をFET2に比べて極端に
小さくした場合においてもバッファ回路があるために、
出力電位の遅れ時間は大きくならない特徴を有してい
る。
Such a BFL circuit has a buffer circuit to improve the gain of the inverter circuit, even if the current supply capability of FET1 is extremely small compared to FET2,
The delay time of the output potential does not increase.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第3図に示したBFL回路においては、回路の遅延時間
はFET5の電流の影響を強く受ける。一方、FET5の電流は
近似的に(1)式で示されるような関数で与えられる。
In the BFL circuit shown in FIG. 3, the delay time of the circuit is strongly affected by the current of the FET5. On the other hand, the current of the FET 5 is approximately given by a function as shown by the equation (1).

IDS=W5KVt2 ……(1) (1)式において、W5はFET5のゲート幅、Kは相互コ
ンダクタンス、Vtはしきい値電圧である。(1)式から
FET5の電流は、しきい値電圧の自乗に比例しており、し
きい値電圧の影響を強く受けることがわかる。
IDS = W5KVt 2 (1) In equation (1), W5 is the gate width of the FET 5, K is the transconductance, and Vt is the threshold voltage. From equation (1)
It can be seen that the current of the FET 5 is proportional to the square of the threshold voltage and is strongly affected by the threshold voltage.

ところで、BFL回路は、インバータ回路部とレベルシ
フト回路部用の電源として2種類の電源を必要としてい
るために消費電力が大きいことから発熱量が大きく、IC
の動作温度が高くなる欠点がある。また、MESFETのしき
い値電圧は環境温度が高くなるにつれて負側にシフト
し、その結果発熱量をさらに増大させてしまう欠点があ
る。このようなBFL回路をICチップ内に配置した場合、
局部的に温度の「むら」が生じ、そのしきい値電圧変動
でIC内部の各論理回路の遅延時間が大きく変動してしま
うことは大きな問題である。
By the way, the BFL circuit requires two types of power supplies as power supplies for the inverter circuit section and the level shift circuit section, and thus consumes a large amount of power.
However, there is a disadvantage that the operating temperature becomes high. Further, there is a disadvantage that the threshold voltage of the MESFET shifts to the negative side as the environmental temperature increases, resulting in a further increase in the amount of heat generated. When such a BFL circuit is placed in an IC chip,
It is a serious problem that the temperature "unevenness" is locally generated and the delay time of each logic circuit inside the IC fluctuates greatly due to the threshold voltage fluctuation.

本発明の目的は、IC内部の発熱による局部的な温度む
らによるVt変動が発生した場合でも回路の遅延時間の変
動を抑え、且つ電源の種類を多くしない電界効果トラン
ジスタ論理回路を提供することにある。
It is an object of the present invention to provide a field effect transistor logic circuit that suppresses fluctuations in circuit delay time even when Vt fluctuations occur due to local temperature unevenness due to heat generation inside an IC and does not increase the number of types of power supplies. is there.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の電界効果トランジスタ論理回路は、一端が第
1の電源端子に接続され他端が第1の節点に接続された
負荷素子と、ドレイン電極が前記第1の節点に接続され
ゲート電極が入力端子に接続されソース電極が第2の電
源端子に接続された第1のMESFETかならるインバータ回
路と、ドレイン電極が前記第1の電源端子に接続され、
ゲート電極が前記第1の節点に接続され、ソース電極が
第2の節点に接続された第2のMESFETと、一端が前記第
2の節点に接続され他端が出力端子に接続されたレベル
シフト素子と、ドレイン電極が出力端子に接続されゲー
ト電極が第3の節点に接続されソース電極が第3の電源
端子に接続された第3のMESFETとから成るレベルシフト
型バッファ回路と、一端が前記第2の電源端子に接続さ
れ、他端が第4の節点に接続された複数段直列のレベル
シフト素子と、一端が前記第4の節点に接続され他端が
前記第3の節点に接続された負荷素子と、ドレイン電極
が前記第3の節点に接続されソース及びゲート電極が前
記第3の電源端子に接続された第4のMESFETとから成る
基準電圧発生回路とを有することを特徴としている。
In the field effect transistor logic circuit according to the present invention, a load element having one end connected to the first power supply terminal and the other end connected to the first node, a drain electrode connected to the first node, and a gate electrode connected to the first node. An inverter circuit connected to a terminal, the source electrode being a first MESFET connected to a second power supply terminal, and a drain electrode connected to the first power supply terminal;
A second MESFET having a gate electrode connected to the first node and a source electrode connected to the second node; and a level shifter having one end connected to the second node and the other end connected to the output terminal. A level shift type buffer circuit including an element, a third MESFET having a drain electrode connected to the output terminal, a gate electrode connected to the third node, and a source electrode connected to the third power supply terminal; A plurality of serial level shift elements connected to a second power supply terminal and the other end connected to a fourth node; one end connected to the fourth node and the other end connected to the third node; And a reference voltage generating circuit including a fourth MESFET having a drain electrode connected to the third node and a source and a gate electrode connected to the third power supply terminal. .

〔作用〕[Action]

本発明による電界効果トランジスタ論理回路において
は、BFL論理回路のバッファ部電流源FETのゲート電位を
基準電圧発生回路から得ることにより、電流源FETのゲ
ート・ソース間電圧が回路のパラメータで決定されるし
きい値電圧において最大値をとるようになる。しきい値
電圧の設計値をこの値にすることで、温度変動による電
流源FETの電流変動を小さく抑えることが可能となる。
In the field-effect transistor logic circuit according to the present invention, the gate-source voltage of the current source FET is determined by circuit parameters by obtaining the gate potential of the buffer current source FET of the BFL logic circuit from the reference voltage generation circuit. It takes the maximum value in the threshold voltage. By setting the design value of the threshold voltage to this value, it is possible to suppress the current fluctuation of the current source FET due to the temperature fluctuation.

回路の遅延時間は、このように基準電圧発生回路によ
る電流の制御により、しきい値電圧の変動の影響を受け
なくなる。
The delay time of the circuit is not affected by the fluctuation of the threshold voltage due to the control of the current by the reference voltage generating circuit.

〔実施例〕〔Example〕

以下に本発明の実施例を図面によって説明する。第1
図に本発明による電界効果トランジスタ論理回路の一実
施例を示す。本実施例では、バッファ部の電流源FET5の
ゲート電圧を、一端が電源端子103に接続され、他端が
節点13に接続された抵抗6と、ドレイン電極が節点13に
接続され、ゲート及びソース電極が電源端子102に接続
されたFET7から成る基準電圧発生回路から得ている。そ
の他の構成は、第3図に示した回路の構成と同様であ
り、同一の要素には同一の番号を付してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First
FIG. 1 shows an embodiment of a field effect transistor logic circuit according to the present invention. In the present embodiment, the gate voltage of the current source FET 5 of the buffer unit is connected to the resistor 6 having one end connected to the power supply terminal 103 and the other end connected to the node 13, the drain electrode connected to the node 13, the gate and the source. The electrodes are obtained from a reference voltage generating circuit comprising an FET 7 connected to a power supply terminal 102. Other configurations are the same as the configuration of the circuit shown in FIG. 3, and the same elements are denoted by the same reference numerals.

ここで、デプレーション型FETのしきい値電圧をVt、
相互コンダクタンスをK、基準電圧発生回路の負荷素子
の抵抗値をR、MESFETのゲート幅をW7、バッファ部電流
源FET5のショットキ立上がり電圧をVfとすると、しきい
値電圧Vt及び基準電圧発生回路部負荷抵抗Rは、(2)
式を満たすように選択する。
Here, the threshold voltage of the depletion type FET is Vt,
Assuming that the transconductance is K, the resistance value of the load element of the reference voltage generation circuit is R, the gate width of the MESFET is W7, and the Schottky rising voltage of the buffer current source FET5 is Vf, the threshold voltage Vt and the reference voltage generation circuit section The load resistance R is (2)
Choose to satisfy the formula.

このように、FETのしきい値電圧とを制限する理由
は、しきい値電圧Vtの変動に対するFET5の電流変化が最
小になるしきい値電圧値を求めることで、基準電圧発生
回路による負帰還効果が過剰にならないようにするため
である。
The reason for limiting the threshold voltage of the FET as described above is that the negative feedback by the reference voltage generating circuit is obtained by finding the threshold voltage value at which the current change of the FET 5 with respect to the change of the threshold voltage Vt is minimized. This is to prevent the effect from becoming excessive.

今、入力端子10に「H」レベルが入力されると節点11
は「L」レベルとなりFET3の駆動能力は一時的に低下
し、出力端子20に接続された負荷容量の電荷はFET5によ
り放電される。この時の電流量はFET5のゲートバイアス
によって決定される。このゲートバイアスは基準電圧発
生回路から得られるものであり、そのレベルは第2図に
示すように、回路のパラメータで決定されるしきい値電
圧において最大値をとるようになる。しきい値電圧の設
計値をこの値にすることで、温度変動によるしきい値変
動が引き起こす電流源FETの電流変動を小さく抑えるこ
とが可能となる。結果として、この回路の遅延時間は、
温度変動の影響を受けなくなる。
Now, when the “H” level is input to the input terminal 10, the node 11
Becomes "L" level, the driving capability of the FET 3 is temporarily reduced, and the charge of the load capacitance connected to the output terminal 20 is discharged by the FET 5. The amount of current at this time is determined by the gate bias of FET5. This gate bias is obtained from the reference voltage generating circuit, and its level takes the maximum value at the threshold voltage determined by the parameters of the circuit, as shown in FIG. By setting the design value of the threshold voltage to this value, it is possible to suppress the current fluctuation of the current source FET caused by the threshold fluctuation due to the temperature fluctuation. As a result, the delay time of this circuit is
No longer affected by temperature fluctuations.

また、電源端子の電圧を(3)式に示すように制限す
る理由は、基準電圧発生回路を電源端子101と102との間
に接続できるようにして電源の種類を減らすためであ
る。
The reason why the voltage of the power supply terminal is limited as shown in the equation (3) is to reduce the number of types of power supplies by connecting the reference voltage generation circuit between the power supply terminals 101 and 102.

〔発明の効果〕 本発明による電界効果トランジスタ論理回路では、バ
ッファ部電流源FETのゲートバイアスを基準電圧発生回
路から得ているため、通常のBFL回路に比べ、温度の変
動による遅延時間のばらつきが少ない。従って、LSI中
のタイミングが重要となるブロックに本発明の回路を適
用することでチップの歩留りを向上させることが可能と
なる。また、FETのしきい値電圧と電源電圧の範囲を制
限することにより電源の種類を減らすことが出来る。
[Effect of the Invention] In the field effect transistor logic circuit according to the present invention, since the gate bias of the buffer current source FET is obtained from the reference voltage generation circuit, the variation of the delay time due to the temperature fluctuation is smaller than that of the normal BFL circuit. Few. Therefore, it is possible to improve the chip yield by applying the circuit of the present invention to blocks in the LSI where timing is important. In addition, by limiting the range of the threshold voltage of the FET and the range of the power supply voltage, the type of power supply can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す回路図、第2図は本発
明の回路のバッファ部電流源FETの電流及びゲート・ソ
ース間電圧を説明する図、第3図は従来例を示す回路図
である。 1,2,3,5,7……デプレーション型FET、4,8……レベルシ
フト素子、6……抵抗、10……入力端子、20……出力端
子、11,12,13……節点、100,101,102,103……電源端
子。
FIG. 1 is a circuit diagram showing one embodiment of the present invention, FIG. 2 is a diagram for explaining the current and gate-source voltage of a buffer current source FET of the circuit of the present invention, and FIG. 3 is a conventional example. It is a circuit diagram. 1,2,3,5,7 ... depletion type FET, 4,8 ... level shift element, 6 ... resistor, 10 ... input terminal, 20 ... output terminal, 11,12,13 ... node , 100, 101, 102, 103 ... Power supply terminals.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一端が第1の電源端子に接続され他端が第
1の節点に接続された負荷素子と、ドレイン電極が前記
第1の節点に接続されゲート電極が入力端子に接続され
ソース電極が第2の電源端子に接続された第1のMESFET
から成るインバータ回路と、ドレイン電極が前記第1の
電源端子に接続されゲート電極が前記第1の節点に接続
されソース電極が第2の節点に接続された第2のMESFET
と、一端が前記第2の節点に接続され他端が出力端子に
接続された第1のレベルシフト素子と、ドレイン電極が
出力端子に接続されゲート電極が第3の節点に接続され
ソース電極が第3の電源端子に接続された第3のMESFET
とから成るレベルシフト型バッファ回路と、一端が前記
第2の電源端子に接続され他端が第4の節点に接続され
た複数段の直列のレベルシフト素子と、一端が前記第4
の節点に接続され他端が前記第3の節点に接続された負
荷素子と、ドレイン電極が前記第3の節点に接続されソ
ース及びゲート電極が前記第3の電源端子に接続された
第4のMESFETとから成る基準電圧発生回路とを有するこ
とを特徴とする電界効果トランジスタ論理回路。
A load element having one end connected to the first power supply terminal and the other end connected to the first node; a drain electrode connected to the first node; a gate electrode connected to the input terminal; A first MESFET whose electrode is connected to a second power supply terminal
And a second MESFET having a drain electrode connected to the first power supply terminal, a gate electrode connected to the first node, and a source electrode connected to the second node.
A first level shift element having one end connected to the second node and the other end connected to the output terminal; a drain electrode connected to the output terminal; a gate electrode connected to the third node; and a source electrode connected to the third node. Third MESFET connected to third power supply terminal
A plurality of serial level shift elements having one end connected to the second power supply terminal and the other end connected to the fourth node, and one end connected to the fourth power supply terminal.
A load element having the other end connected to the third node and a fourth element having a drain electrode connected to the third node, and a source and a gate electrode connected to the third power supply terminal. A field effect transistor logic circuit, comprising: a reference voltage generation circuit including a MESFET.
【請求項2】前記MESFETのしきい値電圧をVt、相互コン
ダクタンスをK、前記第2の電源端子の電圧をVss1,前
記第3の電源端子の電圧をVss2、前記基準電圧発生回路
の負荷素子の抵抗値をR、前記第4のMESFETのゲート幅
をW、前記第3のMESFETのショットキ立上がり電圧およ
びレベルシフト素子のシフト量をVfとした場合に、 となる条件を満たすことを特徴とする請求項1記載の電
界効果トランジスタ論理回路。
2. The threshold voltage of the MESFET is Vt, the transconductance is K, the voltage of the second power supply terminal is Vss1, the voltage of the third power supply terminal is Vss2, the load element of the reference voltage generation circuit. Is R, the gate width of the fourth MESFET is W, the Schottky rising voltage of the third MESFET and the shift amount of the level shift element are Vf, The field effect transistor logic circuit according to claim 1, wherein the following condition is satisfied.
JP2306473A 1990-11-13 1990-11-13 Field effect transistor logic circuit Expired - Lifetime JP2982291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2306473A JP2982291B2 (en) 1990-11-13 1990-11-13 Field effect transistor logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2306473A JP2982291B2 (en) 1990-11-13 1990-11-13 Field effect transistor logic circuit

Publications (2)

Publication Number Publication Date
JPH04178022A JPH04178022A (en) 1992-06-25
JP2982291B2 true JP2982291B2 (en) 1999-11-22

Family

ID=17957439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2306473A Expired - Lifetime JP2982291B2 (en) 1990-11-13 1990-11-13 Field effect transistor logic circuit

Country Status (1)

Country Link
JP (1) JP2982291B2 (en)

Also Published As

Publication number Publication date
JPH04178022A (en) 1992-06-25

Similar Documents

Publication Publication Date Title
US4675557A (en) CMOS voltage translator
EP0075915B1 (en) Logic circuit operable by a single power voltage
JPH0681029B2 (en) Output circuit device
US5148244A (en) Enhancement-fet and depletion-fet with different gate length formed in compound semiconductor substrate
US5057722A (en) Delay circuit having stable delay time
US4810907A (en) Semiconductor resistance element used in a semiconductor integrated circuit
US5095230A (en) Data output circuit of semiconductor device
US4661726A (en) Utilizing a depletion mode FET operating in the triode region and a depletion mode FET operating in the saturation region
EP0562719B1 (en) An integrated circuit device made by compound semiconductor
US4639621A (en) Gallium arsenide gate array integrated circuit including DCFL NAND gate
EP0110916B1 (en) Current-driven enfet logic circuits
US5909128A (en) FETs logic circuit
US5021686A (en) Logic circuit
JP2982291B2 (en) Field effect transistor logic circuit
JPS6213063A (en) Compound semiconductor multilayer integrated circuit
US5537076A (en) Negative resistance circuit and inverter circuit including the same
US4935647A (en) Group III - V semiconductor devices with improved switching speeds
US5696453A (en) GaAs logic circuit with temperature compensation circuitry
US5204553A (en) Field effect transistor circuit
JPH06204853A (en) Logic circuit
JPH04178021A (en) Filed effect transistor logic circuit
US6239623B1 (en) Direct coupling field effect transistor logic (DCFL) circuit
EP0539754A2 (en) Semiconductor logical device
JP2800711B2 (en) Logic circuit
JPS62217718A (en) Field effect transistor logic circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12