JP2980869B2 - Method for producing single-crystal silver thin film or single-crystal silver - Google Patents

Method for producing single-crystal silver thin film or single-crystal silver

Info

Publication number
JP2980869B2
JP2980869B2 JP9217887A JP21788797A JP2980869B2 JP 2980869 B2 JP2980869 B2 JP 2980869B2 JP 9217887 A JP9217887 A JP 9217887A JP 21788797 A JP21788797 A JP 21788797A JP 2980869 B2 JP2980869 B2 JP 2980869B2
Authority
JP
Japan
Prior art keywords
silver
crystal
anions
electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9217887A
Other languages
Japanese (ja)
Other versions
JPH1160398A (en
Inventor
克彦 大柿
卓也 手島
謹悟 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP9217887A priority Critical patent/JP2980869B2/en
Publication of JPH1160398A publication Critical patent/JPH1160398A/en
Application granted granted Critical
Publication of JP2980869B2 publication Critical patent/JP2980869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、医療用途,センサ,触
媒材料,電極材料,鏡等として使用される単結晶質銀薄
膜又は単結晶銀を作製する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single-crystal silver thin film or single-crystal silver used for medical applications, sensors, catalyst materials, electrode materials, mirrors and the like.

【0002】[0002]

【従来の技術】センサ,触媒材料,電気材料等では、近
年の表面化学分野における表面反応に関する研究から、
原子レベルでみた表面構造が特性決定に大きな影響を及
ぼしていることが解明されてきている。このようなこと
から、原子レベルで表面構造が制御された単結晶膜が望
まれ始めている。単結晶は、通常、溶融法,溶液法,昇
華法,気相反応法等で作製されている。具体的には、キ
ロポウロス法,ブリッジマン法,ベルヌーイ法,帯溶融
法等がある。しかし、何れの方法も極めて徐々に外部条
件を変更し、或いは結晶の成長に応じて結晶を動かすこ
と等の工夫が必要とされる。そのため、装置が非常に複
雑となり、非常に時間のかかる雰囲気制御が必要にな
る。ところが、金,白金,銅,ロジウム等の金属では、
比較的簡単に単結晶が作製される。たとえば、水素−酸
素バーナを用いて金,白金,銅,ロジウム等の金属を溶
融させ、静かに固化させることにより単結晶が得られ
る。
2. Description of the Related Art Recent research on surface reactions in the field of surface chemistry for sensors, catalyst materials, electric materials, etc.
It has been elucidated that the surface structure at the atomic level has a significant effect on characterization. For this reason, a single crystal film whose surface structure is controlled at the atomic level has been desired. A single crystal is usually produced by a melting method, a solution method, a sublimation method, a gas phase reaction method, or the like. Specifically, there are a kilopoulos method, a Bridgman method, a Bernoulli method, a zone melting method, and the like. However, any of these methods requires a device such as changing the external conditions very gradually or moving the crystal in accordance with the growth of the crystal. As a result, the apparatus becomes very complicated, and very time-consuming atmosphere control is required. However, for metals such as gold, platinum, copper, and rhodium,
Single crystals can be produced relatively easily. For example, a single crystal can be obtained by melting a metal such as gold, platinum, copper, and rhodium using a hydrogen-oxygen burner and then solidifying it gently.

【0003】[0003]

【発明が解決しようとする課題】この方法で銀の単結晶
を作製しようとしても、酸素との親和力が大きい銀は、
製膜中に酸化するため単結晶にならない。しかし、銀の
単結晶は、センサや高反射率の鏡等として使用され、更
にはレーザ加工精度を高めたり、電極反応を解明する上
での電極として利用されている等、ニーズが高いもので
あり、複雑な装置を必要とすることなく簡便な方法で作
製することが望まれる。本発明は、このような要求を満
足すべく案出されたものであり、金,白金,銅,ロジウ
ム等の単結晶金属基体を電極とし、その上に銀をエピタ
キシャル成長させることにより、各種用途に使用される
単結晶質の銀薄膜又は銀単結晶を得ることを目的とす
る。
Even if a single crystal of silver is to be produced by this method, silver having a high affinity for oxygen cannot be obtained.
It does not become single crystal because it is oxidized during film formation. However, silver single crystals are used as sensors and mirrors with high reflectivity, etc., and are used as electrodes for improving laser processing accuracy and for elucidating electrode reactions. Therefore, it is desired that the device be manufactured by a simple method without requiring a complicated device. The present invention has been devised to satisfy such demands, and is used for various applications by using a single-crystal metal substrate such as gold, platinum, copper, and rhodium as an electrode, and epitaxially growing silver thereon. It is intended to obtain a single crystalline silver thin film or silver single crystal to be used.

【0004】[0004]

【課題を解決するための手段】本発明に従った単結晶質
銀薄膜又は単結晶銀の作製方法は、その目的を達成する
ため、銀を含む電解質溶液に単結晶質基体を陰極として
浸漬して電解質中のアニオンを吸着させ、又は浸漬前に
銀を含まない溶液に単結晶質基体を浸漬することにより
単結晶質基体の表面にアニオンを吸着させた後で銀を含
む電解質溶液に浸漬して、銀を単結晶質基体の表面に電
解析出させることを特徴とする。単結晶質基体には、
金,銀,銅,白金又はロジウムの単結晶が使用される。
銀を含む電解質溶液としては、アニオン吸着し易い過塩
素酸,硫酸,硝酸,フッ酸,リン酸等の1種又は2種以
上の水溶液が使用される。或いは、ハロゲン,シアン等
のアニオン吸着し易いアニオンを予め吸着させた単結晶
基板が使用される。銀の電解析出に先立って、ハロゲ
ン,シアン,チオシアン,硝酸イオン又は硫酸イオンか
ら選ばれた1種又は2種以上のアニオンを単結晶質基体
の表面に吸着させることもできる。アニオンの吸着に
は、ハロゲン,シアン,チオシアン,硝酸イオン又は硫
酸イオンから選ばれた1種又は2種以上のアニオンを含
む溶液に単結晶質基体を接触させる方法が採用される。
ただし、ハロゲンを吸着させる場合には、ハロゲン化銀
が形成されないように条件設定する。また、アニオンを
含む電解質溶液中で銀を電解析出させる方法も採用可能
である。
In order to achieve the object, a method for producing a single-crystal silver thin film or single-crystal silver according to the present invention comprises immersing a single-crystal substrate in a silver-containing electrolyte solution as a cathode. An anion in the electrolyte is adsorbed by immersion in a silver-containing electrolyte solution after the anion is adsorbed on the surface of the single-crystal substrate by immersing the single-crystal substrate in a silver-free solution before immersion. Silver is electrolytically deposited on the surface of the single crystalline substrate. Monocrystalline substrates include:
Single crystals of gold, silver, copper, platinum or rhodium are used.
As the electrolyte solution containing silver, one or two or more aqueous solutions of perchloric acid, sulfuric acid, nitric acid, hydrofluoric acid, phosphoric acid, etc., which easily adsorb anions are used. Alternatively, a single crystal substrate on which anions such as halogen and cyan which are easily adsorbed by anions are used is used. Prior to the electrolytic deposition of silver, one or more anions selected from halogen, cyan, thiocyan, nitrate ions or sulfate ions can be adsorbed on the surface of the single crystalline substrate. For the adsorption of anions, a method is employed in which a single crystalline substrate is brought into contact with a solution containing one or more anions selected from halogen, cyan, thiocyanate, nitrate ions or sulfate ions.
However, when halogen is adsorbed, conditions are set so that silver halide is not formed. Further, a method of electrolytically depositing silver in an electrolyte solution containing an anion can also be adopted.

【0005】[0005]

【作用】金,白金,銅,ロジウム等の貴金属は、前述し
たように水素−酸素バーナを用いた溶解法で簡単に単結
晶化できる。本発明は、このように単結晶化された金,
白金,銅,ロジウム等の貴金属を単結晶質基体として使
用し、その上に銀を電解析出でエピタキシャル成長させ
ることにより、単結晶質の銀薄膜を作製するものであ
る。また、作製された単結晶質銀薄膜を基体として更に
銀のエピタキシャル成長を継続させると、厚みのある単
結晶銀が得られる。金,白金,銅,ロジウム以外にも、
銀の平衡電位よりも貴な電位で銀が1層程度吸着する金
属を使用することができる。このような現象は、一般的
にアンダーポテンシャルデポジションと呼ばれており、
異種金属基板上に異なる金属(銀)を電解析出させる場
合に、異種金属間の相互作用が大きい(銀と銀の間の相
互作用よりも銀と他の金属との間の相互作用の方が大き
い)と、電解析出する金属の平衡電位よりも貴な電位で
数層程度電解析出が進行する現象を言う。アンダーポテ
ンシャルデポジションが起きる金属基板は、平衡電位よ
り卑な電位で銀のバルク電解析出を開始する前に銀が電
解析出されている。そのため、銀の電極基板上への電解
析出と同じで、最近接原子間距離の歪みも非常に小さ
く、銀のエピタキシャル成長が起こり易くなり、銀の単
結晶が作製される。
The noble metals such as gold, platinum, copper and rhodium can be easily single-crystallized by the melting method using a hydrogen-oxygen burner as described above. The present invention relates to the single crystallized gold,
A single-crystal silver thin film is produced by using a noble metal such as platinum, copper, rhodium or the like as a single-crystal substrate, and epitaxially growing silver thereon by electrolytic deposition. Further, when the epitaxial growth of silver is further continued by using the prepared single crystalline silver thin film as a base, a thick single crystal silver can be obtained. Besides gold, platinum, copper and rhodium,
It is possible to use a metal which adsorbs about one layer of silver at a potential nobler than the equilibrium potential of silver. Such a phenomenon is generally called underpotential deposition,
When a different metal (silver) is electrolytically deposited on a dissimilar metal substrate, the interaction between the dissimilar metals is large (the interaction between silver and another metal is greater than the interaction between silver and silver). Is large), a phenomenon in which the electrolytic deposition proceeds by several layers at a potential nobler than the equilibrium potential of the metal to be electrolytically deposited. In a metal substrate where underpotential deposition occurs, silver is electrolytically deposited before starting bulk electrolytic deposition of silver at a potential lower than the equilibrium potential. Therefore, as in the case of electrolytic deposition of silver on an electrode substrate, the distortion of the distance between nearest neighbor atoms is very small, and epitaxial growth of silver is likely to occur, thereby producing a silver single crystal.

【0006】電解質溶液中の銀濃度は10モル〜0.0
1mモルの範囲で、なかでも1モル〜0.1mモルが好
ましい。供給電流は0.1A/cm2 〜1μA/cm2
の範囲で、なかでも10mA/cm2 〜10μA/cm
2 が好ましい。濃度や電流値が大きいと反応が一度に起
こり、単結晶が得られない。逆に濃度や電流値が小さす
ぎると電解に長時間を要し、実用的でない。この条件下
で電解すると、金,白金,銅,ロジウム等の金属基体上
にアニオンが吸着し、銀の平衡電位よりも貴な電位で銀
が1層形成されるアンダーポテンシャルデポジション現
象が生じる。次いで、銀の平衡電位よりも卑な電位で銀
のバルク電解析出が開始すると、銀の単結晶電極上に銀
が電解析出するのと同様に、析出した銀の歪みが非常に
小さくなり、銀がエピタキシャル成長し易い環境にな
る。このようにして作製された単結晶質銀薄膜は、原子
レベルで平坦な表面をもっている。
[0006] The silver concentration in the electrolyte solution is from 10 mol to 0.0
In the range of 1 mmol, 1 mol to 0.1 mmol is particularly preferable. The supply current is 0.1 A / cm 2 to 1 μA / cm 2
In the range of 10 mA / cm 2 to 10 μA / cm
2 is preferred. If the concentration or current value is large, the reaction occurs at once, and a single crystal cannot be obtained. Conversely, if the concentration or current value is too small, it takes a long time for electrolysis, which is not practical. When electrolysis is performed under these conditions, an anion is adsorbed on a metal substrate such as gold, platinum, copper, and rhodium, and an underpotential deposition phenomenon occurs in which one layer of silver is formed at a potential nobler than the equilibrium potential of silver. Then, when the bulk electrolytic deposition of silver starts at a potential lower than the equilibrium potential of silver, the distortion of the deposited silver becomes very small, similar to the case where silver is electrolytically deposited on a silver single crystal electrode. Thus, an environment in which silver easily grows epitaxially is provided. The single crystalline silver thin film thus produced has a flat surface at the atomic level.

【0007】電解質中のアニオンや予め電極に吸着させ
たハロゲン,シアン等は、電解析出の過程で銀のエピタ
キシャル成長を制御する。すなわち、アニオンは常に電
極の表層に吸着しており、吸着したアニオンの間隙に銀
が電解析出する。そして、電解析出した銀の上にアニオ
ンが吸着する。次いで、アニオンが抜けた間隙に銀が電
解析出することにより、1層分完全な銀の電解析出層が
形成される。この繰返しにより、銀の電解析出が進行す
る。そのため、各種アニオンを併用して電解析出を実施
すると、単結晶化が一層促進され、品質及び品質安定性
に優れた単結晶質銀薄膜や単結晶銀が得られる。
[0007] Anions in the electrolyte and halogen, cyan and the like previously adsorbed on the electrode control the epitaxial growth of silver during the electrolytic deposition process. That is, the anion is always adsorbed on the surface of the electrode, and silver is electrolytically deposited in the gap between the adsorbed anions. Then, the anion is adsorbed on the electrolytically deposited silver. Next, silver is electrolytically deposited in the gap from which the anions have been removed, thereby forming a complete silver electrodeposited layer for one layer. By repeating this, the electrolytic deposition of silver proceeds. Therefore, when electrolytic deposition is carried out in combination with various anions, single crystallization is further promoted, and a single crystalline silver thin film or single crystal silver excellent in quality and quality stability can be obtained.

【0008】[0008]

【実施例】実施例1: 直径0.8mm,長さ10cmのAu線をアセトン洗浄
し、更に超純水を用いて10分間超音波洗浄した。洗浄
後のAu線を王水に浸漬して表面を溶かし、更に超純水
で洗浄した。このAu線を酸素−水素ガス火炎中で加熱
溶融させて、Auの液滴とした。振動を与えることなく
液滴を静かに固化させて再結晶化させることにより、直
径3mmの単結晶を得た。得られたAu単結晶の(11
1)面ファセットを基準として面積が最大になるように
研磨し、Au(111)面の単結晶電極を得た。この電
極を0.1M H2 SO4 +0.1mM Ag2 SO4
溶液に浸漬し、対極にPt,参照電極にRHE(可逆水
素電極)を用いて、0.65Vの電位を5分間印加し
た。電圧印加により、単結晶電極の表面に銀が電解析出
した。
EXAMPLES Example 1 An Au wire having a diameter of 0.8 mm and a length of 10 cm was washed with acetone and further ultrasonically washed with ultrapure water for 10 minutes. The washed Au wire was immersed in aqua regia to dissolve the surface, and further washed with ultrapure water. The Au wire was heated and melted in an oxygen-hydrogen gas flame to form Au droplets. The droplets were gently solidified and recrystallized without applying vibration to obtain a single crystal having a diameter of 3 mm. (11) of the obtained Au single crystal
1) Polishing was performed so that the area was maximized based on the facet facet, to obtain a Au (111) face single-crystal electrode. This electrode was 0.1 MH 2 SO 4 +0.1 mM Ag 2 SO 4
It was immersed in the solution, and a potential of 0.65 V was applied for 5 minutes using Pt as a counter electrode and RHE (reversible hydrogen electrode) as a reference electrode. Silver was electrolytically deposited on the surface of the single crystal electrode by applying a voltage.

【0009】電圧印加中に、走査型トンネル顕微鏡を用
いて電解析出面を観察した。図1の観察結果にみられる
ように、電解析出前の電極面(a)は、電解析出開始後
30秒経過した時点で銀の電解析出が検出され(b)、
90秒経過した時点で銀の電解析出領域が広がっていた
(c)。そして、時間の経過に従ってステップエッジか
ら銀がlayer by layerで成長している様
子が観察され、原子レベルで平坦な表面となることが確
認された。電解析出後の電極を超純水で洗浄した。この
ようにして銀薄膜が積層された電極を0.1mM KI
+10mMKF+0.1mM KOH溶液に浸漬し電流
電圧曲線を測定したところ、図2に示すように市販のA
g(111)単結晶電極と同じ特性を示した。このこと
から、電解析出した銀により(111)面の面方位をも
つ単結晶が作製されていることが判る。
During the application of the voltage, the electrolytic deposition surface was observed using a scanning tunneling microscope. As can be seen from the observation results in FIG. 1, the electrode surface (a) before the electrolytic deposition was silver electrolytic deposition was detected 30 seconds after the start of the electrolytic deposition (b),
When 90 seconds had elapsed, the silver electrolytic deposition region had expanded (c). Then, it was observed that silver grew from the step edge with the lapse of time in the layer by layer, and it was confirmed that the surface became flat at the atomic level. The electrode after the electrolytic deposition was washed with ultrapure water. The electrode on which the silver thin film is laminated in this way is 0.1 mM KI.
When immersed in +10 mM KF + 0.1 mM KOH solution and measured the current-voltage curve, as shown in FIG.
It showed the same characteristics as the g (111) single crystal electrode. From this, it can be seen that a single crystal having a (111) plane orientation was produced by silver deposited by electrolysis.

【0010】電極表面に形成された銀薄膜は、電気化学
走査型トンネル顕微鏡で測定したところ原子間距離が
0.29nmであり、三回対称のAg(111)面に対
応する(1×1)構造を示した。この結果からも、電解
析出した銀により(111)面の面方位をもつ単結晶が
作製されていることが確認される。 比較例1: 電解質溶液として0.1M HClO4 +1mM Ag
ClO4 溶液を使用する以外は、実施例1と同じ条件下
で電極表面に銀を電解析出させた。この場合には、図3
に示すように非常にラフな表面が表れ、(111)面の
テラスが形成されなかった。
The silver thin film formed on the electrode surface has an interatomic distance of 0.29 nm as measured by an electrochemical scanning tunneling microscope, and corresponds to a three-fold symmetric Ag (111) plane (1 × 1). The structure is shown. This result also confirms that a single crystal having a plane orientation of the (111) plane has been produced by the electrolytically deposited silver. Comparative Example 1: 0.1 M HClO 4 +1 mM Ag as electrolyte solution
Silver was electrolytically deposited on the electrode surface under the same conditions as in Example 1 except that a ClO 4 solution was used. In this case, FIG.
As shown in (1), a very rough surface appeared, and no terrace of the (111) plane was formed.

【0011】実施例2: 実施例1と同様にして作製したAu(111)電極を1
mM KI+0.1MHClO4 溶液に浸漬した後、電
極を取り出して水洗することにより、電極表面に沃素イ
オンを吸着させた。次いで、0.1M HClO4 +1
mM AgClO4 溶液に電極を浸漬し、実施例1と同
じ条件下で銀を電解析出させた。得られた表面は、原子
レベルで平坦化されており、しかも(111)表面の銀
のステップテラスが観察された。
Example 2: An Au (111) electrode produced in the same manner as in Example 1
After immersion in an mM KI + 0.1 M HClO 4 solution, the electrode was taken out and washed with water to adsorb iodine ions on the electrode surface. Then, 0.1 M HClO 4 +1
The electrode was immersed in a mM AgClO 4 solution, and silver was electrolytically deposited under the same conditions as in Example 1. The obtained surface was flattened at the atomic level, and silver step terraces on the (111) surface were observed.

【0012】実施例3: Au(111)電極を、(111)面だけが電解質溶液
と接触するように非導電性筒の中に固定し、実施例1と
同じ条件下で電解析出を1時間継続させた。この場合に
は、原子レベルで平坦化され且つ(111)のステップ
テラスをもつ厚み2mmの銀単結晶がAu(111)面
の上に形成されていた。
Example 3 An Au (111) electrode was fixed in a non-conductive tube so that only the (111) surface was in contact with the electrolyte solution, and electrolytic deposition was performed under the same conditions as in Example 1. Continued for hours. In this case, a silver single crystal having a thickness of 2 mm and flattened at the atomic level and having a (111) step terrace was formed on the Au (111) plane.

【0013】実施例4: 実施例1と同様な方法でPt(111)電極を作製し、
実施例2と同様に沃素イオンを吸着させた後、銀を電解
析出させた。電解析出後の電極表面を観察したところ、
原子レベルで平坦化され且つ(111)表面をもつ銀の
ステップテラスが形成されていた。実施例5: 実施例1と同様な方法でCu(111)電極を作製し、
実施例2と同様に沃素イオンを吸着させた後、銀を電解
析出させた。電解析出後の電極表面を観察したところ、
原子レベルで平坦化され且つ(111)表面をもつ銀の
ステップテラスが形成されていた。
Example 4 A Pt (111) electrode was prepared in the same manner as in Example 1,
After iodine ions were adsorbed in the same manner as in Example 2, silver was electrolytically deposited. When observing the electrode surface after electrolytic deposition,
A silver step terrace having been flattened at an atomic level and having a (111) surface was formed. Example 5: A Cu (111) electrode was prepared in the same manner as in Example 1,
After iodine ions were adsorbed in the same manner as in Example 2, silver was electrolytically deposited. When observing the electrode surface after electrolytic deposition,
A silver step terrace having been flattened at an atomic level and having a (111) surface was formed.

【0014】[0014]

【発明の効果】以上に説明したように、本発明において
は、比較的簡便な方法で作製される金,銅,白金,ロジ
ウム等の単結晶質基体を使用し、この単結晶質基体を陰
極として電解質溶液に浸漬し、銀を電解析出させること
により、単結晶質基体の表面に銀薄膜をエピタキシャル
成長させている。このようにして、作製された単結晶質
銀薄膜又は単結晶銀は、原子レベルで平坦な表面をも
ち、医療用途,センサ,触媒材料,電極材料,鏡等の広
範な分野において高機能の材料として使用される。
As described above, according to the present invention, a single-crystal substrate made of gold, copper, platinum, rhodium or the like manufactured by a relatively simple method is used, and this single-crystal substrate is used as a cathode. The silver thin film is epitaxially grown on the surface of the single-crystal substrate by immersing in an electrolyte solution and electrolytically depositing silver. The single-crystal silver thin film or single-crystal silver thus prepared has a flat surface at the atomic level, and is a highly functional material in a wide range of fields such as medical applications, sensors, catalyst materials, electrode materials, and mirrors. Used as

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Au(111)電極上に銀が電解析出する過
程を示した電気化学走査型トンネル顕微鏡写真であり、
電解析出前(a),電解析出開始から30秒経過した時
点(b)及び電解析出開始から90秒経過した時点
(c)での電極表面
FIG. 1 is a photograph of an electrochemical scanning tunneling microscope showing a process of electrolytic deposition of silver on an Au (111) electrode.
Electrode surface before (a), 30 seconds after the start of electrolytic deposition (b) and 90 seconds after the start of electrolytic deposition (c)

【図2】 実施例1における電極の電流電圧曲線FIG. 2 shows current-voltage curves of electrodes in Example 1.

【図3】 比較例1で銀を電解析出させたAu(11
1)電極の表面を示す電気化学走査型トンネル顕微鏡写
FIG. 3 shows Au (11) obtained by electrolytically depositing silver in Comparative Example 1.
1) Electrochemical scanning tunneling micrograph showing the surface of the electrode

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銀を含む電解質溶液に単結晶質基体を陰
極として浸漬し、電解質中のアニオンを吸着させ、又は
浸漬前に銀を含まない溶液に単結晶質基体を浸漬するこ
とにより単結晶質基体の表面にアニオンを吸着させた後
で銀を含む電解質溶液に浸漬して、銀を単結晶質基体の
表面に電解析出させることを特徴とする単結晶質銀薄膜
又は単結晶銀の作製方法。
1. A single crystal is prepared by immersing a single-crystal substrate in a silver-containing electrolyte solution as a cathode to adsorb anions in the electrolyte or immersing the single-crystal substrate in a silver-free solution before immersion. A single-crystal silver thin film or a single-crystal silver thin film, characterized in that silver is electrolytically deposited on the surface of the single-crystal substrate by immersing in an electrolyte solution containing silver after adsorbing anions on the surface of the porous substrate. Production method.
【請求項2】 金,銀,銅,白金又はロジウムの単結晶
を単結晶質基体として使用する請求項1記載の作製方
法。
2. The method according to claim 1, wherein a single crystal of gold, silver, copper, platinum or rhodium is used as the single crystalline substrate.
【請求項3】 銀を含む電解質溶液が過塩素酸,硫酸,
硝酸,フッ酸,リン酸の1種又は2種以上の水溶液であ
る請求項1又は2記載の作製方法。
3. The method according to claim 1, wherein the electrolyte solution containing silver is perchloric acid, sulfuric acid,
The method according to claim 1 or 2, wherein the aqueous solution is one or more of an aqueous solution of nitric acid, hydrofluoric acid, and phosphoric acid.
【請求項4】 銀の電解析出に先立って、ハロゲン,シ
アン,チオシアン,硝酸イオン又は硫酸イオンから選ば
れた1種又は2種以上のアニオンを単結晶質基体の表面
に吸着させる請求項1〜3の何れかに記載の作製方法。
4. The method according to claim 1, wherein one or more anions selected from halogen, cyan, thiocyan, nitrate or sulfate ions are adsorbed on the surface of the single crystalline substrate prior to the electrolytic deposition of silver. 4. The production method according to any one of items 1 to 3.
【請求項5】 ハロゲン,シアン,チオシアン,硝酸イ
オン又は硫酸イオンから選ばれた1種又は2種以上のア
ニオンを含む溶液に単結晶質基体を接触させることによ
りアニオンを吸着させる請求項4記載の作製方法。
5. The method according to claim 4, wherein the single crystal substrate is brought into contact with a solution containing one or more anions selected from halogen, cyan, thiocyan, nitrate ions or sulfate ions to adsorb the anions. Production method.
【請求項6】 銀を含む電解質溶液が更にハロゲン,シ
アン,チオシアン,硝酸イオン又は硫酸イオンから選ば
れた1種又は2種以上のアニオンを含む溶液である請求
項1〜3の何れかに記載の作製方法。
6. The method according to claim 1, wherein the electrolyte solution containing silver is a solution further containing one or more anions selected from halogen, cyan, thiocyan, nitrate ions or sulfate ions. Method of manufacturing.
JP9217887A 1997-08-12 1997-08-12 Method for producing single-crystal silver thin film or single-crystal silver Expired - Fee Related JP2980869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9217887A JP2980869B2 (en) 1997-08-12 1997-08-12 Method for producing single-crystal silver thin film or single-crystal silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9217887A JP2980869B2 (en) 1997-08-12 1997-08-12 Method for producing single-crystal silver thin film or single-crystal silver

Publications (2)

Publication Number Publication Date
JPH1160398A JPH1160398A (en) 1999-03-02
JP2980869B2 true JP2980869B2 (en) 1999-11-22

Family

ID=16711331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9217887A Expired - Fee Related JP2980869B2 (en) 1997-08-12 1997-08-12 Method for producing single-crystal silver thin film or single-crystal silver

Country Status (1)

Country Link
JP (1) JP2980869B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0010494D0 (en) * 2000-04-28 2000-06-14 Isis Innovation Textured metal article
DE10136890B4 (en) * 2001-07-25 2006-04-20 Siemens Ag Method and apparatus for producing a crystal textured textured metal strip and ribbon
KR100516126B1 (en) * 2003-04-03 2005-09-23 한국기계연구원 Method of manufacturing metal plated layer having biaxial texture
JP2007058194A (en) * 2005-07-26 2007-03-08 Tohoku Univ High-reflectance visible-light reflector member, liquid-crystal display backlight unit employing the same and manufacturing method of the high-reflectance visible-light reflector member
US8460535B2 (en) 2009-04-30 2013-06-11 Infinium, Inc. Primary production of elements
JP5848169B2 (en) * 2012-03-14 2016-01-27 Dowaメタルテック株式会社 Silver plating material

Also Published As

Publication number Publication date
JPH1160398A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
US4750977A (en) Electrochemical plating of platinum black utilizing ultrasonic agitation
Ji et al. Fabrication of nanoporous gold nanowires
US4490219A (en) Method of manufacture employing electrochemically dispersed platinum catalysts deposited on a substrate
US5215631A (en) Electrolytic preparation of tin, other metals, alloys and compounds
JP4807754B2 (en) Method for forming holes in a crystal substrate
US20100099012A1 (en) Electrocatalyst Synthesized by Depositing a Contiguous Metal Adlayer on Transition Metal Nanostructures
US20100003822A1 (en) Method for producing columnar structured material
Wong et al. Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil
Cohen Some prospective applications of silicon electrodeposition from molten fluorides to solar cell fabrication
JP2980869B2 (en) Method for producing single-crystal silver thin film or single-crystal silver
US7947162B2 (en) Free standing single-crystal nanowire growth by electro-chemical deposition
JPH06507143A (en) Method for electrochemically depositing compound semiconductors
JPS644301B2 (en)
US4115322A (en) Method for obtaining high activity electrocatalysts on pyrolytic graphite
JP2976995B2 (en) Atomic wire growth method and atomic wire device
Kenane et al. Electrochemical self-assembly of Cu/Cu2O nanowires
Brito-Neto et al. Synthesis and characterization of porous platinum layers deposited on highly doped n-type porous silicon by immersion plating
JP3237098B2 (en) Electroless palladium plating method and electroless plating bath used therein
US4142947A (en) Electrodeposition of polycrystalline silicon from a molten fluoride bath and product
Taylor et al. The effects of organic adsorbates on the underpotential deposition of silver on Pt (111) electrodes
US20110220166A1 (en) Method of synthesis cobalt antimonide nanoscale structures and device
KR100578105B1 (en) Method for Fabricating polycrystalline silicon thin films using aluminum halogen compound and metal compound atmosphere
JP5763718B2 (en) Alignment substrate for epitaxial film formation and manufacturing method thereof
Mitsui et al. A novel preparation of gold films by electrodeposition at the interface between a Na (AuCl4)–CuSO4 aqueous phase and an immiscible hexyl acetate organic phase
Meier et al. Silicon carbide: a new electrode material for voltammetric measurements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees