JP2980694B2 - Short fiber composite rubber composition - Google Patents

Short fiber composite rubber composition

Info

Publication number
JP2980694B2
JP2980694B2 JP2402137A JP40213790A JP2980694B2 JP 2980694 B2 JP2980694 B2 JP 2980694B2 JP 2402137 A JP2402137 A JP 2402137A JP 40213790 A JP40213790 A JP 40213790A JP 2980694 B2 JP2980694 B2 JP 2980694B2
Authority
JP
Japan
Prior art keywords
fiber composite
short fiber
composite rubber
rubber
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2402137A
Other languages
Japanese (ja)
Other versions
JPH0641356A (en
Inventor
務 塩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2402137A priority Critical patent/JP2980694B2/en
Publication of JPH0641356A publication Critical patent/JPH0641356A/en
Application granted granted Critical
Publication of JP2980694B2 publication Critical patent/JP2980694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、短繊維複合ゴム組成物
の改良に関し、特に押出、トランスファおよび射出成形
を対象としたものに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a short fiber composite rubber composition, and more particularly, to an extrusion, transfer and injection molding.

【0002】[0002]

【従来の技術】一般に、短繊維複合ゴム製品は、例えば
エラストマーの分野では、伝動ベルトの圧縮ゴム層、防
振ゴム、緩衝材、シール材、靴底、床材およびキャタピ
ラのカバー等に、FRPの分野では、摺動材および補強
部品等の用途に利用することができ、有用である。そし
て、従来、短繊維複合ゴム製品に繊維を配向させる加工
方法としては、マトリックスゴム中に短繊維が分散され
た未加硫の短繊維複合ゴム組成物を用いて、上記繊維を
カレンダーにより圧延方向に配向させる方法や、環状ダ
イにより押出方向及びそれに直交する方向に主に配向さ
せる方法等が知られている。
2. Description of the Related Art Generally, in the field of elastomers, for example, in the field of elastomers, short-fiber composite rubber products are used as FRPs on compression rubber layers of power transmission belts, vibration-isolating rubber, cushioning materials, sealing materials, shoe soles, flooring materials, and covers of tracks. In the field of, it can be used for applications such as sliding materials and reinforcing parts, and is useful. Conventionally, as a processing method for orienting fibers in a short fiber composite rubber product, using an unvulcanized short fiber composite rubber composition in which short fibers are dispersed in a matrix rubber, the above fibers are calendered in a calendering direction. There is known a method of orienting the resin in an extrusion direction and a method of mainly orienting the material in an extrusion direction and a direction orthogonal thereto using an annular die.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の前者
の加工方法では、コンパウンドの特性にかかわらず均質
な配向物を得ることが可能であるが、後者の加工方法や
孔を通して配向を得るトランスファ成形および射出成形
においては、成形物内部に空隙が存在し、かつ短繊維の
偏在および短繊維配向度の局部的な乱れ等により、全体
として均質な成形物を得ることが困難であるという問題
があった。
However, in the former processing method described above, it is possible to obtain a homogeneous oriented product regardless of the characteristics of the compound. However, in the latter processing method, transfer molding in which alignment is achieved through holes. In addition, in injection molding, there is a problem that voids exist inside the molded product, and it is difficult to obtain a uniform molded product as a whole due to uneven distribution of short fibers and local disturbance of the degree of short fiber orientation. Was.

【0004】本発明はかかる点に鑑みてなされたもので
あり、その目的とするところは、押出、トランスファお
よび射出成形等する場合において、マトリックスゴムの
流動特性を特定することにより、内部欠陥がなくしかも
短繊維が一様に分散配向して全体として均質な成形物を
得ることができる短繊維複合ゴム組成物を提供せんとす
ることにある。
[0004] The present invention has been made in view of such a point, and an object thereof is to eliminate internal defects by specifying the flow characteristics of a matrix rubber in extrusion, transfer, injection molding, and the like. Moreover, it is an object of the present invention to provide a short-fiber composite rubber composition in which short fibers are uniformly dispersed and oriented to obtain a uniform molded product as a whole.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の解決手段は、マトリックスゴム中に短繊維
が分散された未加硫の押出、トランスファおよび射出成
形用の短繊維複合ゴム組成物として、下記のマトリック
スゴム単体の粘度式(I)および緩和ダイスウェル(I
I)と、短繊維複合ゴムの粘度式(I´)および緩和ダ
イスウェル(II´)とにおいて、絶対温度が353〜4
33°Kでかつ剪断歪速度が2〜500 sec-1の領域に
おける各係数を、
In order to achieve the above-mentioned object, a solution of the present invention is a short fiber composite rubber for unvulcanized extrusion, transfer and injection molding, in which short fibers are dispersed in a matrix rubber. As the composition, the following viscosity formula (I) of the matrix rubber alone and the relaxation die swell (I
In (I) and the viscosity formula (I ′) and the relaxation die swell (II ′) of the short fiber composite rubber, the absolute temperature is 353 to 4
Each coefficient in the region of 33 ° K and a shear strain rate of 2 to 500 sec -1

【0006】[0006]

【数2】 (Equation 2)

【0007】に設定したことである。[0007]

【0008】[0008]

【作用】上記の構成により、本発明では、前述したマト
リックスゴム単体の粘度式(I)および緩和ダイスウェ
ル(II)と、短繊維複合ゴムの粘度式(I´)および緩
和ダイスウェル(II´)とにおいて、絶対温度が353
〜433°Kでかつ剪断歪速度が2〜500 sec-1の領
域における各係数が、
According to the present invention, the viscosity formula (I) and the relaxation die swell (II) of the matrix rubber alone and the viscosity formula (I ') and the relaxation die swell (II') of the short fiber composite rubber are used in the present invention. ), The absolute temperature is 353
Each coefficient in a region of 4433 ° K and a shear strain rate of 2 to 500 sec −1

【0009】[0009]

【数3】 (Equation 3)

【0010】に設定されていることから、空隙の原因と
なる短繊維の弾性回復や繊維分散配向の乱れの原因とな
る粘度変化等が少なくなり、内部欠陥がなくしかも短繊
維が一様に分散配向して全体として均質な成形物が得ら
れることとなる。
[0010] Therefore, the elastic recovery of the short fibers causing voids and the change in viscosity causing the disorder of the fiber dispersion orientation are reduced, and there are no internal defects and the short fibers are uniformly dispersed. Orientation results in a molded product that is homogeneous as a whole.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】本発明の実施例に係る短繊維複合ゴム組成
物は、マトリックスゴム中に短繊維が分散された未加硫
の押出、トランスファおよび射出成形用のものであり、
下記のマトリックスゴム単体の粘度式(I)および緩和
ダイスウェル(II)と、短繊維複合ゴムの粘度式(I
´)および緩和ダイスウェル(II´)とにおいて、絶対
温度が353〜433°Kでかつ剪断歪速度が2〜50
0 sec-1の領域における各係数は、
A short fiber composite rubber composition according to an embodiment of the present invention is for unvulcanized extrusion, transfer and injection molding in which short fibers are dispersed in a matrix rubber,
The viscosity formula (I) and the relaxation die swell (II) of the matrix rubber alone and the viscosity formula (I
') And the relaxation die swell (II'), the absolute temperature is 353-433 ° K and the shear strain rate is 2-50.
Each coefficient in the region of 0 sec -1 is

【0013】[0013]

【数4】 (Equation 4)

【0014】に設定されている。なお、緩和ダイスウェ
ルにおいても、粘度と同様に絶対温度と剪断歪速度の関
数として記述されるが、温度項の寄与率が剪断歪速度の
それに比べて小さいことから省略した。
Is set to The relaxation die swell is also described as a function of the absolute temperature and the shear strain rate similarly to the viscosity, but is omitted because the contribution of the temperature term is smaller than that of the shear strain rate.

【0015】マトリックスゴムとしては、例えば天然ゴ
ム、スチレン・ブタジエンゴム、クロロプレンゴム、ア
クリロニトリル・ブタジエンゴムおよびエチレンプロピ
レン系ゴム等の架橋性エラストマーに配合剤を添加した
コンパウンド等が用いられる。
As the matrix rubber, for example, a compound obtained by adding a compounding agent to a crosslinkable elastomer such as natural rubber, styrene / butadiene rubber, chloroprene rubber, acrylonitrile / butadiene rubber and ethylene propylene rubber is used.

【0016】また、短繊維としては、例えば綿、絹及び
羊毛等の天然繊維、ナイロン、アラミド、ポリエステ
ル、アクリル及びビニロン等の合成繊維、グラス、炭
素、シリカ、チッ化ケイ素及びアルミナ等の無機繊維や
金属繊維等が用いられる。
Examples of the short fibers include natural fibers such as cotton, silk and wool, synthetic fibers such as nylon, aramid, polyester, acrylic and vinylon, and inorganic fibers such as glass, carbon, silica, silicon nitride and alumina. And metal fibers are used.

【0017】上記のマトリックスゴム単体の粘度式
(I)および緩和ダイスウェル(II)と、短繊維複合ゴ
ムの粘度式(I´)および緩和ダイスウェル(II´)と
において、絶対温度が353〜433°Kでかつ剪断歪
速度が2〜500 sec-1の領域における係数a´をa´
≦1000に設定したのは、a´>1000では温度差
による粘度変化が大きく、流動中のコンパウンドの温度
バラツキが粘度バラツキとして顕著に現われ、それが乱
流の原因になって短繊維の一様な配向状態を得ることが
できなくなるからである。
In the viscosity formula (I) and the relaxation die swell (II) of the matrix rubber alone and the viscosity formula (I ′) and the relaxation die swell (II ′) of the short fiber composite rubber, the absolute temperature is 353 to The coefficient a ′ in the region of 433 ° K. and a shear strain rate of 2 to 500 sec −1 is represented by a ′.
The reason for setting ≦ 1000 is that when a ′> 1000, the viscosity change due to the temperature difference is large, and the temperature variation of the compound during the flow is remarkably exhibited as the viscosity variation, which causes turbulence and causes the uniform short fibers. This is because it becomes impossible to obtain a proper alignment state.

【0018】係数b´を0.70≦b´≦0.95に設
定したのは、b´<0.70では成形流路からキャビテ
ィ又はダイスへの流路拡大部において、見掛けの粘度上
昇が小さく、成形物中に空隙が発生し易くなる一方、b
´>0.95では流路寸法の変更が急激な粘度変化をも
たらし、その変更点にて流れに乱れが生じて高い繊維配
向物を得ることができなくなるからである。
The reason why the coefficient b 'is set to 0.70≤b'≤0.95 is that when b'<0.70, an apparent increase in the viscosity in the flow path expanding portion from the molding flow path to the cavity or the die is caused. While small, voids are easily generated in the molded product, b
When '> 0.95, a change in the flow path dimension causes a sudden change in viscosity, and at the change point, the flow is disturbed, and a high fiber orientation product cannot be obtained.

【0019】係数c´を5.1≦c´≦5.6に設定し
たのは、c´<5.1ではバックプレッシャが不足する
と考えられ、押出成形では最小流路の形状に近い形で押
し出され、ダイ出口の形状に相当する押出物が得られ
ず、また、トランスファ成形や射出成形ではゲート形状
物のランダムな方向の充填物となってしまうからであ
る。一方、c´>5.6では配向させるに十分な寸法の
流路を十分な速度で通過させることができず、バックプ
レッシャが高くなり、押出成形では押出速度が極めて遅
くなってスコーチ又は劣化が生ずるからである。また、
トランスファ成形や射出成形では充填不足となるからで
ある。
The reason why the coefficient c ′ is set to 5.1 ≦ c ′ ≦ 5.6 is that when c ′ <5.1, it is considered that the back pressure is insufficient. This is because an extrudate that is extruded and corresponds to the shape of the die outlet cannot be obtained, and in transfer molding or injection molding, a gate-shaped material is filled in a random direction. On the other hand, when c ′> 5.6, it is not possible to pass through a flow path having a size sufficient for orientation at a sufficient speed, the back pressure is increased, and in extrusion molding, the extrusion speed is extremely slow, and scorch or deterioration is caused. For it will occur. Also,
This is because transfer molding or injection molding results in insufficient filling.

【0020】係数b´と係数bとの関係をb´/b≦
1.5に設定したのは、b´/b>1.5では原因は必
ずしも明瞭ではないが、流路寸法変更部でのミクロ的な
繊維濃度の高低部分で流動性に差ができると考えられ、
最終成形物内でマクロ的な繊維の濃淡が現われるからで
ある。
The relationship between the coefficient b 'and the coefficient b is represented by b' / b≤
The reason for setting to 1.5 is that although b ′ / b> 1.5, the cause is not always clear, but it is considered that there is a difference in fluidity at the high and low portions of the microscopic fiber concentration in the channel size changing portion. And
This is because macroscopic fiber shading appears in the final molded product.

【0021】係数d´と係数dとの関係をd´/d≧
0.1に設定したのは、d´/d<0.1では成形物内
部に空隙が発生するからであり、この現象はフィラーの
低充填マトリックスゴム中に多量の短繊維を混合した場
合に多く現われる。このことは、マトリックスゴムの弾
性回復を短繊維により強引に抑制した形態になっている
と考えられるからであり、キャピラリ型レオメータ等に
よりほぼ完全な一軸配向物を押し出した場合は形状を維
持できるが、実際の製品の成形においては、圧力解放時
に弾性回復が生じて空隙が発生するのである。
The relationship between the coefficient d 'and the coefficient d is represented by d' / d ≧
The reason for setting to 0.1 is that voids are generated inside the molded product when d '/ d <0.1. This phenomenon is caused when a large amount of short fibers are mixed in the matrix rubber with a low filler content. Many appear. This is because it is considered that the elastic recovery of the matrix rubber is in a form in which the elastic recovery is forcibly suppressed by short fibers, and the shape can be maintained when a substantially complete uniaxially oriented material is extruded by a capillary rheometer or the like. In actual product molding, elastic recovery occurs when pressure is released, and voids are generated.

【0022】次に、上述の如く構成された短繊維複合ゴ
ム組成物を用いて成形物(シート)を押出成形した本発
明例を説明する。
Next, an example of the present invention in which a molded product (sheet) is extruded using the short fiber composite rubber composition having the above-described structure will be described.

【0023】まず、下記の配合材料を密閉式混練機によ
り混合してマトリックスゴムコンパウンドを得た。な
お、下記の配合材料においては、ネオプレンWとネオプ
レンWHVとのブレンド比を変量とするとともに、カー
ボンブラックとしてFT(20〜150重量部)、SR
F(15〜100重量部)、FEF(10〜70重量
部)、ISAF(10〜60重量部)を変量添加した。
First, the following compounding materials were mixed by an internal kneader to obtain a matrix rubber compound. In the following blending materials, the blend ratio of neoprene W and neoprene WHV was varied, and FT (20 to 150 parts by weight) and SR as carbon black were used.
F (15 to 100 parts by weight), FEF (10 to 70 parts by weight) and ISAF (10 to 60 parts by weight) were added in varying amounts.

【0024】<配合材料> クロロプレンゴム 100重量部 (ネオプレンW/WHV) ステアリン酸 1 酸化カルシウム 5 酸化マグネシウム 4 酸化亜鉛 5 老化防止剤 2 ジオクチルフタレート 5 加硫促進剤NA−22 0.8 カーボンブラック 変種・変量 次いで、このマトリックスゴムコンパウンドにロールに
て長さ0.5〜6.0mmにカットしたアラミド、ナイロ
ン、綿繊維を1〜25VOL %混合し、短繊維複合ゴムコ
ンパウンドを得た。なお、粘度および緩和ダイスウェル
の測定は、キャピラリ型レオメータにて80、100、
120、140℃、
<Ingredients> Chloroprene rubber 100 parts by weight (neoprene W / WHV) Stearic acid 1 Calcium oxide 5 Magnesium oxide 4 Zinc oxide 5 Antioxidant 2 Dioctyl phthalate 5 Vulcanization accelerator NA-22 0.8 Carbon black variant -Variation Next, 1 to 25 VOL% of aramid, nylon and cotton fibers cut to a length of 0.5 to 6.0 mm with a roll were mixed with the matrix rubber compound to obtain a short fiber composite rubber compound. The viscosity and relaxation die swell were measured with a capillary rheometer at 80, 100,
120, 140 ° C,

【0025】[0025]

【数5】 (Equation 5)

【0026】の領域にて測定し、前述の粘度式および緩
和ダイスウェルによりa〜e、a´〜e´の係数を算出
した。
The coefficients a to e and a 'to e' were calculated using the above viscosity equation and relaxation die swell.

【0027】その後、図1および図2に示すような2個
の円弧形状の開口部4A,4Bを有する成形型(口金)
1を押出機(図示せず)の先端に取り付け、上記短繊維
複合ゴムコンパウンドにより押出シートを得た。そのテ
スト結果を表1(本発明例)および表2(比較例)、図
3(A)(繊維配向率)および図3(B)(空隙の有
無)に示す。なお、図1において、2は主成形通路、3
は環状成形通路であって、短繊維複合ゴムコンパウンド
は、上記主成形通路2から環状成形通路3を経て上記開
口部4A,4Bを通じて流れ出るようになされている。
上記環状成形通路3は、主成形通路2に連通し徐々に半
径が大きくなる第1通路3Aと、該第1通路3Aの最大
径に略匹敵する径の第2通路3Bとを有し、該第2通路
3Bの途中には、通路断面積を絞る絞り部である最小寸
法部(ダム部)5が介設されている。また、ho はシー
ト厚さ方向に相当する開口部4A,4Bの寸法、hmは
最小寸法部5におけるシート厚さ方向に相当する寸法
(第2通路3B中の最小寸法)、lmoは最小寸法部5
から開口部4A,4Bまでの流路長さを示す。そして、
本実施例では、ho =5mm、hm=0.5mm、lmo=
40mmに設定されている。さらに、図3(A)中、○印
は繊維配向率が55%以上であることを、●印は繊維配
向率が50%以下であることをそれぞれ表わす。また、
図3(B)中、○印は空隙がないことを、●印は空隙が
あることをそれぞれ表わす。
Thereafter, a mold (die) having two arc-shaped openings 4A and 4B as shown in FIGS.
1 was attached to the tip of an extruder (not shown), and an extruded sheet was obtained from the short fiber composite rubber compound. The test results are shown in Table 1 (Example of the present invention) and Table 2 (Comparative Example), FIG. 3A (fiber orientation ratio), and FIG. 3B (presence or absence of voids). In FIG. 1, reference numeral 2 denotes a main molding passage;
Is an annular molding passage, and the short fiber composite rubber compound flows out from the main molding passage 2 through the annular molding passage 3 through the openings 4A and 4B.
The annular forming passage 3 has a first passage 3A which communicates with the main forming passage 2 and gradually increases in radius, and a second passage 3B having a diameter substantially equal to the maximum diameter of the first passage 3A. In the middle of the second passage 3B, a minimum dimension portion (dam portion) 5 which is a constricted portion for reducing the passage sectional area is provided. Also, ho is the dimension of the openings 4A and 4B corresponding to the sheet thickness direction, hm is the dimension corresponding to the sheet thickness direction in the minimum dimension section 5 (the minimum dimension in the second passage 3B), and lmo is the minimum dimension section. 5
The flow path length from the opening to the openings 4A and 4B is shown. And
In this embodiment, ho = 5 mm, hm = 0.5 mm, lmo =
It is set to 40 mm. Further, in FIG. 3A, a mark ○ indicates that the fiber orientation rate is 55% or more, and a mark ● indicates that the fiber orientation rate is 50% or less. Also,
In FIG. 3B, a mark ○ indicates that there is no gap, and a mark ● indicates that there is a gap.

【0028】評価の仕方は、形状は目視により、空隙の
存在は目視及び実測比重/計算比重により、繊維のマク
ロ的均一性は加硫ゴム断面の顕微鏡観察によりそれぞれ
求めた。また、繊維の配向率Hは加硫後の20 mm ×2
0mm×2mmの試験片を切削により切り出し、トルエンに
48時間浸漬後の線膨潤率により下記の式にて求めた。
The shape was visually determined, the presence of voids was determined by visual observation and measured specific gravity / calculated specific gravity, and the macroscopic uniformity of the fiber was determined by microscopic observation of the cross section of the vulcanized rubber. The fiber orientation ratio H was 20 mm x 2 after vulcanization.
A test piece of 0 mm × 2 mm was cut out by cutting, and the linear swelling ratio after immersion in toluene for 48 hours was determined by the following equation.

【0029】[0029]

【数6】 (Equation 6)

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】その結果、上記の表1および表2、第2図
および第3図の各データから明らかなように、前述した
マトリックスゴム単体の粘度式(I)および緩和ダイス
ウェル(II)と、短繊維複合ゴムの粘度式(I´)およ
び緩和ダイスウェル(II´)とにおいて、絶対温度が3
53〜433°Kでかつ剪断歪速度が2〜500 sec-1
の領域における各係数が、
As a result, as apparent from the data shown in Tables 1 and 2 and FIGS. 2 and 3, the viscosity formula (I) and the relaxation die swell (II) of the matrix rubber alone were In the viscosity formula (I ′) and the relaxation die swell (II ′) of the short fiber composite rubber, the absolute temperature is 3
53-433 ° K and shear strain rate of 2-500 sec -1
Each coefficient in the region of is

【0033】[0033]

【数7】 (Equation 7)

【0034】であるときに、空隙や繊維分散配向の乱れ
がなく全体として均質な成形物(押出シート)を得るこ
とができた。
At the time, a molded product (extruded sheet) homogeneous as a whole without any voids or disturbance in fiber dispersion orientation could be obtained.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
下記のマトリックスゴム単体の粘度式(I)および緩和
ダイスウェル(II)と、短繊維複合ゴムの粘度式(I
´)および緩和ダイスウェル(II´)とにおいて、絶対
温度が353〜433°Kでかつ剪断歪速度が2〜50
0 sec-1の領域における各係数を、
As described above, according to the present invention,
The viscosity formula (I) and the relaxation die swell (II) of the matrix rubber alone and the viscosity formula (I
') And the relaxation die swell (II'), the absolute temperature is 353-433 ° K and the shear strain rate is 2-50.
Each coefficient in the region of 0 sec -1 is

【0036】[0036]

【数8】 (Equation 8)

【0037】に設定したので、押出、トランスファおよ
び射出成形等により、内部欠陥がなくしかも短繊維が一
様に分散配向して全体として均質な成形物を得ることが
できる。
Since the setting is set to be extruded, transferred, injection-molded, etc., there is no internal defect, and the short fibers are uniformly dispersed and oriented, so that a uniform molded product as a whole can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】成形型の縦断側面図である。FIG. 1 is a vertical sectional side view of a molding die.

【図2】成形型の正面図である。FIG. 2 is a front view of a molding die.

【図3】(A)は繊維配向率のデータを示す図である。
(B)は空隙有無のデータを示す図である。
FIG. 3A is a view showing data of fiber orientation ratio.
(B) is a diagram showing data on the presence or absence of a void.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C08L 7/00 - 21/02 C08J 5/04 - 5/08 C08K 7/02 - 7/14 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C08L 7/00-21/02 C08J 5/04-5/08 C08K 7/02-7/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マトリックスゴム中に短繊維が分散され
た未加硫の押出、トランスファおよび射出成形用の短繊
維複合ゴム組成物であって、下記のマトリックスゴム単
体の粘度式(I)および緩和ダイスウェル(II)と、短
繊維複合ゴムの粘度式(I´)および緩和ダイスウェル
(II´)とにおいて、絶対温度が353〜433°Kで
かつ剪断歪速度が2〜500 sec-1の領域における各係
数が、 【数1】 に設定されていることを特徴とする短繊維複合ゴム組成
物。
An unvulcanized short fiber composite rubber composition for extrusion, transfer and injection molding wherein short fibers are dispersed in a matrix rubber, wherein the viscosity formula (I) and relaxation of the following matrix rubber alone are In the die swell (II), the viscosity formula (I ') of the short fiber composite rubber, and the relaxation die swell (II'), the absolute temperature is 353 to 433 ° K and the shear strain rate is 2 to 500 sec -1 . Each coefficient in the area is Short fiber composite rubber composition characterized by being set to:
JP2402137A 1990-12-14 1990-12-14 Short fiber composite rubber composition Expired - Fee Related JP2980694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2402137A JP2980694B2 (en) 1990-12-14 1990-12-14 Short fiber composite rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2402137A JP2980694B2 (en) 1990-12-14 1990-12-14 Short fiber composite rubber composition

Publications (2)

Publication Number Publication Date
JPH0641356A JPH0641356A (en) 1994-02-15
JP2980694B2 true JP2980694B2 (en) 1999-11-22

Family

ID=18511958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2402137A Expired - Fee Related JP2980694B2 (en) 1990-12-14 1990-12-14 Short fiber composite rubber composition

Country Status (1)

Country Link
JP (1) JP2980694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772292B2 (en) * 2003-05-30 2011-09-14 三ツ星ベルト株式会社 Transmission belt

Also Published As

Publication number Publication date
JPH0641356A (en) 1994-02-15

Similar Documents

Publication Publication Date Title
US5522719A (en) Apparatus for manufacturing fiber reinforced elastic sheet
US4057610A (en) Hose reinforced with discontinuous fibers oriented in the radial direction
CA2263118C (en) Polymeric compositions and methods for making construction materials from them
US4599370A (en) Powdered elastomer dry blends and process for injection molding
US6774162B1 (en) Thermoplastic vulcanizate and its method of production
EP0769361A2 (en) Process for producing thermoplastic elastomer compostion
US3600309A (en) Solid lubricant for reducing die-plating and die-drag during the extrusion of viscous rubber and elastomeric plastic compositions
US3712776A (en) Apparatus for the continuous production of glass fiber reinforced thermoplastic
JP2980694B2 (en) Short fiber composite rubber composition
JP3969329B2 (en) Molding method of rubber products
JP3009676B2 (en) Manufacturing method of fluoro rubber molded product
US5735528A (en) Self-lubricating packing piece
US3655850A (en) Method for the continuous production of glass fiber reinforced thermoplastics
JPH11193335A (en) Foam rubber extrudate
US4389361A (en) Process for molding fiber loaded rubber compound
JP4075705B2 (en) Weather strip and manufacturing method thereof
JP3548619B2 (en) Translucent thermoplastic elastomer
JP6694577B2 (en) Paper feed roller and manufacturing method thereof
JP3567263B2 (en) Foam prescription rubber composition
CN113423781B (en) Gel and cushioning material based on thermoplastic elastomer and preparation method thereof
US2858283A (en) Method of making textile fiber drafting elements containing animal glue, a rubber, and a surface-active material
JP2003335883A (en) Foamed rubber extruded product
CN111682470A (en) Wire harness protection tube and preparation method thereof
JP3631507B2 (en) Method for orienting a curing agent by mixing a curing agent compound into the fiber
CN115232414B (en) PVC/SBR thermoplastic vulcanized rubber composition and preparation method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees