JP2978940B2 - Cleaning method for reaction chamber of plasma process equipment - Google Patents

Cleaning method for reaction chamber of plasma process equipment

Info

Publication number
JP2978940B2
JP2978940B2 JP7137323A JP13732395A JP2978940B2 JP 2978940 B2 JP2978940 B2 JP 2978940B2 JP 7137323 A JP7137323 A JP 7137323A JP 13732395 A JP13732395 A JP 13732395A JP 2978940 B2 JP2978940 B2 JP 2978940B2
Authority
JP
Japan
Prior art keywords
reaction chamber
plasma
processing apparatus
plasma processing
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7137323A
Other languages
Japanese (ja)
Other versions
JPH08311665A (en
Inventor
治久 木下
理 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMUKO INTAANASHONARU KENKYUSHO KK
Original Assignee
SAMUKO INTAANASHONARU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMUKO INTAANASHONARU KENKYUSHO KK filed Critical SAMUKO INTAANASHONARU KENKYUSHO KK
Priority to JP7137323A priority Critical patent/JP2978940B2/en
Publication of JPH08311665A publication Critical patent/JPH08311665A/en
Application granted granted Critical
Publication of JP2978940B2 publication Critical patent/JP2978940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エッチング又はCVD
又はスパッタリングを目的とするマグネトロン放電利用
のプラズマプロセス装置の反応室のクリーニング方法に
関し、特に、相向かい合わせて配置した電極表面を含め
て、反応室内壁全面をクリーニングできるようにしたプ
ラズマプロセス装置の反応室のクリーニング方法に関す
る。
The present invention relates to etching or CVD.
Also, the present invention relates to a method for cleaning a reaction chamber of a plasma processing apparatus utilizing magnetron discharge for the purpose of sputtering, and more particularly, to a reaction of a plasma processing apparatus capable of cleaning the entire inner wall of the reaction chamber, including electrode surfaces arranged opposite to each other. A method for cleaning a room.

【0002】[0002]

【従来の技術】従来の反応室クリーニング法を説明する
ために、従来用いられていたマグネトロン放電型プラズ
マプロセス装置の構造を図3に示す。図3中、1は反応
室、2及び3はこの反応室1の下面及び上面に絶縁体4
で絶縁されて設けられたカソード電極及びアノード電極
である。反応室1内には反応ガス5が導入され、真空ポ
ンプにより排気ガス6が排出される。一対のソレノイド
コイル7a、7bを用いて、各電極2、3にほぼ平行と
なるように磁界8が印加される。高周波電源9から例え
ば周波数13.56MHzの高周波電力Phを取り出
し、ブロッキングキャパシタ10を経由してカソード電
極2に供給する。この高周波電力Phのカソード電極2
への供給により、カソード電極2の表面上にマグネトロ
ンプラズマが発生する。このマグネトロンプラズマはカ
ソード電極2の表面上にのみ発生するため、プラズマは
カソード電極2の表面上に付着した堆積物とのみ反応
し、堆積物をガス化してカソード電極2の表面をクリー
ニングする。アノード電極3の表面上に付着した堆積物
は、別途、高周波電力Phをアノード電極3に供給して
マグネトロンプラズマを発生させてクリーニングする。
反応室1のその他の内壁はマグネトロンプラズマを発生
させてもクリーニングできないため、反応室1を大気開
放し、手作業によりクリーニングする。
2. Description of the Related Art FIG. 3 shows a structure of a conventionally used magnetron discharge type plasma processing apparatus for explaining a conventional reaction chamber cleaning method. In FIG. 3, 1 is a reaction chamber, and 2 and 3 are insulators 4 on the lower and upper surfaces of the reaction chamber 1.
And a cathode electrode and an anode electrode provided insulated from each other. A reaction gas 5 is introduced into the reaction chamber 1, and an exhaust gas 6 is discharged by a vacuum pump. Using a pair of solenoid coils 7a and 7b, a magnetic field 8 is applied so as to be substantially parallel to each of the electrodes 2 and 3. High-frequency power Ph having a frequency of, for example, 13.56 MHz is extracted from the high-frequency power supply 9 and supplied to the cathode electrode 2 via the blocking capacitor 10. The cathode electrode 2 of this high-frequency power Ph
, Magnetron plasma is generated on the surface of the cathode electrode 2. Since this magnetron plasma is generated only on the surface of the cathode electrode 2, the plasma reacts only with the deposit attached on the surface of the cathode electrode 2, and gasifies the deposit to clean the surface of the cathode electrode 2. The deposits adhered to the surface of the anode electrode 3 are separately cleaned by supplying high frequency power Ph to the anode electrode 3 to generate magnetron plasma.
Since the other inner walls of the reaction chamber 1 cannot be cleaned even when magnetron plasma is generated, the reaction chamber 1 is opened to the atmosphere and cleaned manually.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の反応室クリーニング法では、反応室1を大気
開放して1〜3日がかりでクリーニングするため、生産
ラインを長期間止めなければならなかった。又、反応室
内壁に付着した堆積物は有毒物質が多いため、防毒マス
ク等の使用が不可欠となり、作業上の危険性が無視でき
なかった。
However, in such a conventional reaction chamber cleaning method, since the reaction chamber 1 is opened to the atmosphere and cleaned in one to three days, the production line must be stopped for a long time. Was. Further, since the deposits adhering to the inner wall of the reaction chamber contain a large amount of toxic substances, the use of a gas mask or the like is indispensable, and the danger in the work cannot be ignored.

【0004】本発明の目的は、カソード及びアノード電
極以外の反応室の内壁を、大気開放して手作業によりク
リーニングする以外に方法がないという課題を解決し、
反応室を大気開放することなく反応ガスを導入してプラ
ズマを発生させ、反応室内壁に付着した堆積物を高速に
しかも安全に除去できるプラズマプロセス装置の反応室
のクリーニング方法を提供することである。
An object of the present invention is to solve the problem that there is no other method except for cleaning the inner walls of the reaction chamber other than the cathode and anode electrodes by hand by opening to the atmosphere.
It is an object of the present invention to provide a method for cleaning a reaction chamber of a plasma processing apparatus, in which a reaction gas is introduced without releasing the reaction chamber to the atmosphere, plasma is generated, and deposits adhering to the walls of the reaction chamber can be rapidly and safely removed. .

【0005】[0005]

【課題を解決するための手段】本発明のクリーニング法
は上記の課題を解決し、上記の目的を達成するため、次
のような方法でプラズマプロセス装置の反応室1の内壁
をクリーニングする。すなわち、 a)反応室の内壁に付着した堆積物をガス化可能な反応
性ガスを反応室内に導入して減圧状態にし、 b)各電極にほぼ平行となるように磁界を印加し、 c)周波数が同一で位相差を0゜±60゜とした2交流
電力を各電極に供給してプラズマを発生させ、このプラ
ズマ中に発生した反応ガス正イオンを反応室の内壁に衝
突させ、反応室の内壁に付着した堆積物をその正イオン
と化学反応させてガス化し排気ガスとして反応室の外へ
排出させる。
The cleaning method of the present invention solves the above-mentioned problems and achieves the above-mentioned object by cleaning the inner wall of the reaction chamber 1 of the plasma processing apparatus by the following method. A) introducing a reactive gas capable of gasifying the deposits attached to the inner wall of the reaction chamber into the reaction chamber to reduce the pressure; b) applying a magnetic field so as to be substantially parallel to each electrode; c) Two AC powers having the same frequency and a phase difference of 0 ° ± 60 ° are supplied to each electrode to generate plasma, and positive ions of the reaction gas generated in the plasma collide with the inner wall of the reaction chamber. The deposits adhering to the inner wall of the gas are chemically reacted with the positive ions to be gasified and discharged as exhaust gas out of the reaction chamber.

【0006】[0006]

【作用】図1は本発明に係るプラズマプロセス装置の反
応室のクリーニング方法を説明するためのプラズマプロ
セス装置の構成の概要を示す説明図で、図3に示した従
来用いられていたマグネトロン放電型プラズマプロセス
装置と同様な構成部分については同一の符号を付してあ
る。
FIG. 1 is an explanatory view showing an outline of the structure of a plasma processing apparatus for explaining a method of cleaning a reaction chamber of a plasma processing apparatus according to the present invention. The conventional magnetron discharge type shown in FIG. The same components as those of the plasma processing apparatus are denoted by the same reference numerals.

【0007】反応室1内を十分に排気した後、反応ガス
5を反応室1内に導入する。反応ガス5としては、反応
室1の内壁に付着した堆積物をガス化可能なガスを使用
する。そして、ほぼ同期する高周波電源14、15によ
り、各電極12、13上に電界を形成する。この電界に
よって発生する電気力線は各電極12、13に垂直とな
り、その延長線上の端はアノードとなる反応室1に結ば
れている。各電極12、13にほぼ垂直となるように発
生する電界とそれに直交する磁界8の作用によって、各
電極12、13間の空間にマグネトロンプラズマが発生
する。このマグネトロンプラズマ中には多量の電子が含
まれ、電子は軽いため磁力線に沿って容易に移動し、反
応室1の内壁に到達する。この電子の動きに引きづられ
てプラズマ中の重い正イオンが移動し、反応室1の内壁
に衝突して堆積物をクリーニングする。
After sufficiently exhausting the inside of the reaction chamber 1, a reaction gas 5 is introduced into the reaction chamber 1. As the reaction gas 5, a gas capable of gasifying the deposit attached to the inner wall of the reaction chamber 1 is used. Then, an electric field is formed on each of the electrodes 12 and 13 by the high-frequency power supplies 14 and 15 which are substantially synchronized. The lines of electric force generated by this electric field are perpendicular to the electrodes 12 and 13, and the ends of the lines of extension are connected to the reaction chamber 1 serving as the anode. The magnetron plasma is generated in the space between the electrodes 12 and 13 by the action of the electric field generated so as to be substantially perpendicular to the electrodes 12 and 13 and the magnetic field 8 orthogonal thereto. The magnetron plasma contains a large amount of electrons, and the electrons are light and easily move along the lines of magnetic force to reach the inner wall of the reaction chamber 1. Heavy positive ions in the plasma are moved by the movement of the electrons and collide with the inner wall of the reaction chamber 1 to clean the deposit.

【0008】なお、磁界8の発生手段としては、一対の
ソレノイドコイル7a、7b又は永久磁石を用いること
ができる。電極12、13の枚数は3枚以上でもよい
が、それらは平行に、かつ、極性が交互になるように配
置しておく必要がある。
As a means for generating the magnetic field 8, a pair of solenoid coils 7a and 7b or a permanent magnet can be used. The number of electrodes 12 and 13 may be three or more, but they must be arranged in parallel and alternately in polarity.

【0009】[0009]

【実施例】以下、図1及び図2に基づいて本発明の一実
施例を説明する。反応室1内を十分に排気した後、反応
ガス5を反応室1内に導入する。導入する反応ガス5の
圧力は約1〜50mTorrとする。そして、フェーズ
シフタ16によって位相差が0゜±60゜程度となるよ
うに制御しつつ、同一周波数で発振する高周波電源1
4、15により高周波電力Ph1、Ph2をブロッキング
キャパシタ10、11を経由して各電極12、13に供
給する。また、約50〜500ガウス程度の強度を有す
る磁界8を各電極12、13にほぼ平行となるように印
加する。これにより、相隣り合わせた各電極12、13
間及び接地した反応室1の間の空間にマグネトロンプラ
ズマが発生する。このマグネトロンプラズマは反応室1
をアノードとして発生しているため、反応室1の内壁と
接触している。そして、このマグネトロンプラズマ中の
電子の一部が各電極12、13に捕獲され、ブロッキン
グキャパシタ10、11に蓄積される。このプラズマ中
の電子の捕獲により、各電極12、13の電位はプラズ
マ自体の電位よりも負となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. After sufficiently exhausting the inside of the reaction chamber 1, the reaction gas 5 is introduced into the reaction chamber 1. The pressure of the reaction gas 5 to be introduced is about 1 to 50 mTorr. The high-frequency power source 1 oscillating at the same frequency while controlling the phase difference to about 0 ° ± 60 ° by the phase shifter 16.
The high-frequency powers Ph1 and Ph2 are supplied to the electrodes 12 and 13 via the blocking capacitors 10 and 11 by means of 4 and 15, respectively. Further, a magnetic field 8 having an intensity of about 50 to 500 Gauss is applied so as to be substantially parallel to the electrodes 12 and 13. As a result, the adjacent electrodes 12, 13
A magnetron plasma is generated in the space between the reaction chamber 1 and the grounded reaction chamber 1. This magnetron plasma is used in reaction chamber 1
Is generated as an anode, and is in contact with the inner wall of the reaction chamber 1. Then, a part of the electrons in the magnetron plasma is captured by the electrodes 12 and 13 and stored in the blocking capacitors 10 and 11. Due to the capture of the electrons in the plasma, the potential of each of the electrodes 12 and 13 becomes more negative than the potential of the plasma itself.

【0010】導入する反応ガスをO2とし、同一周波数
13.56MHzで位相差0゜の同一電力の高周波電力
を各電極12、13に供給した時に観測された電圧波形
を図2に示す。O2のガス圧は6mTorrとし、電圧
波形はオシロスコープによって観察した。上下電極1
3、12の波形は同一であったため(位相差0°)、1
つの図にして示してある。電圧の振幅は50Vで、点線
は直流電圧成分を示し、+30Vであった。この直流電
圧成分を直流自己バイアス電圧と呼ぶ。プラズマ自体の
電位又は電圧をプラズマ電位と呼ぶが、プラズマ電位は
直流自己バイアス電圧よりも一般的に20V程度以上高
くなっている。
FIG. 2 shows voltage waveforms observed when the reaction gas to be introduced is O 2 and the same frequency is 13.56 MHz and high frequency power of the same power having a phase difference of 0 ° is supplied to the electrodes 12 and 13. The O 2 gas pressure was 6 mTorr, and the voltage waveform was observed with an oscilloscope. Upper and lower electrodes 1
Since the waveforms of 3 and 12 were the same (phase difference 0 °), 1
Two figures are shown. The voltage amplitude was 50 V, and the dotted line indicates the DC voltage component, which was +30 V. This DC voltage component is called a DC self-bias voltage. The potential or voltage of the plasma itself is called a plasma potential, and the plasma potential is generally higher than the DC self-bias voltage by about 20 V or more.

【0011】反応室1は接地されているため+50V以
上の電位を持つプラズマが反応室1の内壁に向かって拡
散してくる。このようにしてプラズマと反応室1の内壁
は絶えず接触することになる。接地電位の反応室1とプ
ラズマの界面にイオンシースが形成され強い電界が発生
する。このイオンシース内の強い電界によってプラズマ
中の正イオンが加速され、反応室内壁に衝突する。又、
プラズマ中の中性反応種(ラジカル)も拡散して反応室
内壁に付着する。この中性反応種の化学的作用と正イオ
ンの物理的作用の相乗効果によって反応室内壁に付着し
た堆積物をガス化して除去できる。
Since the reaction chamber 1 is grounded, plasma having a potential of +50 V or more diffuses toward the inner wall of the reaction chamber 1. In this way, the plasma and the inner wall of the reaction chamber 1 come into constant contact. An ion sheath is formed at the interface between the reaction chamber 1 at the ground potential and the plasma, and a strong electric field is generated. Positive ions in the plasma are accelerated by the strong electric field in the ion sheath and collide with the inner wall of the reaction chamber. or,
Neutral reactive species (radicals) in the plasma also diffuse and adhere to the reaction chamber walls. By the synergistic effect of the chemical action of the neutral reactive species and the physical action of positive ions, the deposits attached to the inner wall of the reaction chamber can be gasified and removed.

【0012】この除去速度は反応室内壁に接触するプラ
ズマの密度とプラズマ電位の高さ、そして形成されるイ
オンシース内の電界強度の大きさに比例して速くなる。
このようにして発生するプラズマの密度は、磁界の無い
時に発生するプラズマ密度より約10倍濃いため、クリ
ーニング速度が速くなる。又、一般的に図3に示したよ
うな磁界が存在する時に発生するプラズマのプラズマ電
位は+20V程度と低いが、図1に示したようなプラズ
マプロセス装置を用いて発生したマグネトロンプラズマ
のプラズマ電位は+50V以上と高いため、クリーニン
グ速度が著しく速くなる。又、このようにして発生した
プラズマは反応室1のかなり狭い空間にも入り込めるた
め、反応室の隅々までクリーニングすることができる。
用いる反応ガスは堆積物と反応して容易にガス化できる
ものでなくてはならない。
The removal rate increases in proportion to the density of the plasma in contact with the inner wall of the reaction chamber, the height of the plasma potential, and the magnitude of the electric field intensity in the ion sheath formed.
Since the density of the plasma generated in this manner is about 10 times higher than the density of the plasma generated without a magnetic field, the cleaning speed is increased. Generally, the plasma potential of the plasma generated when a magnetic field as shown in FIG. 3 is present is as low as about +20 V, but the plasma potential of the magnetron plasma generated by using the plasma processing apparatus as shown in FIG. Is as high as +50 V or more, so that the cleaning speed is significantly increased. In addition, the plasma generated in this way can enter a considerably narrow space of the reaction chamber 1, so that every corner of the reaction chamber can be cleaned.
The reaction gas used must be capable of reacting with the sediment and being easily gasified.

【0013】なお、プラズマは磁力線に沿った方向とそ
れに垂直な方向とで分布が異なるので、磁界8を各電極
12、13と平行となるような方向で回転させるのが好
ましい。上下部電極12、13はプラズマ発生中、絶え
ずプラズマに晒され、正イオンの衝撃を受けているので
容易にクリーニングすることができる。プラズマ発生用
電源として高周波電源を用いたが、周波数は問題ではな
く、低周波電源を用いてもよい。
Since the distribution of the plasma differs between the direction along the lines of magnetic force and the direction perpendicular thereto, it is preferable to rotate the magnetic field 8 in a direction parallel to the electrodes 12 and 13. Since the upper and lower electrodes 12 and 13 are constantly exposed to the plasma during the generation of the plasma and are bombarded by positive ions, they can be easily cleaned. Although a high-frequency power supply was used as a power supply for plasma generation, the frequency is not critical, and a low-frequency power supply may be used.

【0014】[0014]

【発明の効果】上述の説明から明かなように、本発明の
プラズマプロセス装置の反応室のクリーニング方法を用
いれば、発生するプラズマのプラズマ電位が図3に示し
たような磁界の有る場合の一般的なマグネトロンプラズ
マのプラズマ電位と比較してかなり高いため、反応室1
の内壁に運動エネルギーの大きな正イオンを衝突させる
ことができる。このようにして発生したマグネトロンプ
ラズマは、密度が通常の磁場の無い時のプラズマと比較
して10倍以上濃いため、反応室内壁に中性反応種を多
量に付着させることができる。この多量に付着した中性
反応種の化学的作用と多量に入射する正イオンの物理的
作用の相乗効果により、反応室内壁に付着した堆積物を
ガス化して除去することができる。クリーニング速度は
上下電極に供給する高周波電力量を増大させたり、反応
室1内に導入する反応ガスの流量を増大させたり、反応
室1を加熱したりすることにより速くすることができ
る。
As is clear from the above description, when the method for cleaning the reaction chamber of the plasma processing apparatus according to the present invention is used, the plasma potential of the generated plasma generally has a magnetic field as shown in FIG. Reaction potential is considerably higher than the plasma potential of typical magnetron plasma.
Positive ions having a large kinetic energy can be made to collide with the inner wall of the substrate. The magnetron plasma thus generated has a density at least 10 times higher than that of plasma without a normal magnetic field, so that a large amount of neutral reactive species can be attached to the inner wall of the reaction chamber. By the synergistic effect of the chemical action of the neutral reactive species attached in large quantities and the physical action of positive ions entering in large quantities, deposits attached to the inner wall of the reaction chamber can be gasified and removed. The cleaning speed can be increased by increasing the amount of high-frequency power supplied to the upper and lower electrodes, increasing the flow rate of the reaction gas introduced into the reaction chamber 1, or heating the reaction chamber 1.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のプラズマプロセス装置の反応室のク
リーニング方法の実施例において用いたプラズマプロセ
ス装置の構成の概要を示す説明図。
FIG. 1 is an explanatory diagram showing an outline of a configuration of a plasma processing apparatus used in an embodiment of a method for cleaning a reaction chamber of a plasma processing apparatus of the present invention.

【図2】 本発明のプラズマプロセス装置の反応室のク
リーニング方法の実施例において用いたプラズマプロセ
ス装置を動作中に上下電極に観察される電圧の波形を示
す説明図。
FIG. 2 is an explanatory diagram showing waveforms of voltages observed on upper and lower electrodes during operation of the plasma processing apparatus used in the embodiment of the method for cleaning a reaction chamber of the plasma processing apparatus of the present invention.

【図3】 従来のクリーニング法を説明するために用い
たマグネトロン放電型プラズマプロセス装置の一例の構
成の概要を示す説明図。
FIG. 3 is an explanatory diagram showing an outline of a configuration of an example of a magnetron discharge type plasma processing apparatus used for explaining a conventional cleaning method.

【符号の説明】[Explanation of symbols]

1…反応室 2、12…下部(カソード)電極 3、13…上部(アノード)電極 5…反応ガス 7a、7b…ソレノイドコイル 8…磁界 9、14、15…交流(高周波)電源 Ph、Ph1、Ph2…交流(高周波)電力 10、11…ブロッキングキャパシタ 16…フェーズシフタ DESCRIPTION OF SYMBOLS 1 ... Reaction chamber 2, 12 ... Lower (cathode) electrode 3, 13 ... Upper (anode) electrode 5 ... Reaction gas 7a, 7b ... Solenoid coil 8 ... Magnetic field 9, 14, 15 ... AC (high frequency) power supply Ph, Ph1, Ph2: AC (high frequency) power 10, 11: Blocking capacitor 16: Phase shifter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−196448(JP,A) 特開 平5−291155(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23F 4/00 C23C 14/00 C23C 16/44,16/50 H01L 21/3065 H05H 1/46 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-196448 (JP, A) JP-A-5-291155 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23F 4/00 C23C 14/00 C23C 16 / 44,16 / 50 H01L 21/3065 H05H 1/46

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2種類の極性の電極を相向かい合わせて
配置したプラズマプロセス装置の反応室内をクリーニン
グする方法において、 a)反応室の内壁に付着した堆積物をガス化可能な反応
性ガスを反応室内に導入して減圧状態にし、 b)各電極にほぼ平行となるように磁界を印加し、 c)周波数が同一で位相差を0゜±60゜とした2交流
電力を各電極に供給してプラズマを発生させ、 このプラズマ中に発生した反応ガス正イオンを反応室の
内壁に衝突させ、反応室の内壁に付着した堆積物をその
正イオンと化学反応させてガス化し排気ガスとして反応
室の外へ排出させることを特徴とするプラズマプロセス
装置の反応室のクリーニング方法。
1. A method of cleaning a reaction chamber of a plasma processing apparatus in which two types of polar electrodes are arranged facing each other, comprising the steps of: a) removing a reactive gas capable of gasifying a deposit attached to an inner wall of the reaction chamber; B) Apply a magnetic field so as to be almost parallel to each electrode, c) Supply 2 AC power with the same frequency and a phase difference of 0 ± 60 ° to each electrode The reaction gas positive ions generated in the plasma collide with the inner wall of the reaction chamber, and the deposits adhering to the inner wall of the reaction chamber are chemically reacted with the positive ions to gasify and react as exhaust gas. A method for cleaning a reaction chamber of a plasma processing apparatus, comprising discharging the reaction chamber to the outside of the chamber.
【請求項2】 相向かい合わせて配置した電極の合計枚
数が2枚であることを特徴とする請求項1に記載のプラ
ズマプロセス装置の反応室のクリーニング方法。
2. The method for cleaning a reaction chamber of a plasma processing apparatus according to claim 1, wherein the total number of the electrodes arranged opposite to each other is two.
【請求項3】 相向かい合わせて配置した電極の合計枚
数が3枚以上であり、逆極性の電極が交互に配置されて
いることを特徴とする請求項1に記載のプラズマプロセ
ス装置の反応室のクリーニング方法。
3. The reaction chamber of a plasma processing apparatus according to claim 1, wherein the total number of the electrodes arranged opposite to each other is three or more, and electrodes having opposite polarities are alternately arranged. Cleaning method.
【請求項4】 各電極に供給される2交流電力の位相差
が0゜であることを特徴とする請求項1〜3のいずれか
記載のプラズマプロセス装置の反応室のクリーニング
方法。
4. The method according to claim 1, wherein the phase difference between the two AC powers supplied to each electrode is 0 ° .
The cleaning method of the reaction chamber of the plasma processing apparatus according to.
【請求項5】 各電極にほぼ平行となるように印加した
磁界を、各電極にほぼ平行としたまま回転させることを
特徴とする請求項1〜4のいずれかに記載のプラズマプ
ロセス装置の反応室のクリーニング方法。
5. The reaction of the plasma processing apparatus according to claim 1 , wherein a magnetic field applied so as to be substantially parallel to each electrode is rotated while being substantially parallel to each electrode. How to clean the room.
JP7137323A 1995-05-10 1995-05-10 Cleaning method for reaction chamber of plasma process equipment Expired - Lifetime JP2978940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7137323A JP2978940B2 (en) 1995-05-10 1995-05-10 Cleaning method for reaction chamber of plasma process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137323A JP2978940B2 (en) 1995-05-10 1995-05-10 Cleaning method for reaction chamber of plasma process equipment

Publications (2)

Publication Number Publication Date
JPH08311665A JPH08311665A (en) 1996-11-26
JP2978940B2 true JP2978940B2 (en) 1999-11-15

Family

ID=15195997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137323A Expired - Lifetime JP2978940B2 (en) 1995-05-10 1995-05-10 Cleaning method for reaction chamber of plasma process equipment

Country Status (1)

Country Link
JP (1) JP2978940B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496809B1 (en) * 1997-08-26 2005-09-06 인천광역시 Flue gas treatment device by plasma discharge
KR100254034B1 (en) * 1997-11-19 2000-04-15 고희석 Public nuisanci gas process method by corona discharge plasma and apparatus thereof
JP4592867B2 (en) * 2000-03-27 2010-12-08 株式会社半導体エネルギー研究所 Parallel plate type plasma CVD apparatus and dry cleaning method
JP3702235B2 (en) * 2002-03-11 2005-10-05 三菱重工業株式会社 Method for removing silicon deposited film
KR20040039609A (en) * 2002-11-04 2004-05-12 주식회사 엘리아테크 System and method for pollution control in a deposition chamber
US7192874B2 (en) 2003-07-15 2007-03-20 International Business Machines Corporation Method for reducing foreign material concentrations in etch chambers
US8262847B2 (en) * 2006-12-29 2012-09-11 Lam Research Corporation Plasma-enhanced substrate processing method and apparatus
JP7094752B2 (en) * 2018-03-29 2022-07-04 株式会社ニューフレアテクノロジー Charged particle beam irradiator
JP2021197524A (en) * 2020-06-18 2021-12-27 東京エレクトロン株式会社 Plasma processing device and plasma processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291155A (en) * 1992-04-07 1993-11-05 Kokusai Electric Co Ltd Plasma processor
JP3362432B2 (en) * 1992-10-31 2003-01-07 ソニー株式会社 Plasma processing method and plasma processing apparatus

Also Published As

Publication number Publication date
JPH08311665A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
US6849857B2 (en) Beam processing apparatus
US6861642B2 (en) Neutral particle beam processing apparatus
US4891095A (en) Method and apparatus for plasma treatment
JPH08139077A (en) Surface treatment and surface treating device
JP2978940B2 (en) Cleaning method for reaction chamber of plasma process equipment
JP3269834B2 (en) Sputtering apparatus and sputtering method
WO2002078044A2 (en) Method of processing a surface of a workpiece
JPS634065A (en) Method and apparatus for sputtering material by high frequency discharge
JP4042817B2 (en) Neutral particle beam processing equipment
JP3037597B2 (en) Dry etching equipment
JPH08255782A (en) Plasma surface treating apparatus
KR100273326B1 (en) High frequency sputtering apparatus
JPH11293468A (en) Plasma cvd device and cleaning method therefor
JP3585519B2 (en) Sputtering apparatus and sputtering method
JPH01207930A (en) Surface modification
JPH0822980A (en) Plasma processing equipment
JP3404434B2 (en) Cleaning method for microwave plasma device
JP3278732B2 (en) Etching apparatus and etching method
JPH09148310A (en) Semiconductor device, its cleaning, and handling of wafer
JPS62216637A (en) Device for plasma treatment
JPH0831442B2 (en) Plasma processing method and apparatus
JP2928756B2 (en) Plasma processing method and apparatus
JPH0987835A (en) Method and device for sputtering
JP2661906B2 (en) Plasma processing equipment
JP2609792B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term