JP2974302B2 - Method of suppressing magnetic field around power supply line - Google Patents

Method of suppressing magnetic field around power supply line

Info

Publication number
JP2974302B2
JP2974302B2 JP10039461A JP3946198A JP2974302B2 JP 2974302 B2 JP2974302 B2 JP 2974302B2 JP 10039461 A JP10039461 A JP 10039461A JP 3946198 A JP3946198 A JP 3946198A JP 2974302 B2 JP2974302 B2 JP 2974302B2
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
feeder
line
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10039461A
Other languages
Japanese (ja)
Other versions
JPH11235940A (en
Inventor
健 斉藤
依早弥 横田
英明 須藤
成人 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP10039461A priority Critical patent/JP2974302B2/en
Publication of JPH11235940A publication Critical patent/JPH11235940A/en
Application granted granted Critical
Publication of JP2974302B2 publication Critical patent/JP2974302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は給電線の周囲磁界抑制装
置に関し、特に平行な往路及び復路の導線を有する給電
線の周囲に発生して陰極線管の電子流の方向に影響する
ような磁界を抑制する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for suppressing a magnetic field around a power supply line, and more particularly, to a magnetic field generated around a power supply line having parallel forward and return conductors and affecting the direction of electron flow of a cathode ray tube. The present invention relates to a device for suppressing the pressure.

【0002】[0002]

【従来の技術】図2及び3を参照するに電車等の電動装
置5に対して、トロリー線で電源から電流を供給しその
電流を導電性のレールを介して電源へ戻すことが行われ
ている。この場合、トロリー線は往路導線1となり、こ
れと平行なレールが復路導線3、4となり、それらが電
導装置5への平行往復給電線を形成している。トロリー
線には電車のパンタグラフとの接触維持その他の要件が
あるので、これと平行にき電線2を張設する場合があ
る。この平行往復給電線の周囲の任意の点Pには、往路
導線1、2上の往路電流による磁界の磁束密度Bf(ベク
トル量)と復路導線3、4上における復路電流による磁
界の磁束密度Brとのベクトル和に相当する磁束密度B
(B=Bf+Br)の磁界(以下、単に周囲磁界という。)
が発生する。
2. Description of the Related Art Referring to FIGS. 2 and 3, current is supplied from a power source to a motorized device 5 such as a train by a trolley wire, and the current is returned to the power source via a conductive rail. I have. In this case, the trolley wire becomes the outgoing conductor 1, and the rails parallel thereto become the inward conducting wires 3 and 4, which form a parallel reciprocating power supply line to the conductive device 5. Since the trolley wire has other requirements such as maintaining contact with the pantograph of the train, the feeder wire 2 may be stretched in parallel with the trolley wire. At an arbitrary point P around the parallel reciprocating feeder, the magnetic flux density Bf (vector quantity) of the magnetic field due to the forward current on the forward wires 1 and 2 and the magnetic flux density Br of the magnetic field due to the backward current on the return wires 3 and 4 Flux density B corresponding to the vector sum of
(B = Bf + Br) magnetic field (hereinafter simply referred to as ambient magnetic field)
Occurs.

【0003】点Pが往路導線1、2及び復路導線3、4
から十分離れているときは、往路導線1、2上の往路電
流による磁界Bfと復路導線3、4上の復路電流による磁
界Brが磁界の距離減衰特性によりそれぞれ十分小さくな
り、周囲磁界の磁束密度Bは実用上無視できるほど小さ
い。しかし、家屋6内の点Pが平行往復給電線に近いと
きは、周囲磁界Bが無視できない有限な値となり、点P
に例えば陰極線管などの電子流利用機器7が存在する
と、機器7内部の電子流がその周囲磁界Bによって不所
望の偏向を受け画像に歪や色ずれその他の乱れが生ずる
等の磁気的干渉が経験されている。
[0003] A point P is defined as the forward conductors 1 and 2 and the return conductors 3 and 4.
When the distance is sufficiently large, the magnetic field Bf due to the forward current on the forward conductors 1 and 2 and the magnetic field Br due to the backward current on the return conductors 3 and 4 become sufficiently small due to the distance attenuation characteristics of the magnetic field. B is practically negligible. However, when the point P in the house 6 is close to the parallel reciprocating feeder, the surrounding magnetic field B has a finite value that cannot be ignored, and the point P
For example, when an electron flow utilizing device 7 such as a cathode ray tube is present, the electron flow inside the device 7 is undesirably deflected by the surrounding magnetic field B, causing magnetic interference such as distortion, color shift and other disturbances in the image. Have been experienced.

【0004】従来、このような周囲磁界Bの磁気的干渉
を抑制するために、電子流利用機器7を磁気遮蔽材料で
覆ったり、き電線に相当する往路導線2を単に機器7と
反対側に移設したり、又はき電線相当の往路導線2を磁
気遮蔽材料で覆うことが試みられていた。
Conventionally, in order to suppress such magnetic interference of the surrounding magnetic field B, the electron flow utilization device 7 is covered with a magnetic shielding material, or the outward conductor 2 corresponding to the feeder is simply placed on the opposite side of the device 7. Attempts have been made to relocate or cover the outward conductor 2 equivalent to a feeder wire with a magnetic shielding material.

【0005】[0005]

【発明が解決しようとする課題】しかし従来の電子流利
用機器7を磁気遮蔽材料で覆う方法には、その機器7の
取扱が不便になり、機器自体の商品的意匠が損われ、強
い周囲磁界Bが存在する場合には大量の磁気遮蔽材料が
必要となり重くなって移動に不便となる等の問題点があ
った。単にき電線に相当する往路導線2を移設したり磁
気遮蔽材料で覆う方法には、他の往路導線1に相当する
トロリー線1や復路導線3、4に相当するレール上の電
流の影響を考慮していないので、十分な磁気的干渉抑制
の効果を挙げることができなかった。
However, in the conventional method of covering the electronic flow utilizing device 7 with a magnetic shielding material, the handling of the device 7 becomes inconvenient, the commercial design of the device itself is impaired, and a strong ambient magnetic field is used. When B is present, there is a problem that a large amount of magnetic shielding material is required and becomes heavy and inconvenient to move. The method of simply relocating the outbound conductor 2 corresponding to the feeder wire or covering it with a magnetic shielding material takes into account the effects of the current on the rails corresponding to the trolley wire 1 corresponding to the other outbound conductor 1 and the inbound conductors 3 and 4. Therefore, no sufficient effect of suppressing magnetic interference could be obtained.

【0006】従って、本発明の目的は平行導線を三本以
上含む往復給電線の周囲の任意位置における平行導線電
流による磁気的干渉を抑制する方法を提供するにある。
Accordingly, it is an object of the present invention to provide a method for suppressing magnetic interference due to parallel conductor current at an arbitrary position around a reciprocating feeder including three or more parallel conductors.

【0007】[0007]

【課題を解決するための手段】図1及び5の実施例を参
照するに、本発明の給電線の周囲磁界抑制方法は、き電
線2を含む二本以上の往路導線1、2と復路導線3とか
らなる三本以上の導線1、2、3を含む往復給電線にお
ける各導線電流を定め給電線内の導線配置を設定し且
つ前記定めた各導線電流による給電線周囲の磁束密度B
(=Bf+Br)(図3)の分布を演算し、前記周囲内の
定位置の磁束密度の演算結果該所定位置における磁束
密度の許容値以下であるか否か判定し、前記判定の結果
が否の時にき電線2の設定位置の変更による前記導線配
置の再設定と前記磁束密度Bの分布の再演算と前記判定
とを反復し、き電線2の位置を前記所定位置の磁束密度
Bが前記許容値以下となる位置に決定してなるものであ
る。また本発明のき電線の位置決定装置は、き電線2を
含む二本以上の往路導線と復路導線とからなる三本以上
の導線1、2、3を含む往復給電線における各導線の電
流を定める手段10、給電線内の導線の位置を設定し且つ
変更する電線配置の選択手段11、前記選択手段で設定し
た位置の各導線における前記定める手段で定めた電流に
よる給電線周囲の磁束密度B(=Bf+Br)の分布を演算
する演算手段12、前記周囲内の所定位置での磁束密度B
の許容値を与える環境条件入力手段13、及び演算手段12
で求めた前記所定位置の磁束密度が前記許容値以下であ
るか否か判定する手段14を備え、前記判定する手段14の
判定結果が否の時に選択手段11による前記き電線位置の
変更と前記演算手段12による磁束密度Bの分布の再演算
と前記判定とを反復することにより、き電線2の位置を
前記所定位置の磁束密度Bが前記許容値以下となる位置
に決定してなるものである。
Referring to the embodiment of Figure 1 and 5 SUMMARY OF THE INVENTION The ambient magnetic field suppression method of the power supply line of the present invention, feeding circuit
Two or more outbound conductors 1 and 2 including inbound wire 2 and outbound conductor 3
You to a reciprocating feed line, including Ranaru three or more of the conductors 1, 2, 3
Kicking defines each conductor current, set the conductor arrangement in the feed line且
The magnetic flux density B around the feeder line due to each of the above determined conductor currents
(= Bf + Br) (FIG. 3) is calculated, and the calculation result of the magnetic flux density at a predetermined position in the surrounding is the magnetic flux at the predetermined position.
Determines whether less than the allowable value of the density, the lead distribution by results <br/> changes the set position of the wire 2 come when whether the determination
Reset and the recalculation of the distribution of the magnetic flux density B and the determination
And the position of the feeder wire 2 is changed to the magnetic flux density at the predetermined position.
This is determined at a position where B is equal to or less than the allowable value . In addition, the feeder position determining device of the present invention
Including three or more, consisting of two or more outbound routes and return routes
Of each conductor in the reciprocating feeder including the conductors 1, 2, and 3
Means 10 for determining the flow, setting the position of the conductor in the feeder and
Selection means 11 of the wire arrangement to be changed, set by the selection means
The current determined by the above-mentioned
The distribution of magnetic flux density B (= Bf + Br) around the feed line
Calculating means 12, the magnetic flux density B at a predetermined position in the surroundings
Environmental condition input means 13 for giving an allowable value of
The magnetic flux density at the predetermined position obtained in
Means 14 for determining whether or not the
When the judgment result is negative, the selection means 11
Change and recalculation of the distribution of magnetic flux density B by the calculation means 12
And the above determination is repeated to determine the position of the feeder line 2.
A position where the magnetic flux density B at the predetermined position is equal to or less than the allowable value.
Is determined.

【0008】[0008]

【発明の実施の形態】往路導線1、2と復路導線3、4
の四本の平行導線を有する図1〜6の実施例を参照して
動作を説明する。但し三本又は五本以上の平行導線を有
する往復給電線路の場合にも同様な動作を行わせること
ができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Outgoing conductors 1, 2 and inward conductors 3, 4
The operation will be described with reference to the embodiment of FIGS. 1 to 6 having the four parallel conductors. However, a similar operation can be performed in the case of a reciprocating feed line having three or five or more parallel conductors.

【0009】図4のステップ41において、固定導線の数
を例えば図5の実施例のように導線1、2、3、4の四
と定め、位置調整が可能な導線の数を例えば導線2の
一本と定める。ただし、導線の数は四本に限定されず、
き電線を含む往路導線1、2と復路導線3の三本で足
り、以下に説明する給電線の周囲磁界抑制方法は、導線
の数が三本の場合にも同様に適用される。ステップ42に
おいて、各導線1、2、3、4に流れる電流値を検討に
必要なケースの数だけ設定する。例えば設備建設前に、
長時間継続して流れるベース負荷電流、短時間のみ流れ
るピーク電流、その中間電流等を決定する。または設備
建設後に、各導線1、2、3、4に流れる電流値を測定
して決定する。この電流値の決定は、導線電流を定める
手段10で行われる。ステップ43で固定導線1、3、4の
幾何学的配置を例えば図5のように固定する。次に、ス
テップ44でき電線、即ち可動の導線2の幾何学的配置を
例えば図5のように設定する。このき電線の位置の設定
は、き電線の位置の設定・変更のための導線配置の選択
手段11で行われる。
In step 41 of FIG. 4, the number of fixed conductors is determined by, for example , four conductors 1, 2, 3, 4 as in the embodiment of FIG.
It is determined as a book, and the number of conductive wires whose position can be adjusted is determined as one of the conductive wires 2, for example. However, the number of conductors is not limited to four,
Three outgoing conductors 1, 2 and 3
Therefore, the method for suppressing the magnetic field around the feeder described below
The same applies to the case where the number is three. In step 42, the value of the current flowing through each of the conductors 1, 2, 3, and 4 is set by the number of cases necessary for the study. For example, before constructing equipment
A base load current flowing continuously for a long time, a peak current flowing only for a short time, an intermediate current thereof, and the like are determined. Alternatively, the current value flowing through each of the conductors 1, 2, 3, and 4 is measured and determined after the construction of the equipment. The determination of this current value determines the conductor current
This is done by means 10 . The geometry of the fixed conductors 3,4 in step 43 is fixed as shown in Figure 5, for example. Next, in step 44 , the geometrical arrangement of the electric wire, that is, the movable conductor 2 is set as shown in FIG. 5, for example. The setting of the position of the feeder <br/> is the selection of the conductor arrangement for setting and changing the position of the feeder
This is performed by means 11.

【0010】その後、ステップ45で、各導線1、2、
3、4に流れる電流値の組、即ち電流ケースを、I1+I2
+I3+I4=0の条件下で想定する。例えば、図5の場合
には実設備での測定値に基づき往路導線1、2の電流を
それぞれ900Aとし、往路電流が全て復路電流となり且
つ両復路導線3、4に均等に分割されそれぞれ900Aに
なるとしている。ステップ46で、四本の導線1、2、
3、4上の電流による往復給電線路の周囲の任意の点に
おける磁束密度分布を演算手段12によって演算する。こ
の演算は、導線1、2、3、4が全て平行であり、計算
の便宜上無限に長いと仮定でき且つ往復給電線路の周囲
が一様な空気中である場合には次のビオ・サバールの法
則によるのが便利である。
Thereafter, at step 45, each of the wires 1, 2,.
The set of current values flowing through 3, 4 or the current case is represented by I 1 + I 2
It is assumed that + I 3 + I 4 = 0. For example, in the case of FIG. 5, the currents of the forward conductors 1 and 2 are each 900 A based on the measured values in the actual equipment, all the forward currents are the return currents, and are equally divided into the two return conductors 3 and 4 to 900 A each. It is going to be. In step 46, four wires 1, 2,.
The calculation means 12 calculates the magnetic flux density distribution at an arbitrary point around the reciprocating feed line due to the currents on the lines 3 and 4. This operation assumes that conductors 1, 2, 3, and 4 are all parallel, infinitely long for convenience of calculation, and the following Bio-Savart if the surroundings of the reciprocating feed line are in uniform air: It is convenient to follow the rule.

【0011】[0011]

【数1】 (Equation 1)

【0012】ここに、Bは全導線の電流によるある点の
磁束密度、Biはi番目の導線の電流による磁束密度、Ii
はi番目の導線上の電流、rはdsと当該点との間の距離、
dsは電流Iiが流れている導線の微少部分、μは空気又は
他の媒質の透磁率であり、Bとrとdsはベクトル量、μ
とr3はスカラー量、Iiは正又は負の値のベクトル量であ
る。往復給電線路の周囲が一様でなく例えば磁性材料が
存在する場合や、導線が無限直線であると仮定できず例
えば曲線である場合には、図1の磁束密度演算手段12に
示すMaxwellの法則と有限要素法や境界要素法によって
演算することができる。
Here, B is the magnetic flux density at a certain point due to the current in all the conductors, B i is the magnetic flux density due to the current in the i-th conductor, I i
Is the current on the ith wire, r is the distance between ds and the point,
ds is a minute portion of the conductor through which the current I i flows, μ is the magnetic permeability of air or other medium, B, r and ds are vector quantities, μ
And r 3 are scalar quantities, and I i is a vector quantity of positive or negative value. If the circumference of the reciprocating feed line is not uniform and there is a magnetic material, for example, or if the conductor cannot be assumed to be an infinite straight line and is a curve, for example, Maxwell's law shown in the magnetic flux density calculating means 12 in FIG. And the finite element method or the boundary element method.

【0013】他方、環境条件設定手段13により、例えば
電子流利用機器7の位置及び許容磁束密度を設定する。
許容磁束密度として、説明の便宜上仮に30μTと設定す
る。
On the other hand, the environment condition setting means 13 sets, for example, the position of the electron flow utilization device 7 and the allowable magnetic flux density.
The allowable magnetic flux density is temporarily set to 30 μT for convenience of explanation.

【0014】演算手段12で演算して求めた磁束密度の分
布は、図1の判定手段14の作図段階で例えば図5に示す
ように表示される。こうして作られた磁束密度分布図
に、環境条件設定手段13で設定した電子流利用機器7の
位置を図5のように書込めば、その機器7が置かれた環
境の磁束密度Bがたとえば、約48μTのように求まる。
判定手段14はこうして求まった所定位置の磁束密度Bを
設定手段13で設定した許容磁束密度、例えば30μTと比
較し、この場合には与えられた電子流利用機器7の位置
での往復給電線上の電流による磁束密度Bが大き過ぎる
と判断する。
The distribution of the magnetic flux density calculated by the calculating means 12 is displayed as shown in FIG. 5, for example, at the drawing stage of the determining means 14 in FIG. If the position of the electron flow utilization device 7 set by the environmental condition setting means 13 is written in the magnetic flux density distribution diagram thus created as shown in FIG. 5, the magnetic flux density B of the environment where the device 7 is placed is, for example, Obtained as about 48 μT.
The determining means 14 compares the magnetic flux density B at the predetermined position obtained in this way with the allowable magnetic flux density set by the setting means 13, for example, 30 μT, and in this case, on the reciprocating power supply line at the given position of the electron flow utilization device 7. It is determined that the magnetic flux density B due to the current is too large.

【0015】ステップ42で設定した異なる電流値ケース
の全てについて、上記の判定手段14による判定の終了を
ステップ47で確認の後、ステップ44へ戻り、図1に示す
導線配置の選択手段11により、き電線2の位置を変更し
図6に示すようにレールに近づけ、復路導線3、4上
の電流の影響を往路のき電線2上の電流によって抑制す
るように試みる。その後、900Aの場合について図4の
ステップ45〜46の処理を繰返すと、図6に示す磁束密度
分布が求められ、機器7が置かれた環境の磁束密度Bが
たとえば、約25μTまでほぼ半減できることが判明す
る。さらに、この例で設定した許容磁束密度30μT以下
まで抑制できたことになる。
For all of the different current value cases set in step 42, the end of the judgment by the judging means 14 is confirmed in step 47, and thereafter, the process returns to step 44 and shown in FIG.
The position of the feeder wire 2 is changed by the conductor arrangement selecting means 11.
As shown in FIG. 6, approaching the rails, an attempt is made to suppress the effect of the current on the return wires 3 and 4 by the current on the feeder wire 2 on the outward route. Thereafter, when the processing of steps 45 to 46 in FIG. 4 is repeated for the case of 900 A, the magnetic flux density distribution shown in FIG. 6 is obtained, and the magnetic flux density B of the environment where the device 7 is placed can be reduced to about 25 μT, for example, by approximately half. Turns out. Furthermore, the allowable magnetic flux density set in this example could be suppressed to 30 μT or less.

【0016】許容磁束密度がさらに低い場合には、図5
と図6との比較から、往路導線2の位置をさらに下方に
設定して同様なシミュレーションを繰返すことができ
る。
In the case where the allowable magnetic flux density is lower, FIG.
From the comparison between FIG. 6 and FIG. 6, the same simulation can be repeated with the position of the outward conductor 2 set further below.

【0017】往復給電線の電線数が三本又は五本以上の
場合にも、図1の演算手段12の手法は、周囲磁界が個々
の導線上の電流による磁束密度のベクトル和として求ま
るので、上記説明の手法を実質上そのまま適用できる。
往復給電線の導線数が二本の場合には、両導線間の相対
位置が遠近の関係のみに集約されるので、本発明による
抑制の対象とならない。
Even when the number of electric wires of the reciprocating power supply line is three or five or more, the method of the calculating means 12 of FIG. 1 uses the method of the calculating means 12 as shown in FIG. The method described above can be applied substantially as it is.
When the number of conductors of the reciprocating feeder is two, the relative positions between the two conductors are concentrated only in the perspective relationship, and are not subject to suppression according to the present invention.

【0018】従って、本発明の目的である「平行導線を
三本以上含む往復給電線の周囲の任意位置における平行
導線電流による磁気的干渉を抑制する方法」の提供が達
成される。
Accordingly, the object of the present invention is to provide a " method of suppressing magnetic interference caused by a parallel conductor current at an arbitrary position around a reciprocating feeder line including three or more parallel conductors".

【0019】[0019]

【実施例】本発明の一実施例によれば、平行導線を三本
以上含む往復給電線の周囲の任意位置Pにおける磁束密
度Bを実質上ゼロにするか又は所要の値以下とすること
ができる。図7を参照するに、設置位置を調整できる一
本の平行導線を例えば往路導線2として選び、往復給電
線中の他の導線例えば導線1、3、4上の電流による位
置Pにおける磁束密度B(1、3、4)を磁束密度計算手
段12によって求める。このB(1、3、4)と大きさが等
しく向きが反対の磁束密度B(2)を往路導線2上の電
流によって発生させることができれば、位置Pにおける
磁束密度Bはゼロとなる。このような磁束密度B(2)
を発生させる導線2は、この場合算出可能であるB
(1、3、4)と直交する線上、即ち水平面Hと角θをな
す線上にある。また位置Pからその導線2までの距離S
及び導線2上の電流の向きと大きさはB(1、3、4)の
大きさによって定まる。導線1、2に往路電流が流れ、
導線3、4に逆向きの復路電流が流れる場合には、上記
条件を満たす向きと大きさの電流を導線2に流すことは
少なくとも理論的には可能である。
According to one embodiment of the present invention, the magnetic flux density B at an arbitrary position P around a reciprocating feeder line including three or more parallel conductors is made substantially zero or less than a required value. it can. Referring to FIG. 7, one parallel conductor whose installation position can be adjusted is selected, for example, as the outward conductor 2, and the magnetic flux density B at the position P due to the current on the other conductor in the reciprocating feeder, for example, the conductors 1, 3, 4 (1, 3, 4) is obtained by the magnetic flux density calculation means 12. If the magnetic flux density B (2) having the same magnitude and the opposite direction as B (1,3,4) can be generated by the current on the outward conducting wire 2, the magnetic flux density B at the position P becomes zero. Such a magnetic flux density B (2)
Is generated in this case, the conductive wire 2 can be calculated in this case.
It is on a line orthogonal to (1, 3, 4), that is, on a line that forms an angle θ with the horizontal plane H. The distance S from the position P to the conductor 2
And the direction and magnitude of the current on the conductor 2 are determined by the magnitude of B (1, 3, 4). The outgoing current flows through the conductors 1 and 2,
When a reverse current flows through the conductors 3 and 4, it is theoretically possible to flow a current having a direction and magnitude satisfying the above conditions through the conductor 2.

【0020】とくに既定位置に固定した導線1、3、4
及び位置調整可能な導線2の全てが平行であり且つ無限
に長いと仮定できる場合について、図9を参照して周囲
磁界抑制用の導線2の位置決め手法を説明する。ブロッ
ク901で導線1、2、3、4の電流値を負荷条件に応じ
て適宜設定し、固定導線1、3、4の位置をブロック90
2で座標値として設定する。無限に長い一本の直線導線
上の電流I(アンペア)によって点Pに生ずる磁束密度
B(テスラ)は、以下の式(2)で表す大きさを持ち、そ
の向きは右ねじの法則で与えられる。なお、r(メート
ル)は電流Iと点Pとの間の距離である。
In particular, the conductors 1, 3, 4 fixed at predetermined positions
Referring to FIG. 9, a description will be given of a method of positioning the conductor 2 for suppressing the surrounding magnetic field in a case where it is assumed that all the conductors 2 whose positions can be adjusted are parallel and infinitely long. In block 901, the current values of the conductors 1, 2, 3, 4 are appropriately set according to the load conditions, and the positions of the fixed conductors 1, 3, 4 are
Set as coordinate value in 2. The magnetic flux density B (tesla) generated at the point P by the current I (ampere) on one infinitely long straight conductor has a magnitude represented by the following equation (2), and its direction is given by the right-handed screw rule. Can be Note that r (meter) is the distance between the current I and the point P.

【0021】[0021]

【数2】 B=(μ/2π)(I/r) ………………………………(2)(2) B = (μ / 2π) (I / r) (2)

【0022】三本の導線1、3、4上の電流によって生
ずる磁束密度B(1、3、4)は、ブロック903に示す
ように各導線上の電流による式(2)の磁束密度のベクト
ル和として求められる。周囲磁界抑制のための導線2の
位置は、さきに決めたその導線2上の電流I2による点P
での磁束密度が−B(1、3、4)(図7参照)となる
ように選べばよい。そのためには、点Pにおいてベクト
ルB(1、3、4)に対し垂直な直線を引き、その直線
上で位置Pから次式で与えられる距離r'だけ離れた位置
に導線2を配置すればよい(ブロック904参照)。
The magnetic flux density B (1,3,4) generated by the current on the three conductors 1,3,4 is, as shown in block 903, the vector of the magnetic flux density of equation (2) by the current on each conductor. Required as a sum. The position of the conductor 2 for suppressing the surrounding magnetic field is determined by the point P determined by the current I 2 on the conductor 2 determined earlier.
May be selected so that the magnetic flux density at-is (-B (1, 3, 4)) (see FIG. 7). For this purpose, a straight line perpendicular to the vector B (1, 3, 4) is drawn at the point P, and the conducting wire 2 is arranged on the straight line at a position separated from the position P by a distance r ′ given by the following equation. Good (see block 904).

【0023】[0023]

【数3】 r'=(μ/2π)(I2/−B(1、3、4)) ……………………(3)R ′ = (μ / 2π) (I 2 / −B (1,3,4)) (3)

【0024】ここに、μは媒質の透磁率であり空気に対
しては真空透磁率μ0=4π×10-7で代用可能、I2は導線
2上の電流である。式(3)の解は二つあるが、右ねじの
法則と位置Pでの所要磁束向きにより適切な解を選択す
る。
Here, μ is the magnetic permeability of the medium, which can be substituted for air by the vacuum magnetic permeability μ 0 = 4π × 10 −7 , and I 2 is the current on the conductor 2. Although there are two solutions of equation (3), an appropriate solution is selected according to the right-hand screw rule and the required magnetic flux direction at the position P.

【0025】このようにして導線2の位置とその上の電
流を選択し、周囲磁束密度Bの分布を試算した結果を図
8(A)に示す。図8(A)の位置Pを通る水平線上における
磁束分布の鳥瞰図を示す図8(B)において、横軸はこの
場合レールである導線3、4から垂直に距離hだけ隔た
った水平面上におけるレール3、4の中心からの距離で
あり、縦軸は磁束密度Bを示し、奥行にレール方向の距
離を示す。この図から明らかなように、位置Pを通る水
平面上では磁束密度Bを実質上ゼロにする線状域Lが存
在する。さらに、その線状域Lに沿って磁束密度がBa
以下である低い磁束密度の磁束密度分布の溝状部15を有
限な幅Wで生成させることができる。この溝状部15の内
部では磁束密度Bを非常に低く抑えることができる。
FIG. 8A shows the result of selecting the position of the conductive wire 2 and the current thereabove and calculating the distribution of the surrounding magnetic flux density B. In FIG. 8B which shows a bird's-eye view of the magnetic flux distribution on a horizontal line passing through the position P in FIG. 8A, the horizontal axis is a rail on a horizontal plane vertically separated by a distance h from the conductors 3, 4 which are rails in this case. The vertical axis indicates the magnetic flux density B, and the depth indicates the distance in the rail direction. As is clear from this figure, on a horizontal plane passing through the position P, there is a linear region L where the magnetic flux density B becomes substantially zero. Further, the magnetic flux density is Ba along the linear region L.
The groove portion 15 having the following magnetic flux density distribution with a low magnetic flux density can be generated with a finite width W. The magnetic flux density B can be kept very low inside the groove portion 15.

【0026】[0026]

【発明の効果】以上詳細に説明したように、本発明の平
行往復給電線の周囲磁界抑制方法は、導線の設置位置に
よって周囲磁束密度を抑制するので、次の顕著な効果を
奏する。
As described in detail above, the method for suppressing the surrounding magnetic field of the parallel reciprocating feeder according to the present invention suppresses the surrounding magnetic flux density depending on the installation position of the conducting wire, and therefore has the following remarkable effects.

【0027】(1)平行往復給電線の周囲の磁界の磁束
密度を、導線の位置選択のみによって低いレベルに抑え
ることができる。 (2)上記磁束密度を、その周囲空間内の特定位置では
実質上ゼロに抑制することができる。 (3)平行往復給電線の周囲の磁界の磁束密度分布を迅
速に模擬計算することができる。
(1) The magnetic flux density of the magnetic field around the parallel reciprocating feeder can be suppressed to a low level only by selecting the position of the conductor. (2) The magnetic flux density can be suppressed to substantially zero at a specific position in the surrounding space. (3) The magnetic flux density distribution of the magnetic field around the parallel reciprocating feeder can be quickly simulated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】は、導線上の電流による磁界の図式的説明図で
ある。
FIG. 2 is a schematic explanatory diagram of a magnetic field caused by a current on a conductive wire.

【図3】は、本発明の計算原理の図式的説明図である。FIG. 3 is a schematic explanatory diagram of the calculation principle of the present invention.

【図4】は、本発明装置の流れ図である。FIG. 4 is a flowchart of the apparatus of the present invention.

【図5】は、従来の導線配置による磁界密度分布の試算
結果の説明図である。
FIG. 5 is an explanatory diagram of a result of a trial calculation of a magnetic field density distribution by a conventional conductor arrangement.

【図6】は、導線の配置変え後の磁界密度分布の試算結
果の説明図である。
FIG. 6 is an explanatory diagram of a trial calculation result of a magnetic field density distribution after the arrangement of the conductive wires is changed.

【図7】は、位置調整可能な導線の配置を決定する方法
の原理説明図である。
FIG. 7 is a diagram illustrating the principle of a method for determining the arrangement of the position-adjustable conductor.

【図8】は、磁束密度ゼロを含む磁界密度分布の試算結
果の説明図である。
FIG. 8 is an explanatory diagram of a trial calculation result of a magnetic field density distribution including a magnetic flux density of zero.

【図9】は、位置調整可能な導線の配置決定方法のブロ
ック図である。
FIG. 9 is a block diagram of a method for determining an arrangement of a conductive wire whose position can be adjusted.

【符号の説明】[Explanation of symbols]

1…往路導線 2…き電線 3、4…復路導線 5…電動装置 6…家屋 7…電子流利用機器 10…電流を定める手段 11…導線配置の選択手段 12…磁束密度の演算手段 13…環境条件の設定手段 14…判定手段 15…磁束分布の溝状部 1 ... outbound route 2 ...Feeder  3, 4 ... return line 5 ... electric device 6 ... house 7 ... electronic flow utilization equipment 10 ...Means for determining current 11: means for selecting the arrangement of conductive wires 12 ... means for calculating magnetic flux density 13 ... means for setting environmental conditions 14 ... determining means 15

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤野 成人 東京都港区元赤坂一丁目3番8号 鹿島 建設株式会社 東京支店内 (56)参考文献 特開 昭54−9809(JP,A) 特公 昭60−47820(JP,B2) 特表 平8−505759(JP,A) 米国特許5068543(US,A) (58)調査した分野(Int.Cl.6,DB名) B60M 1/00 - 3/00 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor, Adult Fujino 1-3-8 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. Tokyo Branch (56) References JP-A-54-9809 (JP, A) Japanese Patent Publication No. 60-47820 (JP, B2) JP-A-8-505759 (JP, A) U.S. Pat. No. 5,086,543 (US, A) (58) Fields investigated (Int. Cl. 6 , DB name) B60M 1/00- 3/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】き電線を含む二本以上の往路導線と復路導
線とからなる導線三本以上往復給電線における各導線
電流を定め、前記給電線内の導線配置を設定し且つ前記
定めた各導線電流による給電線周囲の磁束密度の分布を
演算し、前記周囲内の所定位置の磁束密度の前記演算結
該所定位置における磁束密度の許容値以下であるか
否か判定し、前記判定の結果が否の時に前記き電線設定
位置の変更による前記導線配置の再設定と前記磁束密度
の分布の再演算と前記判定とを反復し、前記き電線の位
置を前記所定位置の磁束密度が前記許容値以下となる位
置に決定してなる給電線の周囲磁界抑制方法。
1. An at least two outgoing conductors including feeder wires and a return conductor.
Defines each conductor current in wire three or more reciprocating feed line consisting of a line, set the conductor arrangement in the feed line and the
Calculate the distribution of magnetic flux density around the feeder line based on each determined wire current, and calculate the magnetic flux density at a predetermined position in the circumference.
Fruit is determined whether less than the allowable value of the magnetic flux density at the predetermined position, said-out wire set when the result of the determination is negative
Resetting of the conductor arrangement by changing the position and the magnetic flux density
Of the distribution of the feeder line by repeating the recalculation of the distribution of
Position where the magnetic flux density at the predetermined position is less than the allowable value.
A method for suppressing the magnetic field around the feeder line, which is determined by the arrangement .
【請求項2】き電線を含む二本以上の往路導線と復路導
線とからなる導線三本以上の往復給電線における各導線
電流を定める手段、前記給電線内の導線の位置を設定し
且つ変更する電線配置の選択手段、前記選択手段で設定
した位置の各導線における前記定める手段で定めた電流
による給電線周囲の磁束密度の分布を演算する演算手
段、前記周囲内の所定位置での磁束密度の許容値を与え
る環境条件入力手段、及び前記演算手段で求めた前記所
定位置の磁束密度が前記許容値以下であるか否か判定す
る手段を備え、前記判定する手段の判定結果が否の時に
前記選択手段による前記き電線位置の変更と前記演算手
段による前記磁束密度の分布の再演算と前記判定とを反
復することにより、前記き電線の位置を前記所定位置の
磁束密度が前記許容値以下となる位置に決定してなるき
電線の位置決定装置
2. An at least two outgoing conductors including feeder wires and a return conductor.
Conductors in three or more reciprocating feeder lines
Means for determining the current, setting the position of the conductor within said feeder line
And means for selecting a wire arrangement to be changed, set by the selecting means
Current determined by the above-mentioned means in each conductor at the specified position
Operator to calculate the distribution of magnetic flux density around the feeder line due to
Step, giving a permissible value of the magnetic flux density at a predetermined position in the periphery.
Environmental condition input means, and the location determined by the arithmetic means.
It is determined whether the magnetic flux density at the fixed position is equal to or less than the allowable value.
Means when the result of the determination by the determination means is negative.
Change of the feeder line position by the selection means and the calculation
The recalculation of the magnetic flux density distribution by the step and the determination are repeated.
By returning, the position of the feeder wire is
It must be determined at a position where the magnetic flux density is below the allowable value.
Wire positioning device .
【請求項3】請求項2の位置決定装置において、前記往
復給電線を、二本のレールからなる復路導線を有する電
車用給電線としてなるき電線の位置決定装置
3. The position determining device according to claim 2, wherein said reciprocating power supply line is connected to an electric line having a return line consisting of two rails.
Feeder position determining device to be used as a vehicle feeder .
【請求項4】請求項2又は3の位置決定装置において、
前記所定位置での磁束密度の許容値を、該所定位置にお
ける電子流による画像が該所定位置の磁束密度によって
乱されることのない限度のものとしてなるき電線の位置
決定装置
4. The position determining device according to claim 2 , wherein
The allowable value of the magnetic flux density at the predetermined position is determined by the image of the electron flow at the predetermined position based on the magnetic flux density at the predetermined position .
The position of the feeder, which will be the limit that will not be disturbed
Decision device .
【請求項5】請求項4の位置決定装置において、前記電
子流を前記所定位置における陰極線管の電子流としてな
き電線の位置決定装置
5. The positioning apparatus of claim 4, the positioning device of the electric wire Ki becomes the electron current as the electron stream of the cathode ray tube at the predetermined position.
【請求項6】請求項2〜5のいずれかの位置決定装置に
おいて、前記演算手段における前記往復給電線周囲の磁
束密度の分布をマックスウェルの法則により求めてなる
き電線の位置決定装置
In any position determining apparatus 6. The method of claim 2-5, comprising a distribution of magnetic flux density of the reciprocating feed line surrounding definitive to the arithmetic means calculated by the law of Maxwell
Feeder position determination device .
【請求項7】請求項2のき電線の位置決定装置で定めた
位置に設けたき電線とトロリー線とを含む二本以上の往
路導線、及び二本のレールからなる復路導線を有する電
車用給電線
7. The feed line position determining device according to claim 2,
Two or more outgoing cables including feeder wires and trolley wires
An electric line having a return line and a return line consisting of two rails.
Power supply line for cars .
JP10039461A 1998-02-20 1998-02-20 Method of suppressing magnetic field around power supply line Expired - Fee Related JP2974302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10039461A JP2974302B2 (en) 1998-02-20 1998-02-20 Method of suppressing magnetic field around power supply line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10039461A JP2974302B2 (en) 1998-02-20 1998-02-20 Method of suppressing magnetic field around power supply line

Publications (2)

Publication Number Publication Date
JPH11235940A JPH11235940A (en) 1999-08-31
JP2974302B2 true JP2974302B2 (en) 1999-11-10

Family

ID=12553699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10039461A Expired - Fee Related JP2974302B2 (en) 1998-02-20 1998-02-20 Method of suppressing magnetic field around power supply line

Country Status (1)

Country Link
JP (1) JP2974302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1034189C2 (en) * 2007-07-25 2009-01-27 Em Power Systems Building element for electrical supply of a rail vehicle, and electrical supply system comprising such a building element.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068543A (en) 1990-11-14 1991-11-26 General Atomics Low hazard extremely low frequency power transmission line

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068543A (en) 1990-11-14 1991-11-26 General Atomics Low hazard extremely low frequency power transmission line

Also Published As

Publication number Publication date
JPH11235940A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
US20140265713A1 (en) Electric wire, coil, device for designing electric wire, and electric motor
FI88079C (en) TV GRADIENT SPEED, SPECIFICLY SPOOL FOR BRAKE I NUCLEAR MAGNETIC RESONANSAVBILDNINGSSYSTEM
US11139099B2 (en) Magnetic field generator
JP2974302B2 (en) Method of suppressing magnetic field around power supply line
US20220260403A1 (en) Coriolis measuring sensor and coriolis measuring device having a coriolis measuring sensor
PL354431A1 (en) Apparatus for detecting electric differential currents
US6649842B1 (en) Power feeding facility and its cable for high-frequency current
Van Deursen et al. Transfer impedance of nonmagnetic conduits of various shapes
FR1516325A (en) Scanning Reels Improvements
CN114643873B (en) 8-shaped coil equivalent analysis method suitable for electric suspension EDS
CN105824823B (en) A kind of map point of interest optimization method and device
Chowdhuri et al. Rigorous analysis of back-flashover outages caused by direct lightning strokes to overhead power lines
Tiedemann Current flow in coaxial braided cable shields
US5200673A (en) Method and device for suppression of leakage of magnetic flux in display apparatus
Greconici et al. Skin effect analysis in a free space conductor
EP0371618A1 (en) Method and device for suppression of leakage of magnetic flux in display apparatus
CA2467054A1 (en) Method and apparatus for determining a current in a conductor
Freeman Computer-aided steady-state and transient solutions of field problems in induction devices
US20010047874A1 (en) Delta magnetic de-fluxing design for low noise signal cables
JP3195703B2 (en) Scanning coil in charged particle beam equipment
Schurig et al. Losses in Armored Single-Conductor Lead-Covered AC. Cables
JPH05233742A (en) Method for selecting wiring material
US925594A (en) Fault-locator for electric cables.
CN116359614A (en) Mirror image ground cross loop rebalancing circuit design method
JP2979078B2 (en) Earth leakage detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees