JP2972480B2 - Optical rotation position detector - Google Patents

Optical rotation position detector

Info

Publication number
JP2972480B2
JP2972480B2 JP5063082A JP6308293A JP2972480B2 JP 2972480 B2 JP2972480 B2 JP 2972480B2 JP 5063082 A JP5063082 A JP 5063082A JP 6308293 A JP6308293 A JP 6308293A JP 2972480 B2 JP2972480 B2 JP 2972480B2
Authority
JP
Japan
Prior art keywords
disk
light receiving
center
pair
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5063082A
Other languages
Japanese (ja)
Other versions
JPH06249677A (en
Inventor
竜樹 後藤
伸彦 細畠
正明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koparu KK
Original Assignee
Koparu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koparu KK filed Critical Koparu KK
Priority to JP5063082A priority Critical patent/JP2972480B2/en
Publication of JPH06249677A publication Critical patent/JPH06249677A/en
Application granted granted Critical
Publication of JP2972480B2 publication Critical patent/JP2972480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光学式回転型の位置検出
装置に関する。より詳しくは、螺旋状にスリットが形成
された回転円盤の補強構造に関する。さらに詳しくは、
補強構造に付随する光学的な補正構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical rotary type position detecting device. More specifically, the present invention relates to a structure for reinforcing a rotating disk having a spiral slit. For more information,
The present invention relates to an optical correction structure associated with a reinforcing structure.

【0002】[0002]

【従来の技術】従来から様々な形式の光学式回転位置検
出装置が知られている。例えば、特開昭60−1401
17号公報及び特開昭60−225024号公報等には
螺旋状にスリットが形成された回転円盤を利用した構造
が開示されている。図9に示す様に、この構造の光学式
回転位置検出装置は、回転軸101を中心にして回転可
能に円盤102が取り付けられている。円盤102は金
属等の遮光材料からなり、その表面には回転中心から周
方向に沿って螺旋状のスリット103が形成されてい
る。円盤102に対面して入射光を照射する為に光源1
04が固定配置されている。又、円盤102を介して光
源104と正対する位置に受光素子105が固定配置さ
れている。受光素子105は円盤102の径方向に沿っ
て配置された長手形状の受光面106を備えており、円
盤102の回転方向に伴なって径方向に移動するスリッ
トからの透過光を受光し、回転位置の検出信号を出力す
る。
2. Description of the Related Art Various types of optical rotational position detecting devices are conventionally known. For example, Japanese Patent Application Laid-Open No. 60-1401
No. 17, JP-A-60-225024, and the like disclose a structure using a rotary disk having a spiral slit. As shown in FIG. 9, in the optical rotation position detecting device having this structure, a disk 102 is attached so as to be rotatable about a rotation shaft 101. The disk 102 is made of a light-shielding material such as metal, and has a spiral slit 103 formed on the surface thereof along the circumferential direction from the center of rotation. Light source 1 for irradiating incident light facing disk 102
04 is fixedly arranged. Further, a light receiving element 105 is fixedly arranged at a position facing the light source 104 via the disk 102. The light receiving element 105 has a long light receiving surface 106 arranged along the radial direction of the disk 102, and receives transmitted light from a slit that moves in the radial direction along with the rotation direction of the disk 102, and rotates the light. Outputs a position detection signal.

【0003】図10に円盤102の回転角と検出信号と
の関係を示す。円盤の回転に伴なって螺旋状のスリット
を透過する光は長手形状の受光面に沿って移動する。受
光素子は透過光の受光位置に応じた検出信号を出力す
る。例えば、受光素子としてPSD等を用いた場合、受
光面における透過光の重心位置に対応した検出信号を出
力する。何等誤差要因を含まない場合、回転角と検出信
号はリニアな関係になる。
FIG. 10 shows the relationship between the rotation angle of the disk 102 and the detection signal. With the rotation of the disk, the light transmitted through the spiral slit moves along the light receiving surface having a long shape. The light receiving element outputs a detection signal according to the light receiving position of the transmitted light. For example, when a PSD or the like is used as a light receiving element, a detection signal corresponding to the position of the center of gravity of transmitted light on the light receiving surface is output. If no error factor is included, the rotation angle and the detection signal have a linear relationship.

【0004】[0004]

【発明が解決しようとする課題】再び図9に戻って発明
が解決しようとする課題を簡潔に説明する。螺旋状のス
リットの長さを延長する程検出角度範囲が拡大する。即
ち、検出角度範囲は螺旋の抜き角に比例している。しか
しながら、抜き角を大きくする程スリットの幅方向両側
に分離した円盤の各部分を連結する領域が少なくなり機
械的強度が減少する。この為、回転変位中金属等からな
る薄板円盤が撓み変形し検出誤差が生じるという課題が
ある。この対策として、金属薄板からなる円盤を透明な
樹脂板あるいはガラス板で裏打し補強する構造が考えら
れる。しかしながら、このラミネート構造は製造コスト
の上昇をもたらすとともに回転変位部分の重量及び厚み
が大きくなってしまうという欠点がある。あるいは、透
明ガラス板からなる円盤の表面にマスクを介して金属等
の遮光材料を真空蒸着し、螺旋状のスリットパタンを形
成する方式も考えられる。しかしながら、この方法であ
っても金属薄板のエッチング加工に比べ製造コストが数
倍高くなるという欠点がある。
Referring back to FIG. 9, the problem to be solved by the invention will be briefly described. As the length of the spiral slit increases, the detection angle range increases. That is, the detection angle range is proportional to the helix angle. However, as the draft angle is increased, the area for connecting the portions of the disk separated on both sides in the width direction of the slit is reduced, and the mechanical strength is reduced. For this reason, there is a problem that a thin disk made of metal or the like bends and deforms during rotational displacement, and a detection error occurs. As a countermeasure, a structure in which a disk made of a thin metal plate is backed with a transparent resin plate or a glass plate and reinforced is considered. However, this laminate structure has the drawbacks that it increases the manufacturing cost and increases the weight and thickness of the rotationally displaced portion. Alternatively, a method of forming a spiral slit pattern by vacuum-depositing a light-shielding material such as metal on the surface of a disk made of a transparent glass plate via a mask may be considered. However, even with this method, there is a disadvantage that the manufacturing cost is several times higher than the etching processing of the thin metal plate.

【0005】上述した従来の技術の課題に鑑み、本発明
は例えば金属薄板単体からなる回転円盤自体に補強構造
を付与する事を基本的な目的とする。ところで、円盤上
に補強構造を設けた場合、これによって光源からの入射
光が部分的に遮られ受光量の減少をもたらすとともに、
受光面における透過光スポットの重心位置が変動し、検
出信号に誤差が表われる可能性も考えらえる。そこで、
本発明は上述した基本的な目的に加え、補強構造によっ
て生じる受光量の減少並びに透過光スポットの重心位置
変動を抑制する補正構造を付与する事を目的とする。
[0005] In view of the above-mentioned problems of the prior art, it is a basic object of the present invention to provide a reinforcing structure to a rotating disk itself made of, for example, a thin metal plate. By the way, when the reinforcing structure is provided on the disk, this causes the incident light from the light source to be partially blocked, thereby reducing the amount of received light, and
It is also possible that the position of the center of gravity of the transmitted light spot on the light receiving surface fluctuates and an error appears in the detection signal. Therefore,
An object of the present invention is to provide, in addition to the above-described basic objects, a correction structure that suppresses a reduction in the amount of received light caused by a reinforcing structure and a change in the center of gravity of a transmitted light spot.

【0006】[0006]

【課題を解決するための手段】上述した目的を達成する
為に以下の手段を講じた。即ち、本発明にかかる光学式
回転位置検出装置は基本的な構成要件として移動部材と
その両側に配置された固定光源及び固定受光素子とを備
えている。移動部材は回転変位する円盤からなりその表
面周方向に沿って螺旋状のスリットが形成されている。
固定光源は移動部材に対して入射光を照射する。受光素
子は円盤の径方向に沿って配置された長手形状の受光面
を備え、回転変位に伴なって径方向に移動するスリット
からの透過光を受光し回転位置の検出信号を出力する。
かかる構成において、スリットの幅方向に渡って梁部を
設けるという手段を講じ円盤を補強した。さらに、該梁
部に対応してスリット幅の径方向両側に合計面積が梁部
の面積と同じになる一対の大きさの異なる補正孔を設け
るという手段を講じ、受光量の減少を防止している。一
対の補正孔の面積をS1,S2とし、各補正孔の重心と
梁部の重心との距離を夫々d1,d2とすると、d1・
S1=d2・S2の関係を満たす様にし、受光面におけ
る透過光スポットの重心位置変動を防止している。
To achieve the above-mentioned object, the following means have been taken. That is, the optical rotary position detecting device according to the present invention includes a moving member and fixed light sources and fixed light receiving elements disposed on both sides of the moving member as basic components. The moving member is formed of a disk that is rotationally displaced, and has a spiral slit formed along the surface circumferential direction.
The fixed light source irradiates the moving member with incident light. The light receiving element has a long light receiving surface arranged along the radial direction of the disk, receives the transmitted light from the slit that moves in the radial direction along with the rotational displacement, and outputs a rotation position detection signal.
In such a configuration, the disk is reinforced by taking measures to provide a beam portion across the width direction of the slit. Further, a means of providing a pair of different size correction holes having a total area equal to the area of the beam portion is provided on both sides in the radial direction of the slit width corresponding to the beam portion to prevent a decrease in the amount of received light. I have. Assuming that the areas of the pair of correction holes are S1 and S2 and the distances between the center of gravity of each correction hole and the center of gravity of the beam portion are d1 and d2, respectively, d1 ·
The relationship of S1 = d2 · S2 is satisfied to prevent a change in the center of gravity of the transmitted light spot on the light receiving surface.

【0007】補正孔は例えば円形である。この場合、一
対の円形補正孔の半径を各々r1,r2とし、円盤の回
転中心から梁部の重心までの距離をR0とすると、r1
/(R0+d1)=r2/(R0−d2)の関係を満た
す。換言すると、一対の円形補正孔の端部に接する共通
の接線が円盤の回転中心からの径方向と一致する様に設
定されている。補正孔は略台形であっても良い。この場
合、一対の台形補正孔の各重心からその回転方向端部ま
での寸法を夫々m1,m2とすると、m1/(R0+d
1)=m2/(R0−d2)の関係を満たす。従って、
円形補正孔と同様に、一対の台形補正孔の回転方向端部
に接する共通の接線は、円盤の回転中心からの径方向と
一致する。さらに、これら一対の補正孔の共通接線と、
梁部の側端線を一致させて、受光面に一対の補正孔と梁
部が同時に進入する様にしている。この場合、受光素子
は所定のマスキングを施され、円盤回転方向における端
縁が円盤の回転中心からの径方向と略平行である受光面
を有する様にしている。
The correction hole is, for example, circular. In this case, if the radii of the pair of circular correction holes are r1 and r2, and the distance from the center of rotation of the disk to the center of gravity of the beam is R0, r1
/ (R0 + d1) = r2 / (R0-d2). In other words, the common tangent to the ends of the pair of circular correction holes is set so as to coincide with the radial direction from the center of rotation of the disk. The correction hole may be substantially trapezoidal. In this case, if the dimensions from the center of gravity of the pair of trapezoidal correction holes to the ends in the rotation direction are m1 and m2, respectively, m1 / (R0 + d
1) = m2 / (R0−d2) is satisfied. Therefore,
Similarly to the circular correction hole, a common tangent to the rotation direction ends of the pair of trapezoidal correction holes coincides with the radial direction from the center of rotation of the disk. Further, a common tangent line of the pair of correction holes,
The side end lines of the beams are made to coincide with each other so that the pair of correction holes and the beams enter the light receiving surface at the same time. In this case, the light receiving element is subjected to predetermined masking, and has a light receiving surface whose edge in the disk rotation direction is substantially parallel to the radial direction from the center of rotation of the disk.

【0008】[0008]

【作用】本発明によれば、螺旋状のスリットによって区
画された円盤の各領域は分離しておらず、梁部によって
互いに連結されている。従って、円盤の撓み変形を抑え
る事ができ、従来に比し螺旋の抜き角を大きくとれるの
で回転検出角度範囲を拡大できる。ところで、スリット
に梁部を設けた場合、その通過により光源からの入射光
が部分的且つ断続的に遮られ受光状態に揺らぎが生じ
る。具体的には、梁部の介在により受光量の減少並びに
重心位置の変動が生じる。そこで、梁部に対応して一対
の補正孔を設け、遮られた光と等価な光を受光面に導入
し受光状態の揺らぎを補正している。一対の補正孔は、
梁部に対応してスリット幅の径方向両側に配置され、そ
の合計面積が梁部の面積と等しい。又、一対の補正孔の
面積をS1,S2とし、各補正孔の重心と梁部の重心と
の距離を夫々d1,d2とすると、d1・S1=d2・
S2の関係を満たす様にしている。この様にすれば、梁
部で遮られた光と同量の光を受光面に照射できるととも
に、一対の補正孔の重心が梁部の重心に一致する。従っ
て、一対の補正孔を通る光は梁部により遮られた光と等
価であり、梁部の影響を相殺可能とする。さらに、一対
の補正孔の端部に接する共通の接線と梁部の側端線を円
盤の径方向に沿って一致させるとともに、円盤回転方向
における受光面の端縁が円盤の径方向と略平行となる様
にしている。これにより、受光面に対して一対の補正孔
と梁部が同時に進入及び退出し、回転中過渡時において
も受光状態に揺らぎが生じない様にしている。
According to the present invention, the respective regions of the disk defined by the spiral slits are not separated but are connected to each other by the beam. Therefore, it is possible to suppress the bending deformation of the disk, and it is possible to increase the draft angle of the spiral as compared with the related art, so that the rotation detection angle range can be expanded. By the way, when a beam portion is provided in the slit, incident light from the light source is partially and intermittently blocked by the passage, and the light receiving state fluctuates. Specifically, the interposition of the beam portion causes a decrease in the amount of received light and a change in the position of the center of gravity. Therefore, a pair of correction holes is provided corresponding to the beam portion, and light equivalent to blocked light is introduced to the light receiving surface to correct fluctuations in the light receiving state. A pair of correction holes,
It is arranged on both sides in the radial direction of the slit width corresponding to the beam, and the total area thereof is equal to the area of the beam. If the areas of the pair of correction holes are S1 and S2, and the distance between the center of gravity of each correction hole and the center of gravity of the beam portion is d1 and d2, respectively, d1 · S1 = d2 ·
The relationship of S2 is satisfied. With this configuration, the light receiving surface can be irradiated with the same amount of light as the light blocked by the beam, and the center of gravity of the pair of correction holes matches the center of gravity of the beam. Therefore, the light passing through the pair of correction holes is equivalent to the light blocked by the beam, and the influence of the beam can be offset. In addition, the common tangent line in contact with the ends of the pair of correction holes and the side end line of the beam portion are aligned along the radial direction of the disk, and the edge of the light receiving surface in the disk rotation direction is substantially parallel to the radial direction of the disk. It is to be. Thereby, the pair of correction holes and the beam portion enter and exit the light receiving surface at the same time, so that the light receiving state does not fluctuate even during the transition during rotation.

【0009】[0009]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかる光学式回転位置
検出装置の基本的な構成を示す模式的な斜視図である。
金属等の遮光性材料からなる円盤1は回転軸2に固着さ
れており回転変位可能である。この回転軸2は図示しな
い検出対象物に接続されている。円盤1の表面には中心
から周方向に沿って徐々に拡大する螺旋状のスリット3
が形成されている。螺旋状スリット3の略中間点におい
て、その幅方向に渡って梁部4が設けられており、円盤
1を機械的に補強する。本例では、梁部4は2本設けら
れているがこれに限られるものではない。又、梁部4は
螺旋状スリット3の略中間点に設けられているが、本発
明はこれに限られるものではない。本発明の特徴事項と
して、個々の梁部4に対応して一対の補正孔5が形成さ
れている。スリット3、梁部4及び補正孔5は例えばエ
ッチングにより同時に形成できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic perspective view showing a basic configuration of an optical rotary position detecting device according to the present invention.
A disk 1 made of a light-shielding material such as metal is fixed to a rotating shaft 2 and can be rotated. The rotating shaft 2 is connected to a detection target (not shown). A spiral slit 3 that gradually expands from the center in the circumferential direction on the surface of the disk 1
Are formed. At a substantially middle point of the spiral slit 3, a beam portion 4 is provided in the width direction thereof, and the disk 1 is mechanically reinforced. In this example, two beams 4 are provided, but the invention is not limited to this. Further, the beam portion 4 is provided at a substantially middle point of the spiral slit 3, but the present invention is not limited to this. As a feature of the present invention, a pair of correction holes 5 are formed corresponding to the individual beam portions 4. The slit 3, the beam 4, and the correction hole 5 can be formed simultaneously by, for example, etching.

【0010】円盤1の上方には例えばLED等からなる
光源6が固定配置されている。この光源6はその表面に
固着された投光レンズを介して略平行な光を円盤1の表
面に照射する。一方円盤1の下方には光源6と整合して
受光素子7が固定配置されている。その表面に設けられ
た受光面8は円盤1の径方向に沿った長手形状を有す
る。円盤1の回転変位に伴なって螺旋状スリット3から
の透過光9は径方向に移動し受光面8により受光され
る。受光素子7は例えばPSD等の受光位置検出素子か
らなり、一対の出力端子に差動信号A,Bを出力する。
即ち、出力信号A,Bは透過光9の受光位置11に応じ
て差動的に変化する。より正確には、透過光9の重心位
置に応じて変化する。この出力信号A,Bは差分回路1
0により差分処理され、円盤1の回転位置を表わす検出
信号Voutが得られる。
Above the disk 1, a light source 6, such as an LED, is fixedly arranged. The light source 6 emits substantially parallel light to the surface of the disk 1 via a light projecting lens fixed to the surface. On the other hand, a light receiving element 7 is fixedly arranged below the disk 1 in alignment with the light source 6. The light receiving surface 8 provided on the surface has a longitudinal shape along the radial direction of the disk 1. The transmitted light 9 from the spiral slit 3 moves in the radial direction along with the rotational displacement of the disk 1 and is received by the light receiving surface 8. The light receiving element 7 includes a light receiving position detecting element such as a PSD, for example, and outputs differential signals A and B to a pair of output terminals.
That is, the output signals A and B change differentially according to the light receiving position 11 of the transmitted light 9. More precisely, it changes according to the position of the center of gravity of the transmitted light 9. The output signals A and B are output from the difference circuit 1
0, a detection signal Vout representing the rotational position of the disk 1 is obtained.

【0011】図2は回転円盤1の平面形状を示す。本例
では、螺旋状スリット3の抜き角は350°に設定され
ている。仮に、梁部4を入れない場合には、スリット3
によってその幅方向内側と外側に区画された部分を互い
に連結する領域が極めて僅かとなり、所望の機械的強度
を維持する事ができない。螺旋の抜き角を350°に設
定すると回転位置検出範囲は0°〜350°に渡る。本
例では梁部4はこの回転位置検出範囲の略中央(175
°)に相当するスリット部位に配置されている。この様
にすると、スリット3によって区分された一対の金属片
は回転軸2に対し互いに対称的な2個所で連結される事
となり均衡のとれた補強構造を得ることができる。さら
に、この梁部4は受光素子から出力される一対の差動信
号が互いに略等しくなる中央受光位置に併せて配置され
ている事になる。この為、受光素子の出力に対して、回
転中梁部の通過に伴なう受光状態の揺らぎによる悪影響
が極力排除可能な様に設計されている。
FIG. 2 shows a plan view of the rotating disk 1. In this example, the draft angle of the spiral slit 3 is set to 350 °. If the beam 4 is not inserted, the slit 3
As a result, the region connecting the portions partitioned inward and outward in the width direction becomes extremely small, and the desired mechanical strength cannot be maintained. If the draft angle of the spiral is set to 350 °, the rotation position detection range extends from 0 ° to 350 °. In this example, the beam portion 4 is located substantially at the center (175
°). In this way, the pair of metal pieces separated by the slit 3 are connected at two positions symmetrical to each other with respect to the rotating shaft 2, so that a balanced reinforcing structure can be obtained. Further, the beam portion 4 is arranged at a central light receiving position where a pair of differential signals output from the light receiving element become substantially equal to each other. For this reason, the output of the light receiving element is designed so that adverse effects due to fluctuations in the light receiving state accompanying the passage of the beam during rotation can be eliminated as much as possible.

【0012】本発明の特徴事項として、図3(部分拡大
図)に示す様に、スリット3の幅方向に渡って梁部4を
設け円盤を補強するとともに、該梁部4に対応してスリ
ット幅の径方向両側に一対の補正孔を設けている。本図
では便宜上の区別を付ける為、径方向外側の補正孔を参
照番号51で表わし、径方向内側の補正孔を参照番号5
2で表わしている。ともに円形であり、外側の補正孔5
1は比較的大きな開口面積S1を有するとともに、内側
の補正孔52は比較的小さな開口面積S2を有する。こ
れら一対の補正孔51,52の合計開口面積S1+S2
は、梁部4の遮閉面積S0と等しくなる様に設定されて
いる。一方の補正孔51の重心(円形開口の中心)W
1、他方の補正孔52の重心(円形開口の中心)W2、
梁部4の重心W0はともに同一の回転円盤半径Rに沿っ
て一直線上に配列されている。一方の補正孔51の重心
W1は梁部4の重心W0から比較的近距離d1に位置
し、他方の補正孔52の重心W2は梁部4の重心W0か
ら比較的遠距離d2に位置する。一対の補正孔51,5
2の間には、d1・S1=d2・S2の関係が成立して
いる。一対の補正孔51,52の合成重心と、梁部4の
重心W0は一致し、両者は光学的に等価である。従っ
て、スリット3に介在する梁部4は一対の補正孔51,
52によって置換でき、受光状態の揺らぎは完全に補正
可能である。
As a feature of the present invention, as shown in FIG. 3 (partially enlarged view), a beam portion 4 is provided in the width direction of the slit 3 to reinforce the disk, and a slit corresponding to the beam portion 4 is provided. A pair of correction holes are provided on both radial sides of the width. In this figure, for the sake of convenience, the radially outer correction hole is denoted by reference numeral 51, and the radially inner correction hole is denoted by reference numeral 5.
It is represented by 2. Both are circular, and the outer correction hole 5
1 has a relatively large opening area S1, and the inner correction hole 52 has a relatively small opening area S2. The total opening area S1 + S2 of the pair of correction holes 51 and 52
Is set to be equal to the shielding area S0 of the beam portion 4. Center of gravity (center of circular opening) W of one correction hole 51
1, the center of gravity of the other correction hole 52 (the center of the circular opening) W2,
The centers of gravity W0 of the beam portions 4 are arranged in a straight line along the same radius R of the rotating disk. The center of gravity W1 of one correction hole 51 is located at a relatively short distance d1 from the center of gravity W0 of the beam portion 4, and the center of gravity W2 of the other correction hole 52 is located at a relatively long distance d2 from the center of gravity W0 of the beam portion 4. A pair of correction holes 51 and 5
The relationship d1 · S1 = d2 · S2 holds between the two. The combined center of gravity of the pair of correction holes 51 and 52 and the center of gravity W0 of the beam portion 4 match, and both are optically equivalent. Therefore, the beam portion 4 interposed in the slit 3 has a pair of correction holes 51,
52, and the fluctuation of the light receiving state can be completely corrected.

【0013】次に、図4を参照して本発明にかかる光学
式回転位置検出装置の動作を詳細に説明する。(A)の
状態では、スリット3に設けられた梁部4は受光面8外
に位置している。従って、受光素子は受光面8上におけ
るスリット3からの透過光領域(ハッチングで示す)の
重心位置Wに応じて所定の検出信号を出力する。次に、
(B)の状態では、受光面8に対して円盤が時計方向に
回転し、梁部4が受光面8内に進入してくる。受光面8
上における透過光領域はハッチングで示す様に梁部4に
よって部分的に遮られ二分される。この分割された透過
光領域の重心Wは正規の重心位置から片寄る事になる。
従って、(B)に示す様に、仮に補正孔が設けられてい
ないとすると、検出信号に誤差が表われる事になる。
又、梁部4によって遮閉された分だけ受光量が減少し、
検出誤差原因となる。この点に鑑み、本発明では(C)
に示す様に梁部4に対応して一対の補正孔51,52が
設けられている。これら一対の補正孔51,52の合計
面積は梁部4の面積と等しい為、実質的に受光量変化は
生じない。又、一対の補正孔51,52の合成重心は梁
部4の重心と一致している為、前述した受光領域重心W
の片寄りも生じない。
Next, the operation of the optical rotational position detecting device according to the present invention will be described in detail with reference to FIG. In the state (A), the beam 4 provided in the slit 3 is located outside the light receiving surface 8. Accordingly, the light receiving element outputs a predetermined detection signal according to the position W of the center of gravity of the transmitted light area (indicated by hatching) from the slit 3 on the light receiving surface 8. next,
In the state (B), the disk rotates clockwise with respect to the light receiving surface 8, and the beam 4 enters the light receiving surface 8. Light receiving surface 8
The upper part of the transmitted light region is partially blocked and bisected by the beam part 4 as shown by hatching. The center of gravity W of the divided transmitted light area is offset from the normal center of gravity position.
Therefore, as shown in (B), if the correction hole is not provided, an error appears in the detection signal.
In addition, the amount of received light is reduced by the amount that is blocked by the beam 4,
This may cause a detection error. In view of this point, in the present invention, (C)
As shown in FIG. 7, a pair of correction holes 51 and 52 are provided corresponding to the beam portion 4. Since the total area of the pair of correction holes 51 and 52 is equal to the area of the beam portion 4, there is substantially no change in the amount of received light. Further, since the combined center of gravity of the pair of correction holes 51 and 52 coincides with the center of gravity of the beam portion 4, the center of gravity W
No offset occurs.

【0014】図5は、本発明にかかる光学式回転位置検
出装置の第2実施例を示す要部平面図である。理解を容
易にする為、図1ないし図3に示した第1実施例と対応
する部分については対応する参照符号を付してある。本
実施例では一対の円形補正孔51,52に関し、前述し
たS1+S2=S0及びd1・S1=d2・S2の関係
に加え、r1/(R0+d1)=r2/(R0−d2)
の関係が満たされている。なお、r1は一方の円形補正
孔51の半径を表わし、r2は他方の円形補正孔52の
半径を表わし、R0は円盤の回転中心Oから梁部4の重
心W0までの距離を表わしている。図から明らかな様
に、r1/(R0+d1)は、一対の補正孔51,52
の重心W1,W2を通る半径Rに対する、外側補正孔5
1の開口端部に接する接線Tのタンジェントを表わして
いる。同じく、r2/(R0−d2)は内側補正孔52
の開口端部に接する接線Tのタンジェントを表わしてい
る。両タンジェントが等しいので、結局一対の補正孔5
1,52の開口端部は径方向に沿って同一接線T上に位
置する事になる。又、本実施例では梁部4の両側端4
1,42が夫々2本の共通接線Tと一致する様に形成さ
れている。さらに、受光素子7の受光面8はハッチング
で示す様に所定のパタンでマスキングされており、円盤
回転方向に離間した両端縁81,82が、円盤の回転中
心Oからの径方向と略平行になっている。
FIG. 5 is a plan view showing a main part of a second embodiment of the optical rotational position detecting device according to the present invention. To facilitate understanding, parts corresponding to those of the first embodiment shown in FIGS. 1 to 3 are denoted by corresponding reference numerals. In the present embodiment, regarding the pair of circular correction holes 51 and 52, in addition to the above-described relationship of S1 + S2 = S0 and d1 · S1 = d2 / S2, r1 / (R0 + d1) = r2 / (R0−d2).
The relationship is satisfied. Note that r1 represents the radius of one circular correction hole 51, r2 represents the radius of the other circular correction hole 52, and R0 represents the distance from the center of rotation O of the disk to the center of gravity W0 of the beam 4. As is clear from the figure, r1 / (R0 + d1) is a pair of correction holes 51 and 52.
Correction hole 5 for the radius R passing through the centers of gravity W1, W2 of
1 represents the tangent of a tangent line T that is in contact with the opening end of the opening 1. Similarly, r2 / (R0-d2) is the inside correction hole 52.
Represents the tangent of a tangent line T that is in contact with the opening end of the tangent line. Since both tangents are equal, a pair of correction holes 5
The open ends of the first and second 52 are located on the same tangent line T along the radial direction. In this embodiment, both ends 4 of the beam portion 4 are used.
1 and 42 are formed so as to coincide with the two common tangents T, respectively. Further, the light receiving surface 8 of the light receiving element 7 is masked with a predetermined pattern as shown by hatching, and both end edges 81 and 82 separated in the disk rotation direction are substantially parallel to the radial direction from the rotation center O of the disk. Has become.

【0015】図6を参照して、図5に示した第2実施例
の動作を説明する。図5に示した状態から受光面8に対
して円盤が反時計方向に回転すると、梁部4及び対応す
る一対の補正孔51,52が受光面8の一方の端縁81
に進入する。この時、一対の補正孔51,52の開口端
部と梁部4の一方の側端41は円盤径方向に沿って整列
しており、且つ受光面8の端縁81も径方向と平行にな
っている。従って、補正孔51,52及び梁部4は受光
面8に対して同時に進入し、かかる過渡時であっても受
光状態の揺らぎを極力抑制する事ができる。さらに円盤
が反時計方向に回転すると、一対の補正孔51,52と
梁部4は受光面8の他方の端縁82から退出する。この
場合にも、補正孔51,52の開口端部と梁部4の他方
の側端42は径方向に沿って整列しており、受光面8の
端縁82から同時に離れる。
The operation of the second embodiment shown in FIG. 5 will be described with reference to FIG. When the disk rotates counterclockwise with respect to the light receiving surface 8 from the state shown in FIG. 5, the beam 4 and the corresponding pair of correction holes 51 and 52 become one edge 81 of the light receiving surface 8.
To enter. At this time, the opening ends of the pair of correction holes 51 and 52 and one side end 41 of the beam portion 4 are aligned along the radial direction of the disk, and the edge 81 of the light receiving surface 8 is also parallel to the radial direction. Has become. Therefore, the correction holes 51 and 52 and the beam portion 4 enter the light receiving surface 8 at the same time, and the fluctuation of the light receiving state can be suppressed as much as possible even during such a transition. When the disk is further rotated in the counterclockwise direction, the pair of correction holes 51 and 52 and the beam 4 retreat from the other edge 82 of the light receiving surface 8. Also in this case, the opening ends of the correction holes 51 and 52 and the other side end 42 of the beam portion 4 are aligned along the radial direction, and are simultaneously separated from the edge 82 of the light receiving surface 8.

【0016】図7は比較の為の参考例を示しており、図
6に示した第2実施例と対応する部分には対応する参照
符号を付して理解を容易にしている。この参考例では一
対の補正孔51,52が同じ開口面積を有しており且つ
対応する梁部4とともに同一半径R上に整列している。
補正孔51,52の合計開口面積と梁部4の遮閉面積は
等しく設定されている。しかしながら、両補正孔51,
52は同一寸法であるので、端部を結ぶ共通接線は径方
向に一致していない。従って、一対の補正孔51,52
が受光面8の端縁に進入する時、内側の補正孔52の開
口端部の進入時点と、外側補正孔51の開口端部の進入
時点には時差が生じ、過渡的に受光状態の揺らぎが生じ
る。従って、受光面8上における透過光領域の重心が正
規の位置から片寄ってしまい検出誤差が生じる。
FIG. 7 shows a reference example for comparison. Parts corresponding to those of the second embodiment shown in FIG. 6 are given the same reference numerals to facilitate understanding. In this reference example, the pair of correction holes 51 and 52 have the same opening area and are aligned with the corresponding beam portion 4 on the same radius R.
The total opening area of the correction holes 51 and 52 and the shielding area of the beam 4 are set to be equal. However, both correction holes 51,
Since 52 have the same dimensions, the common tangents connecting the ends do not coincide in the radial direction. Therefore, the pair of correction holes 51, 52
When the light enters the edge of the light receiving surface 8, there is a time difference between the time when the opening end of the inner correction hole 52 enters and the time when the opening end of the outer correction hole 51 enters, and the light receiving state fluctuates transiently. Occurs. Therefore, the center of gravity of the transmitted light area on the light receiving surface 8 is shifted from the normal position, and a detection error occurs.

【0017】最後に、図8は本発明にかかる光学式回転
位置検出装置の第3実施例を示す要部平面図である。基
本的には図5に示した第2実施例と同一の構造を有して
おり、対応する部分には対応する参照符号を付して理解
を容易にしている。異なる点は、一対の補正孔51,5
2が台形となっている事である。但し、点線で示す様に
補正孔の上下端部を円弧状にしても良い。本実施例にお
いても、一対の台形補正孔51,52の合計開口面積S
1+S2は梁部4の遮閉面積S0と等しく設定されてお
り、且つd1・S1=d2・S2の関係も満たされてい
る。加えて、m1/(R0+d1)=m2/(R0−d
2)の関係が満たされている。但し、m1は外側台形補
正孔51の重心W1から回転方向端部までの寸法を表わ
し、m2は内側台形補正孔52の重心W2から回転方向
端部までの寸法を表わしている。かかる構成により、補
正孔51,52の開口端部に接する共通の接線Tは径方
向と一致する。従って、図5に示した第2実施例と同様
に、一対の台形補正孔51,52は受光面8に対して同
時に進入退出する事が可能である。
FIG. 8 is a plan view of a main part of a third embodiment of the optical rotary position detecting device according to the present invention. Basically, it has the same structure as that of the second embodiment shown in FIG. 5, and corresponding parts are denoted by corresponding reference numerals to facilitate understanding. The difference is that a pair of correction holes 51 and 5 are provided.
2 is a trapezoid. However, the upper and lower ends of the correction hole may be formed in an arc shape as shown by a dotted line. Also in this embodiment, the total opening area S of the pair of trapezoidal correction holes 51 and 52 is set.
1 + S2 is set to be equal to the shielding area S0 of the beam 4, and the relationship of d1 · S1 = d2 · S2 is also satisfied. In addition, m1 / (R0 + d1) = m2 / (R0−d
The relationship of 2) is satisfied. Here, m1 represents the dimension from the center of gravity W1 of the outer trapezoidal correction hole 51 to the end in the rotation direction, and m2 represents the dimension from the center of gravity W2 of the inner trapezoidal correction hole 52 to the end in the rotation direction. With such a configuration, the common tangent line T that contacts the opening ends of the correction holes 51 and 52 coincides with the radial direction. Accordingly, similarly to the second embodiment shown in FIG. 5, the pair of trapezoidal correction holes 51 and 52 can enter and exit the light receiving surface 8 at the same time.

【0018】[0018]

【発明の効果】以上説明した様に、本発明によれば、金
属薄板等からなる回転円盤に形成された螺旋状のスリッ
トに対して梁部を設ける事により、円盤を機械的に補強
し撓みを抑制できるという効果がある。又、梁部に対応
して補正孔を設ける事により受光素子の検出出力を安定
化できるという効果がある。
As described above, according to the present invention, the disk is mechanically reinforced and bent by providing a beam portion for the spiral slit formed in the rotating disk made of a thin metal plate or the like. This has the effect of suppressing Further, by providing a correction hole corresponding to the beam portion, there is an effect that the detection output of the light receiving element can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる光学式回転位置検出装置の構造
を示す模式的な斜視図である。
FIG. 1 is a schematic perspective view showing the structure of an optical rotational position detecting device according to the present invention.

【図2】本発明にかかる光学式回転位置検出装置に組み
込まれる円盤の形状を示す平面図である。
FIG. 2 is a plan view showing the shape of a disk incorporated in the optical rotation position detecting device according to the present invention.

【図3】本発明の特徴である補正孔の第1実施例を示す
部分平面図である。
FIG. 3 is a partial plan view showing a first embodiment of a correction hole which is a feature of the present invention.

【図4】第1実施例の動作を説明する為の模式図であ
る。
FIG. 4 is a schematic diagram for explaining the operation of the first embodiment.

【図5】本発明の特徴事項である補正孔の第2実施例を
示す部分平面図である。
FIG. 5 is a partial plan view showing a second embodiment of a correction hole which is a feature of the present invention.

【図6】図5に示した実施例の動作説明図である。FIG. 6 is an operation explanatory diagram of the embodiment shown in FIG. 5;

【図7】補正孔の参考例を示す部分平面図である。FIG. 7 is a partial plan view showing a reference example of a correction hole.

【図8】本発明の特徴事項である補正孔の第3実施例を
示す部分平面図である。
FIG. 8 is a partial plan view showing a third embodiment of a correction hole which is a feature of the present invention.

【図9】従来の光学式回転位置検出装置を示す斜視図で
ある。
FIG. 9 is a perspective view showing a conventional optical rotational position detecting device.

【図10】光学式回転位置検出装置の回転角と検出信号
との関係を示すグラフである。
FIG. 10 is a graph showing a relationship between a rotation angle of the optical rotation position detection device and a detection signal.

【符号の説明】[Explanation of symbols]

1 円盤 2 回転軸 3 スリット 4 梁部 5 補正孔 6 光源 7 受光素子 8 受光面 9 透過光 10 差分回路 11 受光位置 DESCRIPTION OF SYMBOLS 1 Disk 2 Rotation axis 3 Slit 4 Beam part 5 Correction hole 6 Light source 7 Light receiving element 8 Light receiving surface 9 Transmitted light 10 Difference circuit 11 Light receiving position

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭47−41861(JP,A) 特開 昭60−259909(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01D 5/26 - 5/38 G01B 11/00 - 11/30 G01P 1/00 - 3/80 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-47-41861 (JP, A) JP-A-60-259909 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01D 5/26-5/38 G01B 11/00-11/30 G01P 1/00-3/80

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転変位する円盤からなりその表面に周
方向に沿って螺旋状のスリットが形成された移動部材
と、該移動部材に入射光を照射する固定光源と、円盤の
径方向に沿って配置された長手形状の受光面を備え回転
変位に伴なって径方向に移動するスリットからの透過光
を受光し回転位置の検出信号を出力する固定受光素子と
からなる光学式回転位置検出装置において、 スリットの幅方向に渡って梁部を設け円盤を補強すると
ともに、該梁部に対応してスリット幅の径方向両側に合
計面積が梁部の面積と同じになる一対の大きさの異なる
補正孔を設けた事を特徴とする光学式回転位置検出装
置。
1. A moving member comprising a disk which is rotationally displaced and having a helical slit formed on the surface thereof along a circumferential direction, a fixed light source for irradiating the moving member with incident light, and a radial direction of the disk. Optical position detecting device comprising a fixed light receiving element for receiving transmitted light from a slit that moves in the radial direction along with the rotational displacement and that outputs a rotational position detection signal, the light receiving surface having a longitudinal light receiving surface arranged in a vertical direction. In the above, a beam portion is provided along the width direction of the slit to reinforce the disc, and a pair of sizes having a total area equal to the beam area on both sides in the radial direction of the slit width corresponding to the beam portion. An optical rotational position detecting device having a correction hole.
【請求項2】 一対の補正孔の面積をS1,S2とし、
各補正孔の重心と梁部の重心との距離を夫々d1,d2
とすると、 d1・S1=d2・S2の関係を満たす事を特徴とする
請求項1記載の光学式回転位置検出装置。
2. The area of a pair of correction holes is defined as S1 and S2,
The distance between the center of gravity of each correction hole and the center of gravity of the beam part is d1, d2, respectively.
The optical rotational position detecting device according to claim 1, wherein the following relationship is satisfied: d1 · S1 = d2 · S2.
【請求項3】 補正孔は円形である事を特徴とする請求
項2記載の光学式回転位置検出装置。
3. The optical rotational position detecting device according to claim 2, wherein the correction hole is circular.
【請求項4】 一対の円形補正孔の半径を各々r1,r
2とし、円盤の回転中心から梁部の重心までの距離をR
0とすると、 r1/(R0+d1)=r2/(R0−d2)の関係を
満たす事を特徴とする請求項3記載の光学式回転位置検
出装置。
4. The radii of the pair of circular correction holes are r1 and r, respectively.
And the distance from the center of rotation of the disk to the center of gravity of the beam is R
4. The optical rotational position detecting device according to claim 3, wherein when 0 is satisfied, a relationship of r1 / (R0 + d1) = r2 / (R0-d2) is satisfied.
【請求項5】 補正孔は略台形である事を特徴とする請
求項2記載の光学式回転位置検出装置。
5. The optical rotational position detecting device according to claim 2, wherein the correction hole has a substantially trapezoidal shape.
【請求項6】 一対の台形補正孔の各重心からその回転
方向端部までの寸法を夫々m1,m2とし、円盤の回転
中心から梁部の重心までの距離をR0とすると、 m1/(R0+d1)=m2/(R0−d2)の関係を
満たす事を特徴とする請求項5記載の光学式回転位置検
出装置。
6. The distance from the center of gravity of each of the pair of trapezoidal correction holes to its end in the direction of rotation is m1, m2, and the distance from the center of rotation of the disk to the center of gravity of the beam is R0: m1 / (R0 + d1) 6. The optical rotational position detecting device according to claim 5, wherein the following relationship is satisfied: m2 / (R0-d2).
【請求項7】 回転変位する円盤からなりその表面に周
方向に沿って螺旋状のスリットが形成された移動部材
と、該移動部材に入射光を照射する固定光源と、円盤の
径方向に沿って配置された長手形状の受光面を備え回転
変位に伴なって径方向に移動するスリットからの透過光
を受光し回転位置の検出信号を出力する固定受光素子と
からなる光学式回転位置検出装置において、 スリットの幅方向に渡って梁部を設け円盤を補強すると
ともに、該梁部に対応してスリット幅の径方向両側に合
計面積が梁部の面積と同じになる一対の補正孔を設け、 該一対の補正孔の端部に接する共通の接線と、梁部の側
端線を一致させて、受光面に一対の補正孔と梁部が同時
に進入する様にした事を特徴とする光学式回転位置検出
装置。
7. A moving member comprising a disk which is rotationally displaced and having a helical slit formed on the surface thereof along a circumferential direction, a fixed light source for irradiating the moving member with incident light, and a radial direction of the disk. Optical position detecting device comprising a fixed light receiving element for receiving transmitted light from a slit that moves in the radial direction along with the rotational displacement and that outputs a rotational position detection signal, the light receiving surface having a longitudinal light receiving surface arranged in a vertical direction. In the above, a beam portion is provided along the width direction of the slit to reinforce the disk, and a pair of correction holes having a total area equal to the area of the beam portion are provided on both sides in the radial direction of the slit width corresponding to the beam portion. An optical system characterized in that a common tangent to the ends of the pair of correction holes and a side end line of the beam coincide with each other so that the pair of correction holes and the beam enter the light receiving surface simultaneously. Type rotational position detector.
【請求項8】 前記受光素子は、円盤回転方向における
端縁が円盤の回転中心からの径方向と略平行である受光
面を有する事を特徴とする請求項7記載の光学式回転位
置検出装置。
8. The optical rotation position detecting device according to claim 7, wherein the light receiving element has a light receiving surface whose edge in the disk rotation direction is substantially parallel to the radial direction from the rotation center of the disk. .
JP5063082A 1993-02-26 1993-02-26 Optical rotation position detector Expired - Fee Related JP2972480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5063082A JP2972480B2 (en) 1993-02-26 1993-02-26 Optical rotation position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5063082A JP2972480B2 (en) 1993-02-26 1993-02-26 Optical rotation position detector

Publications (2)

Publication Number Publication Date
JPH06249677A JPH06249677A (en) 1994-09-09
JP2972480B2 true JP2972480B2 (en) 1999-11-08

Family

ID=13219065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5063082A Expired - Fee Related JP2972480B2 (en) 1993-02-26 1993-02-26 Optical rotation position detector

Country Status (1)

Country Link
JP (1) JP2972480B2 (en)

Also Published As

Publication number Publication date
JPH06249677A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
EP0589477B1 (en) Rotation information detection apparatus
US7538313B2 (en) Optical encoder having a no track portion of an optical scale being placed at a position symmetrical to a light non-transparent portion within an irradiation region of incident light
KR20030094301A (en) An improved displacement and torque sensor
JPS6134418A (en) Optical transducer
EP1016854B1 (en) Code plate of optical rotary encoder
JP2972480B2 (en) Optical rotation position detector
US3936629A (en) Horizon sensor for a satellite in geostationary orbit
JP3268664B2 (en) Optical rotation position detector
US5053618A (en) Index track support structure
JPH06341858A (en) Optical displacement detection apparatus
US7011248B2 (en) Encoder arrangement
JP2570514Y2 (en) Optical rotational displacement detector
JP2894017B2 (en) Optical object detector
JP3238457B2 (en) Rotary encoder
JPH0462004B2 (en)
US6549023B2 (en) Apparatus for measuring the focus of a light exposure system used for fabricating a semiconductor device
JP4380526B2 (en) Photoelectric encoder
JP2906451B2 (en) Alignment mark structure and method of manufacturing semiconductor device
US20050172256A1 (en) Mask set for measuring an overlapping error and method of measuring an overlapping error using the same
JPH11173873A (en) Absolute type rotary encoder
JPH067012U (en) Optical rotary displacement detector
JP2822231B2 (en) Circular substrate positioning device
JPS6144319A (en) Optical angle sensor
JPH10141998A (en) Optical sensor
JPS62204123A (en) Reflection type rotation detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees