JP2971098B2 - Coupling medium for ultrasonic testing - Google Patents

Coupling medium for ultrasonic testing

Info

Publication number
JP2971098B2
JP2971098B2 JP2134485A JP13448590A JP2971098B2 JP 2971098 B2 JP2971098 B2 JP 2971098B2 JP 2134485 A JP2134485 A JP 2134485A JP 13448590 A JP13448590 A JP 13448590A JP 2971098 B2 JP2971098 B2 JP 2971098B2
Authority
JP
Japan
Prior art keywords
couplant
temperature
glass powder
test
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2134485A
Other languages
Japanese (ja)
Other versions
JPH0429056A (en
Inventor
満夫 田中
美道 熱田
憲男 北村
襄二 太田
敬弘 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
ISHIKAWAJIMA KENSA KEISOKU KK
Original Assignee
IHI Corp
ISHIKAWAJIMA KENSA KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, ISHIKAWAJIMA KENSA KEISOKU KK filed Critical IHI Corp
Priority to JP2134485A priority Critical patent/JP2971098B2/en
Publication of JPH0429056A publication Critical patent/JPH0429056A/en
Application granted granted Critical
Publication of JP2971098B2 publication Critical patent/JP2971098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波探傷試験を行なう際に、探触子から
発信された超音波を効率良く試験体中に伝播させるた
め、試験体と探触子の間に塗布して用いる超音波探傷試
験用接触媒質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently transmitting ultrasonic waves transmitted from a probe into a test body when performing an ultrasonic flaw detection test. The present invention relates to a couplant for an ultrasonic flaw detection test which is applied between probes.

[従来の技術] 超音波探傷試験を行なう際に、試験体と探触子との間
に塗布する超音波探傷試験用接触媒質として従来は、グ
リセリン、油、水等が主に用いられていた。
[Prior Art] Conventionally, glycerin, oil, water, and the like have been mainly used as a couplant for an ultrasonic flaw detection test applied between a test piece and a probe when performing an ultrasonic flaw detection test. .

[発明が解決しようとする課題] これらの接触媒質を常温で使用する場合には支障は生
じないが、これらの接触媒質を高温で用いようとした場
合には、有機物は高温では不安定であり、分解によって
変質が生じたり、更にガスが発生したり、沸騰が生じ超
音波の伝達は著しく阻害される結果になる。一般に超音
波作用による核沸騰(キャビテーション)が起こるの
で、沸点以下の温度でも超音波伝達が著しく阻害される
結果になる。
[Problems to be Solved by the Invention] There is no problem when these couplants are used at room temperature, but when these couplants are used at high temperatures, organic substances are unstable at high temperatures. Decomposition may cause deterioration, gas may be generated, and boiling may occur, and transmission of ultrasonic waves may be significantly impaired. Generally, nucleate boiling (cavitation) occurs due to the action of ultrasonic waves, so that even at a temperature lower than the boiling point, ultrasonic transmission is significantly inhibited.

一方、高温で使用するための接触媒質として種々のも
のが発表されているが、これらの多くは高温で発煙した
り、安定性が著しく悪くなり、伝達損失が時間と共に急
激に悪くなった。結果として、300℃を超える温度で長
時間安定して使用できる接触媒質を見い出すことができ
なかった。
On the other hand, various couplants for use at high temperatures have been announced, but many of them have smoked at high temperatures, have significantly deteriorated stability, and transmission loss has rapidly deteriorated with time. As a result, it was not possible to find a couplant which could be used stably at a temperature exceeding 300 ° C. for a long time.

また、液体はせん断力を持たないために、横波(せん
断波)を伝播させる接触媒質には極めて粘度の高い蜂蜜
等を用いて探傷を行っている。しかしながら、極めて粘
度の高いものを用いるために、探触子を移動して探傷す
る(走査する)必要のある場合には、探触子のスムーズ
な移動が困難になる問題が起こる他、探傷後の接触媒質
の除去が簡単でない等の問題があった。
Further, since the liquid does not have a shearing force, flaw detection is performed using honey or the like having extremely high viscosity as a couplant which propagates a shear wave (shear wave). However, when it is necessary to move the probe and perform flaw detection (scanning) in order to use an extremely viscous material, there is a problem that it becomes difficult to move the probe smoothly, and after the flaw detection, There was a problem that removal of the couplant was not easy.

本発明は、高温でも安定して長時間使用でき、更に横
波をも容易に伝播させることができ、かつ探触子の走査
がスムーズに行う事ができる超音波探傷試験用接触媒質
を提供することを目的とするものである。
An object of the present invention is to provide a couplant for an ultrasonic flaw detection test that can be used stably for a long time even at a high temperature, can easily propagate a transverse wave, and can smoothly scan a probe. It is intended for.

[課題を解決するための手段] 本発明の超音波探傷試験用接触媒質は、P2O5は20〜69
重量%、M2O(Mはアルカリ金属)は20〜38重量%の範
囲で必須として含む組成物からなる接触媒質であって、
該接触媒質が常温〜650℃の温度範囲で溶融して粘性が
変化し、半液状化または液状化する性質を有することを
特徴とするものである。
[Means for Solving the Problems] The couplant for ultrasonic testing according to the present invention has a P 2 O 5 of 20 to 69.
Wt.%, M 2 O (M is an alkali metal) is a couplant consisting of a composition containing 20 to 38 wt.
The couplant is characterized in that it melts in a temperature range from room temperature to 650 ° C., changes in viscosity, and has a property of semi-liquefaction or liquefaction.

又、上記組成物に、B2O3が60重量%以下、SiO2が40重
量%以下、Al2O3が40重量%以下を含むことを特徴とす
るものである。
Further, the composition is characterized in that B 2 O 3 contains 60% by weight or less, SiO 2 contains 40% by weight or less, and Al 2 O 3 contains 40% by weight or less.

また上記の接触媒質を水または有機溶媒に溶解もしく
は懸濁させた水溶性もしくは半水溶性のものにしたり、
水または有機溶媒に溶解させて放置するか、あるいは加
熱溶解させて放置することにより固化させたものにする
ことができる。
Further, the couplant may be dissolved or suspended in water or an organic solvent in a water-soluble or semi-water-soluble one,
It can be solidified by dissolving in water or an organic solvent and leaving, or by heating and dissolving and leaving.

[作用] 本発明の超音波探傷試験用接触媒質を試験体と探触子
の間に塗布することにより、300℃を超える高温であっ
ても、安定した超音波探傷試験が可能である。
[Operation] By applying the couplant for ultrasonic testing of the present invention between the test piece and the probe, a stable ultrasonic testing can be performed even at a high temperature exceeding 300 ° C.

[実 施 例] 以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

超音波探傷試験用接触媒質として、次の表1に示すガ
ラス粉末を作成して試験した。
Glass powders shown in Table 1 below were prepared and tested as couplants for ultrasonic testing.

表1には試料記号と組成を示し第3図は各試料の温度
変化に対する粘性の変化を示した。
Table 1 shows sample symbols and compositions, and FIG. 3 shows a change in viscosity of each sample with respect to a change in temperature.

本発明では、無機質のガラスを用いており、ガラスは
温度の上昇により溶融して徐々に粘性が変化して行く。
第3図には、本発明の成分範囲にある種々のガラスの高
温での粘性の変化の例を示している。また、ガラスは、
高温で長時間安定であるために、長時間の使用に対して
も安定して超音波を試験体に伝播させるための接触媒質
として使用する事が可能である。更に超音波の伝達に対
して最適の粘性を得る事も、例えば第3図から、使用温
度に対して適正な組成のものを選ぶ事によって可能にな
ることも明らかである。
In the present invention, an inorganic glass is used, and the glass is melted by a rise in temperature and the viscosity gradually changes.
FIG. 3 shows an example of the change in viscosity at high temperature of various glasses within the composition range of the present invention. In addition, glass
Since it is stable at high temperatures for a long time, it can be used as a couplant for propagating ultrasonic waves to a test body stably even when used for a long time. Further, it is clear from FIG. 3, for example, that it is possible to obtain an optimum viscosity for transmission of ultrasonic waves by selecting a composition having an appropriate composition for the operating temperature.

すなわち、超音波探傷試験を行う箇所の温度に併せ
て、その温度で溶融し、適性な粘性の得られる範囲の組
成のガラス粉末を例えば第3図より選択し、ガラス粉末
を被検査体の表面に塗布し、溶融して後に高温で使用で
きる探触子を用いて探傷することが可能となる。また、
組成によっては、水に結晶化することなく溶融すること
ができる。例えば後に記載する表2の記号Fのものを例
にとると、第5図に示すように水が25%存在する溶液か
ら、温度が上昇するにしたがって結晶化する事なくガラ
ス状態を保ち、第4図に示すように粘性変化が生じて、
これにともない水分も減少し(第5図参照)、安定でか
つ探触子の操作がスムーズに行う事が出来る。これより
常温から高温迄の広い温度範囲で接触媒質としての使用
が可能になる。
That is, in accordance with the temperature of the place where the ultrasonic inspection test is performed, the glass powder is melted at that temperature, and a glass powder having a composition within a range where an appropriate viscosity is obtained is selected from, for example, FIG. , And can be flawed using a probe that can be used at a high temperature after being melted. Also,
Depending on the composition, it can be melted without crystallization in water. For example, taking the example of the symbol F in Table 2 described below as an example, as shown in FIG. 5, from a solution containing 25% of water, a glassy state is maintained without crystallization as the temperature rises. As shown in FIG. 4, a change in viscosity occurs.
As a result, the water content is also reduced (see FIG. 5), and the operation of the probe can be performed stably and smoothly. Thus, it can be used as a couplant in a wide temperature range from normal temperature to high temperature.

それぞれのガラス粉末を接触媒質として用いるための
試験には、第1図に示すように超音波を送受信するため
の圧電素子1,2をろう付け3で取り付けて耐熱性を著し
く向上させた分割型の探触子4,5を用いて、試験体6の
板厚を測定した。測定には試験体6に板厚10mmの鋼板を
用い、試験体6と探触子4,5との間に表1の接触媒質7
を塗布し、ヒーター8によって試験体6を各温度に加熱
して、それぞれの温度で板厚を接触媒質を用いて計測し
て行った。この時探傷器のブラウン管上には第2図に示
す波形が得られる。縦軸は得られるエコーの音圧を示
し、横軸は圧電素子1で発信された超音波が再び圧電素
子2で受信されるまでの時間を測定している。
In the test for using each glass powder as a couplant, as shown in FIG. 1, a piezoelectric element 1 and 2 for transmitting and receiving ultrasonic waves were attached by brazing 3 and a split type in which heat resistance was remarkably improved. The thickness of the test piece 6 was measured using the probes 4 and 5 described above. For the measurement, a steel plate having a thickness of 10 mm was used for the test piece 6, and the couplant 7 shown in Table 1 was placed between the test piece 6 and the probes 4 and 5.
Was applied, the test piece 6 was heated to each temperature by the heater 8, and the plate thickness was measured at each temperature using a couplant. At this time, the waveform shown in FIG. 2 is obtained on the cathode ray tube of the flaw detector. The vertical axis indicates the sound pressure of the obtained echo, and the horizontal axis measures the time until the ultrasonic wave transmitted by the piezoelectric element 1 is received by the piezoelectric element 2 again.

第2図のSで示したエコーは探触子4,5と試験体6の
界面(第1図I−I′)でのエコーを示しており、B1
試験体6の裏面(第1図のII−II′)でのエコーを示し
ている。また、B2は裏面(第1図のII−II′)で反射し
た超音波が試験体6の表面(第1図のI−I′)で更に
反射し、再度裏面で反射することで得られたエコーであ
る。従って、S波とB1波またはB1波とB2波が得られた横
軸の時間の差;t1及びt2から、予め求められた各測定時
の温度での音速を用いることで板厚の測定ができる。
The echo indicated by S in FIG. 2 shows an echo at the interface between the probes 4 and 5 and the test piece 6 (II ′ in FIG. 1), and B 1 denotes the back surface of the test piece 6 (first The echo at II-II ') in the figure is shown. Further, B 2 is obtained by the rear surface (II-II of Figure 1 ') ultrasonic waves reflected by the surface (II of Figure 1 of the specimen 6' further reflected by), reflected by the back surface again This is the echo that was received. Therefore, the time difference on the horizontal axis at which the S wave and the B 1 wave or the B 1 wave and the B 2 wave were obtained; from t 1 and t 2 , the sound velocity at the temperature at each measurement obtained in advance was obtained. The thickness of the plate can be measured.

試験結果によれば、作成したいずれのガラス粉末とも
接触媒質として充分な性能を持っていることが知られ
た。すなわち、ガラス粉末Aは570℃で、ガラス粉末
B、Cは650℃で、またガラス粉末Dは350℃で適度の粘
性を有し、良好な板厚測定が可能であった。なお、ガラ
ス粉末Eは本試験においても500℃までの試験を行った
が、その温度範囲に於いてはいずれも良好な測定結果で
あった。
According to the test results, it was known that any of the produced glass powders had sufficient performance as a couplant. That is, the glass powder A had an appropriate viscosity at 570 ° C., the glass powders B and C had an appropriate viscosity at 650 ° C., and the glass powder D had an appropriate viscosity at 350 ° C., and good thickness measurement was possible. In addition, the glass powder E was also tested up to 500 ° C. in this test, and in the temperature range, good results were obtained.

すなわち、本接触媒質を用いた測定によれば、構造物
の稼働中に発生する腐食や磨耗による減肉を、稼働中の
高温下においても安定に測定することが可能である。ま
た構造物の温度に応じて、測定時に適度の粘性を有する
組成のガラス粉末を使い分けるならば、更に安定して精
度良い測定が可能であることも理解できよう。
That is, according to the measurement using the present couplant, it is possible to stably measure the thinning due to corrosion and abrasion occurring during operation of the structure even at a high temperature during operation. It can also be understood that if glass powder having a composition having an appropriate viscosity is properly used at the time of measurement depending on the temperature of the structure, more stable and accurate measurement is possible.

なお、用いた高温探触子は、ろう付け部の温度が600
℃付近まで達すると、耐熱性が損なわれるが、本試験で
は、試験体と圧電素子の間に鋼性の遅延材を取り付けた
ものであり、650℃での測定であっても、熱がろう付け
部に伝達され600℃近傍に達する以前に測定を完了して
おり、試験体の温度が650℃の場合であっても測定が可
能であった。
The high-temperature probe used had a brazing temperature of 600
When the temperature reaches around ℃, the heat resistance is impaired.However, in this test, a steel delay material was attached between the test piece and the piezoelectric element. The measurement was completed before it was transmitted to the attachment part and reached around 600 ° C, and it was possible to measure even when the temperature of the specimen was 650 ° C.

なお、ガラス粉末を用いた場合には、常温近傍におい
ては固体であり、超音波は探触子から試験体へ伝達でき
ない。高温になりガラス粉末の粘性が生じ、液状になっ
て始めて超音波は試験体中へ伝達される。
When glass powder is used, it is solid near normal temperature, and ultrasonic waves cannot be transmitted from the probe to the specimen. Ultrasonic waves are transmitted into the specimen only when the temperature becomes high and the glass powder becomes viscous and becomes liquid.

一方、常温から高温まで連続して超音波を試験体中に
伝達させるために、ガラス粉末を水または有機溶媒等に
懸濁させて使用することを検討した。試験は表1に示し
た記号Eのもの及び表2に示したガラス粉末Fを用いて
試験した。
On the other hand, in order to continuously transmit ultrasonic waves from a normal temperature to a high temperature into a test piece, the use of glass powder suspended in water or an organic solvent was studied. The test was performed using the symbol E shown in Table 1 and the glass powder F shown in Table 2.

試験の方法は、ガラス粉末をそのまま用いた時と同様
にして、板厚を測定することにより行った。なお、本試
験では、ガラス粉末を常温で水に溶解して行った。添加
した水の比率は約1/4とした。試験の結果を第6図に示
している。縦軸は第1底面エコー高さ(第2図のB1エコ
ー高さ)の相対感度等で表わし、横軸は各試験温度を示
している。なお第1底面エコー高さは接触媒質部での超
音波の伝達の容易さに依存すると考えて良い。常温から
高温までの全ての範囲で底面エコー高さが明瞭に判別で
き、板厚の測定が可能であった。
The test was performed by measuring the plate thickness in the same manner as when the glass powder was used as it was. In this test, glass powder was dissolved in water at room temperature. The ratio of the added water was about 1/4. The results of the test are shown in FIG. The vertical axis represents a relative sensitivity or the like of the first bottom echo height (B 1 echo height of the second panel), the horizontal axis represents the test temperature. The first bottom echo height may be considered to depend on the ease of transmission of ultrasonic waves in the couplant. The bottom echo height was clearly discernable in all ranges from room temperature to high temperature, and the plate thickness could be measured.

第6図中には点線で、現在市販されている各種の高温
用接触媒質を用いて同様の測定をした時の測定結果も示
している。用いたものの中には、使用温度範囲が600℃
までとの記載のあるものもあったが、開発した接触媒質
と同様の試験をした結果によれば、市販の接触媒質で使
用可能な温度はせいぜい300℃前後と考えられた。ま
た、開発したガラス粉末を用いたものは市販のものに比
べて優れていることがわかり、特に300℃を超えた温度
領域で両者の相違には明瞭なものがあることがわかる。
In FIG. 6, the dotted line also shows the measurement results when the same measurement was performed using various commercially available high-temperature couplants. Among the used ones, the operating temperature range is 600 ℃
According to the results of the same tests as the developed couplant, the usable temperature of the commercially available couplant was considered to be at most around 300 ° C. In addition, it can be seen that the one using the developed glass powder is superior to the commercially available one, and that there is a clear difference between the two especially in the temperature region exceeding 300 ° C.

なお、ここでの試験はガラス粉末を水に溶解して用い
た場合を示したが、半水溶性のガラス粉末を水に懸濁さ
せ、粉末表面が溶融して粒子間の連結が生じた状態でも
超音波の伝達が可能であり、高温用接触媒質に用いるこ
とが可能である。
In this test, glass powder was dissolved in water and used.However, semi-water-soluble glass powder was suspended in water, and the surface of the powder was melted and the connection between particles occurred. However, it can transmit ultrasonic waves and can be used as a high-temperature couplant.

なお、ガラス粉末を水に懸濁してペースト状にした懸
濁液をチューブ等に入れ、長期間保管しておくと、徐々
に粘性が増加し、次第に固形化していくことがあり、結
果としてチューブから接触媒質を取り出すことが困難に
なって作業性を著しく阻害することがある。このため予
め固形化させ、形状を使い易いように薄片に整形してお
けば、保存が容易となる。すなわち、高温の試験体上に
予め整形された薄片を置き加熱されると液状化が起こ
り、接触媒質として容易に用いることが可能となる。こ
の結果、保存に優れ、更に作業性に優れた接触媒質を供
給できる。
In addition, if the suspension obtained by suspending glass powder in water is put into a tube or the like and stored for a long period of time, the viscosity gradually increases and may gradually solidify. In some cases, it is difficult to remove the couplant from the material, which may significantly impair workability. For this reason, storage is facilitated by solidifying in advance and shaping the shape into thin pieces so that the shape is easy to use. That is, when a previously shaped flake is placed on a high-temperature specimen and heated, liquefaction occurs, and the flake can be easily used as a couplant. As a result, a couplant which is excellent in storage and further excellent in workability can be supplied.

更にガラス粉末を含む懸濁液は、横波の伝播を可能と
し、横波用の接触媒質としても使用可能である。
Furthermore, suspensions containing glass powder allow the propagation of shear waves and can also be used as couplants for shear waves.

なお、本ガラス粉末は、水を含んだ状態から高温にな
り水を失うに従って、その温度に従って適当な粘性を持
つために、接触媒質として用いた場合、極めて探触子の
スムースな移動(走査)を可能にすることは明らかであ
る。特に従来の横波用接触媒質は、粘性が極めて高く、
探触子の走査が困難であったが、本発明を用いれば走査
が極めて容易になった。
The glass powder has a suitable viscosity according to the temperature as the temperature becomes high from the state containing water and loses water. Therefore, when the glass powder is used as a couplant, the probe can move extremely smoothly (scan). It is clear that this is possible. In particular, the conventional shear wave couplant has a very high viscosity,
Although the scanning of the probe was difficult, the scanning was extremely easy with the present invention.

また、水のみに限らず、適切な有機溶媒等に懸濁して
用いることも可能である。
In addition, not only water but also a suspension in an appropriate organic solvent or the like can be used.

更に、ガラス粉末を水や有機溶媒に懸濁して用いなく
ても、組成が特許請求範囲の1に記載されたものであれ
ば、高温用接触媒質として用いることができる。第6図
中の一点鎖線で示した結果は、表2のFのものと同一の
組成ではあるが、各成分の粉末を均一に混合させた後に
水に懸濁させたものを用いた結果であり、粉末はガラス
化したものではない。ガラス化した物を水に溶解したも
のに比べれば、150℃を超えた温度領域での測定感度は
悪くなり、300℃前後で極小を迎えてはいるものの、300
℃以上でも接触媒質として充分使用可能であり、市販の
高温用接触媒質に比べれば、なお優れた測定能力がある
ことがわかる。すなわち、本特許請求第1項に示された
組成範囲が特許の請求であって、必ずしもガラス化させ
て用いることを前提としていない。但し予めガラス化し
たものを用いた方が安定したより優れた特性を得ること
ができる。
Further, the glass powder can be used as a high-temperature couplant as long as the composition is as described in claim 1 without using the glass powder suspended in water or an organic solvent. The result indicated by the dashed line in FIG. 6 is the result of using the same composition as that of F in Table 2, but using the powder of each component uniformly mixed and then suspended in water. Yes, the powder is not vitrified. Compared to the solution of vitrified material in water, the measurement sensitivity in the temperature range over 150 ° C was worse, and although it reached a minimum at around 300 ° C,
It can be seen that it can be sufficiently used as a couplant even at a temperature of not less than 0 ° C., and has an excellent measuring ability as compared with a commercially available couplant for high temperature. That is, the composition range described in claim 1 of the present invention is a claim, and does not necessarily assume that the composition is vitrified. However, the use of a vitrified material in advance can provide more stable and superior characteristics.

なお、ガラス粉末を水に溶解し、ペースト状にしたも
のを放置しておくと、次第に粘性を失い固まっていく。
特に夏場の暖かい時に溶解させ、冬に向って寒い時期に
なるとこの傾向が顕著になった。溶解させたものを直ち
に使用する場合は優れた作業性を持つが、例えばチュー
ブに詰めたものを長期間保管した場合には、チューブ内
で固まってしまう不具合が生じ、作業性を著しく阻害す
る。
If the glass powder is dissolved in water and the paste is left as it is, the glass powder gradually loses its viscosity and solidifies.
This tendency was remarkable especially when it was melted in the warm summer months and cold in the winter months. It has excellent workability when the melted material is used immediately, but when it is stored in a tube for a long period of time, for example, a problem that it hardens in the tube occurs, which significantly impairs the workability.

作業性と接触媒質の保管を容易にするために、予め固
形化させたものを、使用し易いように薄片に加工して置
き、これを高温の構造物に取り付けて測定を行うことが
考えられる。第6図中の二重線で示した結果は、表2の
Fの組成のガラス粉末を約50℃の湯に溶解し、その後常
温で放置して薄片にしたものを用いて試験を行った結果
を示している。
In order to facilitate workability and storage of the couplant, it is conceivable that the solidified in advance is processed into a thin slice for easy use, and this is attached to a high-temperature structure for measurement. . The results indicated by the double line in FIG. 6 were obtained by dissolving a glass powder having the composition of F in Table 2 in hot water at about 50 ° C., and then leaving it at room temperature to make a test. The results are shown.

約200℃以下での感度では、ガラス粉末を水に懸濁さ
せたものと比べると多少劣ってはいるものの、板厚測定
は可能であり、更に約300℃以上の温度では、ガラス粉
末を水に溶解したものを用いたものと遜色ない結果とな
っており、保存に優れた、また作業性に優れた接触媒質
となる。
At a sensitivity of about 200 ° C or less, the thickness can be measured, although the glass powder is slightly inferior to that of a glass powder suspended in water. Thus, the results are comparable to those obtained by using a solution dissolved in liposome, and provide a couplant excellent in storage and workability.

なお、ガラス粉末を溶解したものを用いると、高温で
若干の泡が発生する。但し、この場合であっても探触子
を上から少し加圧するのみで何ら問題なく測定できるこ
とは第6図に測定結果を示した通りであるが、発生する
泡の量を軽減するために、減圧中で加熱して予め気泡を
除去して置くことも当然考えられ得ることである。
If a glass powder is used, some bubbles are generated at a high temperature. However, even in this case, the measurement can be performed without any problem only by slightly applying pressure to the probe from above, as shown in the measurement results in FIG. 6, but in order to reduce the amount of generated bubbles, Naturally, it is also conceivable to remove bubbles by heating in a reduced pressure beforehand.

また、ガラス粉末を例えば500℃を超える高温で用い
た場合、成分によっては僅かに腐食性を示すことがある
が、この腐食性を低減させる目的で、有機成分を添加さ
せ、安定化させることも当然予測しうることであり、本
特許請求範囲に含まれる。
Further, when the glass powder is used at a high temperature exceeding, for example, 500 ° C., some components may show slight corrosiveness, but for the purpose of reducing this corrosiveness, an organic component may be added and stabilized. Of course, this is predictable and is within the scope of the claims.

また、原理的に全く同じ構造持つAE用センサーを構造
物に取り付けて構造物で発生する超音波を受信するアコ
ースティック・エミッションに本発明の接触媒質を用い
る場合も本特許請求範囲に含まれる。
Also, the scope of the present invention includes a case where the couplant of the present invention is used for acoustic emission in which an AE sensor having the exact same structure is attached to a structure and ultrasonic waves generated by the structure are received.

次に横波を伝播させるための接触媒質としての試験を
行った。せん断波である横波は、せん断力を持たない液
体中を伝播しない。このため、これら液体を接触媒質に
用いても超音波の伝達はできない。このため、蜂蜜のよ
うな極めて粘りのある液状のものを接触媒質として使用
させている。しかしながらこれらを用いると、探触子の
走査が極めて悪くなり、作業性が極めて悪くなる。
Next, a test was performed as a couplant for propagating a transverse wave. A shear wave, which is a shear wave, does not propagate in a liquid having no shear force. For this reason, even if these liquids are used as a couplant, ultrasonic waves cannot be transmitted. For this reason, an extremely viscous liquid such as honey is used as a couplant. However, when these are used, the scanning of the probe becomes extremely poor, and the workability becomes extremely poor.

非晶質であるガラスの性質を用いて、横波用接触媒質
として用いることを検討した。試験は表1のEのガラス
粉末を用いて行い、横波用の垂直探触子を用いて板厚10
mmの鋼板の第1底面エコー高さを比較して、接触媒質の
特性を検討した。結果を第7図に示す。横軸はガラス粉
末を水に溶解した時のガラス粉末の濃度を示している。
また縦軸の相対感度は、市販の横波用接触媒質を用いた
時の感度と比較して示している。ガラス粉末の濃度が高
くなると感度は高くなり、市販のものよりも優れた超音
波の伝達性を示すことがわかる。また、開発した接触媒
質は、探触子の走査性が極めて優れており、作業性にも
優れた高性能の接触媒質であることが知られた。
Using the properties of amorphous glass, we investigated its use as a couplant for shear waves. The test was carried out using the glass powder of E in Table 1 and a plate thickness of 10 using a vertical probe for shear wave.
The characteristics of the couplant were studied by comparing the echo height of the first bottom surface of a steel plate of mm. The results are shown in FIG. The horizontal axis shows the concentration of the glass powder when the glass powder is dissolved in water.
The relative sensitivity on the vertical axis is shown in comparison with the sensitivity when a commercially available shear wave couplant is used. It can be seen that the higher the concentration of the glass powder, the higher the sensitivity, and that it exhibits superior ultrasonic transmission properties than commercially available ones. In addition, the developed couplant was known to be a very high performance couplant having excellent probe scanability and excellent workability.

なお、ここでは板厚の測定に関する試験を行ったが、
発生した接触媒質は材料内部の欠陥検出の目的で、垂直
探触子あるいは斜角探触子により高温で検査するのに使
用しても効果が得られることは明らかである。
In addition, although the test regarding the measurement of the plate thickness was performed here,
It is clear that the generated couplant can also be used effectively for detecting defects in the material at a high temperature by using a vertical probe or an oblique probe.

[発明の効果] 従来は300℃を超える試験体の肉厚や欠陥検出を行う
場合に、接触媒質が発煙して気化したり、固形化するこ
とで測定ができなかったが、本発明の接触媒質を用いれ
ば300℃を超える高温であっても安定して計測が可能と
なる。
[Effects of the Invention] Conventionally, when detecting the thickness or defect of a specimen exceeding 300 ° C., the measurement was not possible due to fumes and vaporization or solidification of the couplant. If a medium is used, stable measurement can be performed even at a high temperature exceeding 300 ° C.

更に、横波を伝播させる従来の接触媒質は探触子の走
査を行う上での作業性が悪かったが、本発明は作業性の
優れた横波用の接触媒質として使用することができる。
Further, the conventional couplant for propagating the shear wave has poor workability in scanning the probe, but the present invention can be used as a couplant for the shear wave having excellent workability.

そして粉末の接触媒質の組成を測定目的にあった組成
で調整しておくことによって、被検査体に粉末を塗布
し、各測定温度で適度の粘性が得られることで安定な測
定を行うことができる。また、常温から連続した測定を
可能にするために、本発明の粉末を水又は有機溶媒等に
懸濁させて用いることで、常温から高温まで安定した超
音波検査を可能にした。更に接触媒質の保存性に優れた
固形化させて、予め薄片の形状に整形しておくことで作
業性に優れた接触媒質として使用することができる。
By adjusting the composition of the couplant of the powder to a composition suitable for the purpose of measurement, it is possible to apply the powder to the test object and obtain a suitable viscosity at each measurement temperature to perform stable measurement. it can. Further, in order to enable continuous measurement from room temperature, the powder of the present invention is suspended in water or an organic solvent and used, thereby enabling stable ultrasonic inspection from room temperature to high temperature. Furthermore, by solidifying the couplant with excellent preservability and shaping it into a flake shape in advance, it can be used as a couplant with excellent workability.

従って、従来は困難であった300℃を超える温度での
接触媒質を用いて探触子を走査して行う超音波検査を可
能にできた。
Therefore, it was possible to perform ultrasonic inspection performed by scanning the probe using a couplant at a temperature exceeding 300 ° C., which was difficult in the past.

また、従来横波を伝播させる接触媒質は探触子の操作
が困難であったが、非晶質のガラスの性質を利用するこ
とで走査性の優れた接触媒質とすることができる。
Conventionally, it has been difficult to operate a probe for a couplant that propagates a transverse wave, but a couplant having excellent scanning properties can be obtained by utilizing the properties of amorphous glass.

【図面の簡単な説明】[Brief description of the drawings]

第1図は超音波探傷試験を行っている状態を示す側面
図、第2図は試験時のブラウン管に表われる波形図、第
3図、第4図は温度と接触媒質の粘性との関係を示すグ
ラフ、第5図は温度と接触媒質の保持水分量との関係を
示すグラフ、第6図は試験温度と相対エコー高さとの関
係を示すグラフ、第7図はガラス粉末の濃度と相対エコ
ー高さとの関係を示すグラフである。 図中、1,2は圧電素子、4,5は探触子、6は試験体、7は
接触媒質、8はヒーターを示す。
FIG. 1 is a side view showing a state in which an ultrasonic flaw detection test is being performed, FIG. 2 is a waveform diagram appearing on a CRT at the time of the test, and FIGS. FIG. 5 is a graph showing the relationship between the temperature and the water content of the couplant, FIG. 6 is a graph showing the relationship between the test temperature and the relative echo height, and FIG. 7 is the concentration of the glass powder and the relative echo. It is a graph which shows the relationship with height. In the figure, reference numerals 1 and 2 denote piezoelectric elements, 4 and 5 probes, 6 a test body, 7 a couplant, and 8 a heater.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熱田 美道 神奈川県横浜市金沢区福浦1丁目9番4 号 石川島検査計測株式会社横浜第二事 業所内 (72)発明者 北村 憲男 兵庫県伊丹市松ヶ丘1丁目8番地 (72)発明者 太田 襄二 奈良県生駒郡さつき台1丁目680―24 (72)発明者 荒川 敬弘 神奈川県横浜市磯子区新中原町1番地 石川島播磨重工業株式会社技術研究所内 (56)参考文献 特開 平2−115764(JP,A) 特開 昭61−105459(JP,A) 特開 昭60−82854(JP,A) 特開 昭56−119851(JP,A) 特開 昭60−36952(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 29/00 - 29/28 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Yoshimichi Atsuta 1-9-4, Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa Pref. 1-8-8 Kagaoka (72) Inventor Joji Ota 1-680-24 Satsukidai, Ikoma-gun, Nara Prefecture (56) References JP-A-2-115764 (JP, A) JP-A-61-105459 (JP, A) JP-A-60-82854 (JP, A) JP-A-56-119851 (JP, A) Kaisho 60-36952 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 29/00-29/28

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】P2O5は20〜69重量%、M2O(Mはアルカリ
金属)は20〜38重量%の範囲で必須として含む組成物か
らなる接触媒質であって、該接触媒質が常温〜650℃の
温度範囲で溶融して粘性が変化し、半液状化または液状
化する性質を有することを特徴とする超音波探傷試験用
接触媒質。
1. A couplant comprising a composition comprising 20 to 69% by weight of P 2 O 5 and 20 to 38% by weight of M 2 O (M is an alkali metal). A couplant for an ultrasonic flaw detection test, characterized in that it has the property of melting in the temperature range from room temperature to 650 ° C., changing its viscosity and becoming semi-liquefied or liquefied.
【請求項2】請求項1の組成物に、B2O3が60重量%以
下、SiO2が40重量%以下、Al2O3が40重量%以下を含む
ことを特徴とする超音波探傷試験用接触媒質。
2. The ultrasonic flaw detection method according to claim 1, wherein the composition contains 60% by weight or less of B 2 O 3 , 40% by weight or less of SiO 2 and 40% by weight or less of Al 2 O 3. Test couplant.
【請求項3】水または有機溶媒に溶解もしくは懸濁させ
た水溶性もしくは半水溶性の請求項1又は2記載の超音
波探傷試験用接触媒質。
3. The couplant for an ultrasonic flaw detection test according to claim 1, wherein the couplant is dissolved or suspended in water or an organic solvent.
【請求項4】水または有機溶媒に溶解させて放置する
か、あるいは加熱溶解させて放置することにより固化さ
せたことを特徴とする請求項1又は2記載の超音波探傷
試験用接触媒質。
4. The couplant for an ultrasonic flaw detection test according to claim 1, wherein the couplant is solidified by being dissolved in water or an organic solvent and allowed to stand, or by being dissolved by heating and allowed to stand.
JP2134485A 1990-05-24 1990-05-24 Coupling medium for ultrasonic testing Expired - Fee Related JP2971098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134485A JP2971098B2 (en) 1990-05-24 1990-05-24 Coupling medium for ultrasonic testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134485A JP2971098B2 (en) 1990-05-24 1990-05-24 Coupling medium for ultrasonic testing

Publications (2)

Publication Number Publication Date
JPH0429056A JPH0429056A (en) 1992-01-31
JP2971098B2 true JP2971098B2 (en) 1999-11-02

Family

ID=15129434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134485A Expired - Fee Related JP2971098B2 (en) 1990-05-24 1990-05-24 Coupling medium for ultrasonic testing

Country Status (1)

Country Link
JP (1) JP2971098B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044071B3 (en) 2004-09-11 2006-04-13 Intelligendt Systems & Services Gmbh & Co Kg Ultrasonic testing device and ultrasonic testing method
JP2010060476A (en) * 2008-09-05 2010-03-18 Sumiju Shiken Kensa Kk Pipe inspection method
US9494453B2 (en) 2013-03-25 2016-11-15 Woojin Inc. Ultrasonic sensor for high temperature and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0429056A (en) 1992-01-31

Similar Documents

Publication Publication Date Title
Madsen et al. Liquid or solid ultrasonically tissue-mimicking materials with very low scatter
Valluri et al. Creep damage characterization using non-linear ultrasonic techniques
Davoodi et al. Integrated AFM and SECM for in situ studies of localized corrosion of Al alloys
Balasubramaniam et al. High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts
JP2971098B2 (en) Coupling medium for ultrasonic testing
Ihara et al. Development of the ultrasonic buffer rod for the molten glass measurement
Sather Ultrasonic Buffer‐Rod Technique for the High‐Temperature Measurement of the Elastic Moduli of Short Specimens
Ihara et al. Ultrasonic imaging, particle detection, and V (z) measurements in molten zinc using focused clad buffer rods
Ihara et al. Application of ultrasonic Doppler velocimetry to molten glass by using broadband phase difference method
Netshidavhini et al. Effects of various couplants on carbon steel and aluminium materials using ultrasonic testing
Rajendran et al. A device for the measurement of ultrasonic velocity and attenuation in solid materials under different thermal conditions
US3621709A (en) Ultrasonic couplant
Mastromarino et al. An ultrasonic shear wave viscometer for low viscosity Newtonian liquids
JPH0557543B2 (en)
Schmachtl et al. Crystallization process control during directional solidification in a high-temperature-gradient furnace by guided ultrasonic waves and real-time signal evaluation
Ueki et al. Oxygen influence on ultrasonic Doppler velocimetry of lead–lithium flow using titanium transducer
Rodríguez-López et al. Using ultrasounds for the estimation of the misalignment in plate–plate torsional rheometry
JPH027027B2 (en)
JP2006258627A (en) Contact medium for ultrasonic flaw detection, ultrasonic inspecting apparatus with same, and contact type ultrasonic inspecting method
Wu et al. Microscopic mechanism of attenuation of compressional ultrasonic waves in tissue-mimicking phantom materials
Ghaffari et al. Ultrasonic characterization of shrinkage microporosity in aluminum castings
Matikas et al. New Trends in Materials Nondestructive Characterization Using Surface Acoustic Wave Methodologies
Peramatzis et al. Development of HOIS/NZTC guidance for ultrasonic NDT for non-intrusive inspection at elevated temperatures
Wilkie-Chancellier et al. Lamb mode reflections at the end of a plate loaded by a viscoelastic material
Haser et al. Monitoring viscosity in asphalt binders using an ultrasonic guided wave approach

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees