JP2970541B2 - Reflective LCD panel - Google Patents

Reflective LCD panel

Info

Publication number
JP2970541B2
JP2970541B2 JP8185766A JP18576696A JP2970541B2 JP 2970541 B2 JP2970541 B2 JP 2970541B2 JP 8185766 A JP8185766 A JP 8185766A JP 18576696 A JP18576696 A JP 18576696A JP 2970541 B2 JP2970541 B2 JP 2970541B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizing plate
crystal layer
retardation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8185766A
Other languages
Japanese (ja)
Other versions
JPH1031211A (en
Inventor
尚英 脇田
久典 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16176512&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2970541(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8185766A priority Critical patent/JP2970541B2/en
Publication of JPH1031211A publication Critical patent/JPH1031211A/en
Application granted granted Critical
Publication of JP2970541B2 publication Critical patent/JP2970541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、明るくコントラス
トの高い表示ができる低コストの単純マトリクス駆動の
反射型液晶表示パネルに関する。
The present invention relates to relates to a reflection type liquid crystal display panel of simple matrix driving of the low cost that can highly bright contrast display.

【0002】[0002]

【従来の技術】液晶表示素子は、薄く、かつ軽いため、
携帯型の情報端末のディスプレイとして広く用いられて
いる。上記の液晶は、自らは発光しない受光型素子で、
数ボルトの低電圧で駆動でき、背面に反射板を置いて外
部光で照らして表示を見る反射型の液晶素子は極めて低
消費電力となる。
2. Description of the Related Art Since liquid crystal display elements are thin and light,
It is widely used as a display for portable information terminals. The above liquid crystal is a light-receiving element that does not emit light by itself,
A reflection type liquid crystal element which can be driven at a low voltage of several volts and has a reflection plate on the back surface and illuminates with external light to view a display consumes extremely low power.

【0003】しかしながら、反射型の液晶表示素子は通
常、2枚の偏光板で液晶セルを挟み、その背後にアルミ
の表面を粗した散乱反射板を貼って用られている。上記
の液晶セルとしては、7セグメントのような表示容量が
非常に小さい場合、あるいは、表示容量が大きくてもT
FTのようなアクティブ素子によって駆動する場合は9
0度ツイスト配向のTN液晶が用いられ、単純マトリク
ス駆動で表示容量が大きい場合は180度から260度
ツイスト配向させた超ねじれネマチック(STN)液晶
が用いられている。
However, a reflection type liquid crystal display element is usually used by sandwiching a liquid crystal cell between two polarizing plates and attaching a scattering reflector having a roughened aluminum surface behind the liquid crystal cell. The above-mentioned liquid crystal cell has a very small display capacity such as a 7-segment display, or has a large display capacity even if the display capacity is large.
9 when driven by an active element such as FT
A TN liquid crystal having a twist of 0 degrees is used, and a super-twisted nematic (STN) liquid crystal having a twist alignment of 180 degrees to 260 degrees is used when the display capacity is large by simple matrix driving.

【0004】上記のSTN液晶の場合には、2枚の偏光
板の内側にポリカーボネートやポリビニルアルコールな
どのポリマーを延伸して複屈折性を与えた位相差板を挿
入することにより、複屈折効果による色付きをなくして
白黒表示を可能とするものである。
In the case of the above STN liquid crystal, a birefringent effect is obtained by inserting a retardation plate having a birefringence property by stretching a polymer such as polycarbonate or polyvinyl alcohol inside the two polarizing plates. This makes it possible to display in black and white without coloring.

【0005】これらの反射型液晶素子で用いられる偏光
板の透過率は、せいぜい45%程度であり、偏光板の吸
収軸に平行な偏光の透過率はほぼ0%で、垂直な偏光の
透過率は90%である。偏光板を2枚用いる反射型液晶
パネルでは、入射光は4回偏光板を通って出射すること
になる。このため、総合的な透過率は、 (0.9)4×0.5=0.328 となり約33%以上には決して上がらない。
The transmittance of a polarizing plate used in these reflective liquid crystal devices is at most about 45%, the transmittance of polarized light parallel to the absorption axis of the polarizing plate is almost 0%, and the transmittance of perpendicular polarized light is about 0%. Is 90%. In a reflective liquid crystal panel using two polarizing plates, incident light exits through the polarizing plate four times. For this reason, the total transmittance is (0.9) 4 × 0.5 = 0.328, which is not higher than about 33%.

【0006】そこで、表示を明るくするために、偏光板
を2枚から、液晶セルの前面側の1枚のみにして、液晶
セルを1枚の偏光板と反射板で挟む1枚偏光板構成がい
くつか提案されている(例えば、特開平7−14646
9号公報、特開平7−84252号公報)。この場合、
入射光は、偏光板を2回しか通らないため、総合透過率
は、 (0.9)2×0.5=0.405 となり、約8%の向上が期待できる。
Therefore, in order to increase the brightness of the display, a single polarizing plate structure is adopted in which the number of polarizing plates is changed from two to only one on the front side of the liquid crystal cell, and the liquid crystal cell is sandwiched between one polarizing plate and a reflecting plate. Some proposals have been made (for example, see JP-A-7-14646).
No. 9, JP-A-7-84252). in this case,
Since the incident light passes through the polarizing plate only twice, the total transmittance is (0.9) 2 × 0.5 = 0.405, and an improvement of about 8% can be expected.

【0007】[0007]

【0008】[0008]

【0009】[0009]

【発明が解決しようとする課題】従来の1枚偏光板構成
の反射型液晶パネルでは、黒表示が困難で、また、入射
角や視野角の依存性が大きいという問題があった。
The conventional reflection type liquid crystal panel having a single polarizing plate has problems that black display is difficult and that the incident angle and the viewing angle are largely dependent.

【0010】[0010]

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め本発明の反射型液晶表示パネルは、180度から26
0度ねじれた超ねじれネマチック液晶層を1枚の偏光板
と反射膜とで挟み、前記偏光板と液晶層の間に少なくと
も1枚の位相差板を配置し、前記少なくとも1枚の位相
差板のうちの偏光板に最も近い位相差板の、遅相軸方向
の屈折率npと進相軸方向の屈折率nsと厚み方向の屈折
率nzのときの係数Z=(nz−np)/(ns−np)が
0.3以上0.7以下とすることにより、黒表示が暗く
なり、視野角が広がる。好ましくは、450nmに光に対
するΔnを590nmの光に対するΔnで割った値をΔn
波長分散値として、液晶層のΔn波長分散値と位相差板
のΔn波長分散値の差が0.08より小さく、さらに好
ましくは、偏光板に最も近い液晶層の液晶分子の配向方
向と前記液晶分子に最も近い位相差板の遅相軸のなす角
が75度以上105度以下であることにより、高コント
ラストで明るい、大容量表示が可能となる。
In order to solve the above-mentioned problems, a reflection type liquid crystal display panel according to the present invention is designed so that the reflection type liquid crystal display panel has a size of 180 degrees to 26 degrees.
An ultra-twisted nematic liquid crystal layer twisted by 0 degrees is sandwiched between one polarizing plate and a reflective film, and at least one retardation plate is disposed between the polarizing plate and the liquid crystal layer; Of the retardation plates closest to the polarizing plate, the coefficient Z = (nz-np) / () when the refractive index NP in the slow axis direction, the refractive index ns in the fast axis direction, and the refractive index nz in the thickness direction. When ns-np) is 0.3 or more and 0.7 or less, black display becomes dark and the viewing angle is widened. Preferably, the value obtained by dividing Δn for light at 450 nm by Δn for light at 590 nm is Δn
As the wavelength dispersion value, the difference between the Δn wavelength dispersion value of the liquid crystal layer and the Δn wavelength dispersion value of the retardation plate is smaller than 0.08, more preferably, the orientation direction of the liquid crystal molecules of the liquid crystal layer closest to the polarizing plate and the liquid crystal. When the angle formed by the slow axis of the phase difference plate closest to the molecule is 75 degrees or more and 105 degrees or less, high-contrast, bright, and large-capacity display can be performed.

【0012】[0012]

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態におけ
る反射型液晶表示パネルについて図面を参照しながら説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a reflection type liquid crystal display panel according to an embodiment of the present invention will be described with reference to the drawings.

【0014】図1は本発明の実施の形態における反射型
液晶表示パネルの断面図を示したものである。図1にお
いて、ガラスからなる上基板1上には後述する本発明の
液晶パネル用基板の製造法で設けた前方散乱膜11が形
成され、さらに前方散乱膜11上に酸化インジウム錫
(ITO)の透明電極膜4が形成されている。また、下
基板2上にはアルミからなるミラー反射膜3を設けてお
り、ミラー反射膜3はストライプ状にパターンニングさ
れて電極の機能を兼ねており、ストライプ状の透明電極
4と直交して画素を形成している。さらに、ミラー反射
膜3及び透明電極膜4上には、ポリイミド配向膜5が印
刷され、250度捻れるようにラビング処理される。
FIG. 1 is a sectional view of a reflective liquid crystal display panel according to an embodiment of the present invention. In FIG. 1, a forward scattering film 11 provided by a method for manufacturing a substrate for a liquid crystal panel of the present invention described later is formed on an upper substrate 1 made of glass, and furthermore, indium tin oxide (ITO) is formed on the forward scattering film 11. A transparent electrode film 4 is formed. Further, a mirror reflection film 3 made of aluminum is provided on the lower substrate 2, and the mirror reflection film 3 is patterned in a stripe shape and also functions as an electrode, and is orthogonal to the transparent electrode 4 in a stripe shape. Pixels are formed. Further, a polyimide alignment film 5 is printed on the mirror reflection film 3 and the transparent electrode film 4 and rubbed so as to be twisted by 250 degrees.

【0015】これらの基板を(図では省略しているが)
所定の粒径の球形スペーサを挟んで、周囲にシール樹脂
6を塗布して貼合わせ、カイラル剤を添加してカイラル
ピッチを調整したネマチック液晶7を注入する。そし
て、位相差板8、9と、偏光板10を上基板外側に貼付
した。偏光板10を通った直線偏光が2枚の位相差板で
楕円偏光に変わり、前方散乱膜で散乱してから、液晶層
7で変調を受け、ミラー反射膜3で鏡面反射して、復路
で同じ経路を通って、偏光板10が検光子となって明暗
表示ができる。前方散乱膜11は入射光を透過散乱する
機能があるが、複屈折がほとんどない材料を用いている
ので入射偏光の位相は保たれる。
[0015] These substrates (although omitted in the figure)
A nematic liquid crystal 7 having a chiral pitch adjusted by adding a chiral agent is injected, with a sealing resin 6 applied and bonded around a spherical spacer having a predetermined particle size. Then, the retardation plates 8 and 9 and the polarizing plate 10 were attached to the outside of the upper substrate. The linearly polarized light passing through the polarizing plate 10 is changed to elliptically polarized light by the two phase difference plates, scattered by the forward scattering film, modulated by the liquid crystal layer 7, specularly reflected by the mirror reflecting film 3, and returned on the return path. Through the same path, the polarizing plate 10 serves as an analyzer to perform bright and dark display. Although the forward scattering film 11 has a function of transmitting and scattering incident light, the phase of incident polarized light is maintained because a material having almost no birefringence is used.

【0016】STN液晶の構成では、液晶、位相差板の
光学的性質と配置によって表示品位が大きく変わるた
め、まず、光学的シミュレーションによりこれらの検討
を行った。光学的シミュレーションでは、偏光板、位相
差板、とSTN液晶の光学物性と配置角がパラメータと
なる。光学物性としては液晶、ならびに位相差板のリタ
ーデーション=Δnd(λ)が重要で、2枚偏光板の通
常のSTN液晶では、視感度が最も高い550nmのリ
ターデーション値で、液晶のΔndは0.84ミクロン
近傍が最もコントラストが高くなり、これは、液晶材料
や位相差板が異なっても大きくは変わらなかったが、1
枚偏光板の場合は、液晶および位相差板のΔnの波長依
存性によって大きく異なることが分かった。
In the configuration of the STN liquid crystal, the display quality greatly changes depending on the optical properties and arrangement of the liquid crystal and the phase difference plate. First, these were examined by optical simulation. In the optical simulation, the optical properties and the arrangement angle of the polarizing plate, the phase difference plate, and the STN liquid crystal are parameters. As optical properties, retardation of liquid crystal and retardation plate = Δnd (λ) is important. In a normal STN liquid crystal having two polarizing plates, Δnd of liquid crystal is 0 at a retardation value of 550 nm, which has the highest visibility. The contrast was highest at around 0.84 microns, which was not significantly changed even when the liquid crystal material and the retardation plate were different.
In the case of a sheet polarizer, it was found that the difference greatly depends on the wavelength dependence of Δn of the liquid crystal and the phase difference plate.

【0017】液晶材料として、Δnの波長依存性の異な
る3種の液晶A,B,Cについて、液晶、位相差板の各
々のΔnd、偏光板、位相差板の平面配置角度と表示品
位の関係について、正面入射、正面出射の場合を、まず
初めにシミュレートした。図2に液晶パネルを上から見
たときの各々の角度を示す。液晶は250度ツイスト右
ねじれ配向にとりあえず固定し、上基板側のラビング方
向20、下基板側のラビング方向21にしてあり、液晶
分子は上基板側のラビング方向20から下基板側の方向
21の逆向きになるよう矢印22のように捻れている。
上基板側の液晶分子の配向方向と、液晶層に近い位相差
板8の遅相軸、偏光板に近い位相差板9の遅相軸、及び
偏光板10の吸収軸とがなす角を各々φ1、φ2、φ3と
し、液晶層のリターデーションをΔnd-LC、位相差板
12のリターデーションをΔnd-f1、位相差板13の
リターデーションをΔnd-f2とし、これらのパラメー
タを、適当な初期値から順次変化させてオフ電圧で表示
が黒に最も近づき、オン電圧で白表示となる構成を求め
た。
For three types of liquid crystals A, B, and C having different wavelength dependences of Δn as liquid crystal materials, the relationship between the liquid crystal and Δnd of the retardation plate, the plane arrangement angle of the polarizing plate and the retardation plate, and the display quality. First, the case of front incidence and front emission was simulated first. FIG. 2 shows each angle when the liquid crystal panel is viewed from above. The liquid crystal is temporarily fixed in a 250 ° twist right-twisted orientation, the rubbing direction 20 on the upper substrate side and the rubbing direction 21 on the lower substrate side, and the liquid crystal molecules are moved from the rubbing direction 20 on the upper substrate side to the direction 21 on the lower substrate side. It is twisted like the arrow 22 so that it may become reverse.
The angle formed by the orientation direction of the liquid crystal molecules on the upper substrate side, the slow axis of the retardation plate 8 near the liquid crystal layer, the slow axis of the retardation plate 9 near the polarizing plate, and the absorption axis of the polarizing plate 10, respectively. φ1, φ2, φ3, the retardation of the liquid crystal layer is Δnd-LC, the retardation of the phase difference plate 12 is Δnd-f1, the retardation of the phase difference plate 13 is Δnd-f2, and these parameters are set to appropriate initial values. By changing the value sequentially from the values, a configuration was obtained in which the display was closest to black at the off-voltage and white was displayed at the on-voltage.

【0018】Δnの波長分散は、測定に用いる波長を基
準に、450nmのΔnを590nmのΔnで割った値をΔ
n波長分散指標として用いた。屈折率はコーシーの分散
式で概ね表されるので、2つの波長で定義すれば、概ね
全波長について定義できる。液晶A,B,Cの波長分散
値=Δn(450nm)/Δn(590nm)は、各々1.
20、1.117、1.06で、位相差板として用いた
ポリカーボネートが1.092である。
The wavelength dispersion of Δn is obtained by dividing a value obtained by dividing Δn at 450 nm by Δn at 590 nm based on the wavelength used for measurement.
It was used as an n-wavelength dispersion index. Since the refractive index is roughly expressed by Cauchy's dispersion equation, if it is defined by two wavelengths, it can be defined for almost all wavelengths. The wavelength dispersion values of the liquid crystals A, B, and C = Δn (450 nm) / Δn (590 nm) are each 1.
20, 1.117, 1.06, and 1.092 for the polycarbonate used as the retardation plate.

【0019】A、B、Cの各液晶で、Δnd-LCを0.
3ミクロンから1.1ミクロンの範囲で、0.1ミクロ
ン刻みに増やし、各Δnd-LCに対して、他のパラメー
タを順次振り、出射光が最も黒に近い状態となるよう最
適化した結果を、液晶A、B、Cの各々に対して下記の
3つの表に示す。
In each of the liquid crystals A, B, and C, Δnd-LC is set to 0.1.
From 3 micron to 1.1 micron, the parameter was increased in increments of 0.1 micron, and the other parameters were sequentially changed for each Δnd-LC, and the result of optimization was made so that the emitted light was almost black. , Liquid crystals A, B, and C are shown in the following three tables.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】表の左からΔnd-LC、液晶層に近い側の
位相差板8のリターデーションRe-f1、位相差板9のリ
ターデーションRe-f2、そして、上述した設定角φ1、
φ2、φ3、黒状態のY値(Y黒)、そして、右端に、
マルチプレクス駆動をしたときの白状態のY値(Y白)
を示す。液晶に電圧を印加すると、液晶分子が立ち上が
り、Δnd-LCが小さくなって輝度が上昇するが、ST
N液晶をマルチプレクス駆動をする場合には、オン電圧
とオフ電圧の比(動作マージン)が駆動デューティーに
よって制限され、例えば、いわゆるVGAのダブルスキ
ャンSTNの条件である1/240デューティーでは、
動作マージンは1.067である。このとき、オン電圧
でのΔnd-LCはオフ電圧のΔnd-LCの60%程度に減
少する。右端のY白は、オン電圧での輝度、または、オ
ンとオフの間で最も明るくなるときは、そのときの輝度
を記している。但し、ここでは、簡単のために、偏光板
の透過率を50%と理想偏光板を仮定し、またミラー面
以外での界面反射は省いている。従って、液晶パネルで
の変調が理想的に行われたなら、出射光のY値の最大値
は50となり、最小値は0となる。
From the left of the table, Δnd-LC, the retardation Re-f1 of the phase difference plate 8 near the liquid crystal layer, the retardation Re-f2 of the phase difference plate 9, and the above-mentioned set angle φ1,
φ2, φ3, Y value of black state (Y black), and at the right end,
Y value of white state when multiplex drive (Y white)
Is shown. When a voltage is applied to the liquid crystal, the liquid crystal molecules rise, Δnd-LC decreases, and the luminance increases.
When the N liquid crystal is multiplex-driven, the ratio of the ON voltage to the OFF voltage (operation margin) is limited by the drive duty. For example, at the 1/240 duty, which is the condition of the so-called VGA double scan STN,
The operation margin is 1.067. At this time, Δnd-LC at the on-voltage decreases to about 60% of Δnd-LC at the off-voltage. The Y white at the right end indicates the luminance at the ON voltage, or the luminance at that time when it is brightest between ON and OFF. However, here, for simplicity, the transmittance of the polarizing plate is assumed to be 50%, and an ideal polarizing plate is assumed, and interface reflection other than the mirror surface is omitted. Therefore, if the modulation in the liquid crystal panel is ideally performed, the maximum value of the Y value of the emitted light is 50 and the minimum value is 0.

【0024】液晶Aの結果である(表1)からは、Δn
d-LCが0.3nmから0.5nmのときに、Y黒が2.0
以下に沈み、(表2)の液晶Bでは0.4から0.96
ミクロン、(表3)の液晶Cでは、0.4から0.8ミ
クロンで、Y値が2以下となった。すなわち、液晶Aの
ようにΔnの波長依存が大きいときには、黒が充分暗く
なるΔnd-LCが小さくなり、位相差板の波長分散に最
も近い波長分散を持つ液晶Bでは、Δnd-LCの最も大
きいときにも黒が出る。一方、Y白の欄を見ると、Δn
d-LCが0.5以下では、1枚偏光板にした意味がなく
なるほどY白が30未満と小さく暗くなってしまい、高
デューティーのマルチプレクス駆動には適さない。従っ
て、液晶Aでは、黒が沈んで高いコントラストが出ると
ともに、白が十分明るくなる条件がなく、1枚偏光板S
TNに適さないことになる。
From the results of liquid crystal A (Table 1), Δn
When d-LC is 0.3 nm to 0.5 nm, Y black is 2.0
It sinks below, and in liquid crystal B of (Table 2) 0.4 to 0.96
In the case of the liquid crystal C of micron (Table 3), the Y value was 2 or less at 0.4 to 0.8 micron. That is, when the wavelength dependence of Δn is large as in liquid crystal A, Δnd-LC at which black becomes sufficiently dark decreases, and in liquid crystal B having wavelength dispersion closest to the wavelength dispersion of the retardation plate, Δnd-LC has the largest value. Sometimes black appears. On the other hand, looking at the Y white column, Δn
When d-LC is 0.5 or less, Y white becomes less than 30 and becomes dark as it becomes meaningless to use a single polarizing plate, which is not suitable for high duty multiplex driving. Therefore, in the liquid crystal A, there is no condition in which black sinks and high contrast appears, and white becomes sufficiently bright.
It is not suitable for TN.

【0025】(表2)及び(表3)の液晶B、Cでは、
Δnd-LCが0.6以上のときにも黒が十分沈むの場合
があるため、明るい白が出せる。(表2)の液晶Bで
は、Δnd-LCが0.6以上でY白が30以上、0.8
より大きいときに40以上のY白が得られ、電圧印加時
の白表示が白色に近く、また、黒の彩度も最も無彩色に
近くて、明るく、高コントラストで彩度の低い白黒表示
が得られた。
In the liquid crystals B and C in (Table 2) and (Table 3),
Even when Δnd-LC is 0.6 or more, black may sufficiently sink, so that bright white can be obtained. In the liquid crystal B in Table 2, Δnd-LC is 0.6 or more, Y white is 30 or more, and
When it is larger, 40 or more Y white is obtained, the white display at the time of voltage application is close to white, and the saturation of black is also almost achromatic, so that black and white display with high brightness, high contrast and low saturation is obtained. Obtained.

【0026】(表3)の液晶Cでは、電圧印加時の白表
示の色目がやや黄色くなる傾向があったが、Δnd-LC
が0.6から0.8で白のY値が37、コントラストも
20以上と高い。
In the liquid crystal C shown in Table 3, the color of white display when voltage was applied tended to be slightly yellow, but Δnd-LC
Is 0.6 to 0.8, the Y value of white is 37, and the contrast is as high as 20 or more.

【0027】Δn波長分散が液晶AとBの中間の値を設
定して、同様のシミュレーションを行ったところ、Δn
波長分散指標が1.17より大きいと、高デューティー
でのマルチプレクス駆動は困難であった。位相差板をポ
リカーボネートからポリサルフォン(波長分散値=1.
165)のように波長分散の大きい材質に変えたときに
は、マルチプレクス駆動に適した液晶のΔn波長分散は
大きくなり、液晶AでのΔnd-LCは0.8から1.1
ミクロンで黒が沈み、マルチプレクス駆動が可能となっ
たが、液晶Cでは、Δnd-LCが0.6ミクロン未満の
ときに黒が沈み,1/240デューティーの駆動は困難
であった。液晶Cの替わりにΔn波長分散値が1.08
の液晶を仮定して計算すると、マルチプレクス駆動が可
能であった。以上のことから、液晶の波長分散値と位相
差板の波長分散値の差が0.08以下のときに、高デュ
ーティーのマルチプレクス駆動できることが分かった。
従って、位相差板であるポリカーボネートが1.092
nmであることを考慮すると、液晶層の450nmの光に
対する複屈折率Δnを590nmの光に対する複屈折率Δ
nで割った値が、1.06から1.16の範囲にある液
晶材料を用いることが望ましいと考えられる。
A similar simulation was performed by setting the Δn wavelength dispersion to an intermediate value between the liquid crystals A and B.
When the chromatic dispersion index is larger than 1.17, multiplex driving at a high duty is difficult. The retardation plate is made of polycarbonate and polysulfone (wavelength dispersion value = 1.
When the material is changed to a material having a large wavelength dispersion as in 165), the Δn wavelength dispersion of the liquid crystal suitable for multiplex driving becomes large, and the Δnd-LC of the liquid crystal A becomes 0.8 to 1.1.
Although black sunk at a micron, multiplex driving became possible. However, in liquid crystal C, black sunk when Δnd-LC was less than 0.6 μm, and it was difficult to drive at 1/240 duty. The Δn wavelength dispersion value is 1.08 instead of the liquid crystal C.
When the calculation was performed on the assumption that the liquid crystal of the present invention was used, multiplex driving was possible. From the above, it was found that when the difference between the wavelength dispersion value of the liquid crystal and the wavelength dispersion value of the retardation plate was 0.08 or less, multiplex driving with high duty was possible.
Therefore, polycarbonate which is a retardation plate is 1.092%.
Considering that the liquid crystal layer has a birefringence Δn for light of 450 nm, the birefringence Δn for light of 590 nm.
It is considered desirable to use a liquid crystal material whose value divided by n is in the range of 1.06 to 1.16.

【0028】位相差板が1枚のときに同様のシミュレー
ションを行ったが、液晶、位相差板の種類に関わらず、
黒のY値が4以上で、コントラストが10足らずしか出
なかった。従って、1軸延伸の位相差板を用いるとき
は、位相差板は2枚以上用いることが望ましいが、コン
トラストの低い用途では、位相差板でも使える構成はあ
る。
A similar simulation was performed when there was only one retardation plate, but regardless of the type of liquid crystal and retardation plate,
When the Y value of black was 4 or more, the contrast was less than 10 or less. Therefore, when a uniaxially stretched retardation plate is used, it is desirable to use two or more retardation plates. However, for applications with low contrast, there is a configuration that can be used with a retardation plate.

【0029】また、(表1)から(表3)の構成の共通
点として、液晶分子に近い方の位相差板の配置角が、偏
光板に近い上基板上の液晶分子の配向方向となす角が、
70度から110度のときに、黒の沈み込みがよく、コ
ントラストが高い表示となることが分かった。
Further, as a common feature of the structures shown in Tables 1 to 3, the arrangement angle of the retardation plate closer to the liquid crystal molecules is set to the orientation direction of the liquid crystal molecules on the upper substrate closer to the polarizing plate. Horns
It was found that when the angle was from 70 degrees to 110 degrees, black sinking was good and a display with high contrast was obtained.

【0030】以上の検討結果は、正面入射、正面出射の
光についてのみ考えたが、実際にポリカーボネートの通
常の1軸延伸の位相差板(後述のZ係数が1.0)で1
枚偏光板STNを試作してみると、コントラストが3程
度しか取れずシミュレーションの結果と比べて非常に低
くなってしまった。これは、反射型液晶パネルの場合、
通常の照明環境では色々な角度から光が入射し、散乱膜
で散乱して、その総和が目に知覚されるので、特に黒表
示の入射角依存性が大きいと、コントラストが出ないた
めと予想された。
Although the above examination results are considered only for the light incident on the front and the light exiting from the front, actually, a 1-axis retardation plate of a normal uniaxially stretched polycarbonate (Z coefficient described later is 1.0) is used.
When a trial production of the sheet polarizer STN was performed, the contrast was only about 3 and was very low as compared with the result of the simulation. This is the case of a reflective liquid crystal panel.
In a normal lighting environment, light enters from various angles, is scattered by the scattering film, and the total sum is perceived by the eyes. Therefore, if the incident angle dependence of black display is large, no contrast is expected. Was done.

【0031】そこで、入射角依存を小さくするため、位
相差板のΔnと厚み方向の屈折率の関係を示すZ係数と
黒輝度の入射角依存をシミュレーションで計算した。Z
係数の定義は、遅相軸方向の屈折率npと進相軸方向の
屈折率nsと厚み方向の屈折率nzのときの係数Z=(n
z−np)/(ns−np)である。
Therefore, in order to reduce the incident angle dependence, the Z coefficient indicating the relationship between the Δn of the retardation plate and the refractive index in the thickness direction and the incident angle dependence of black luminance were calculated by simulation. Z
The coefficient is defined as a coefficient Z = (n where n is a refractive index in the slow axis direction, ns is a refractive index in the fast axis direction, and nz is a refractive index nz in the thickness direction.
z-np) / (ns-np).

【0032】基本構成として、(表2)のΔnd-LCが
0.96ミクロンの構成の2枚の位相差板のZ係数をま
ず、0.5から1.5まで0.5刻みで変えたときの、
黒状態の反射率の入出射角依存を図5に示す。ただし、
閾値特性をよくするために一般的に行われる手法に従っ
て、無電圧時の液晶層のΔndの設定は1.05ミクロ
ンとして、黒状態になるΔnd-LCより少し大きく設定
して、液晶が少し立ち上がりかけたときに最も暗くなる
設定とした。図3がこの構成の液晶パネルの、電圧に対
する反射率変化を表す特性図を示すが、電圧2.16ボルト
で黒が沈み込む。また、入射光はミラー面で正反射する
ものとしているので、入射角と出射角は等しい。傾斜角
は図4のように、角度依存性の大きい、液晶層の中央部
の分子が立ち上がる向き30の極角を入出射角として定
義している。図5の折れ線40〜43は反射率の入出射
角依存特性図であり、位相差板8と9のZ係数がそれぞ
れ、(0.5,0.5),(1.0,1.0),(1.5,0.5),(1.5,1.5)の場合
の反射率を、横軸に入射角、縦に反射率を取って示して
いる。図から分かるように、Z係数が鎖線42(1.5,0.
5)と実線40(0.5,0.5)のときが、角度依存が小さく黒
レベルが低く、なかでも、鎖線42(1.5,0.5)のときが
最も角度依存が小さい。この結果から、液晶層に近い側
の位相差板のZ係数は小さい方がよく、偏光板に近い側
の位相差板のZ係数による違いは少ないが、Z係数が大
きい方がよいいうことが分かった。一方、オン電圧を印
加したときの白状態の輝度の角度依存のZ係数による違
いを同様にシミュレーションした特性図が図6で、折れ
線50〜53が位相差板8と9のZ係数がそれぞれ、
(0.5,0.5),(1.0,1.0),(1.5,0.5),(1.5,1.5)の場合の、
反射率である。この場合でも、位相差板8のZ係数が小
さい50、52が角度依存が小さく、明るくなってい
る。
As a basic configuration, the Z coefficients of two retardation plates having a configuration in which Δnd-LC in Table 2 is 0.96 μm are first changed in 0.5 steps from 0.5 to 1.5. Sometimes,
FIG. 5 shows the incidence / emission angle dependence of the reflectance in the black state. However,
In accordance with a method generally performed to improve the threshold characteristic, the setting of Δnd of the liquid crystal layer at no voltage is set to 1.05 μm, and is set slightly larger than Δnd-LC at which a black state is obtained. It was set to be the darkest when applied. FIG. 3 is a characteristic diagram showing a change in reflectance with respect to a voltage of the liquid crystal panel having this configuration. Black drops at a voltage of 2.16 volts. Further, since the incident light is specularly reflected by the mirror surface, the incident angle is equal to the output angle. As shown in FIG. 4, the tilt angle defines the polar angle in the direction 30 in which the molecules in the central part of the liquid crystal layer rise, which is highly angle-dependent, as the input / output angle. The polygonal lines 40 to 43 in FIG. 5 are input / output angle dependence characteristics of the reflectivity. The Z coefficients of the retarders 8 and 9 are (0.5, 0.5), (1.0, 1.0), (1.5, 0.5), The reflectivity in the case of (1.5, 1.5) is shown by taking the incident angle on the horizontal axis and the reflectivity vertically. As can be seen from the figure, the Z coefficient is indicated by a chain line 42 (1.5, 0.
5) and the solid line 40 (0.5, 0.5) have a small angle dependence and a low black level, and the chain line 42 (1.5, 0.5) has the smallest angle dependence. From these results, it is better that the Z coefficient of the retardation plate near the liquid crystal layer is smaller, and that the difference due to the Z coefficient of the retardation plate closer to the polarizing plate is small, but the larger the Z coefficient, the better. Do you get it. On the other hand, FIG. 6 is a characteristic diagram in which the difference due to the angle-dependent Z coefficient of the luminance in the white state when the on-voltage is applied is similarly simulated.
(0.5,0.5), (1.0,1.0), (1.5,0.5), (1.5,1.5)
The reflectance. Also in this case, the angle dependence 50 and 52 where the Z coefficient of the phase difference plate 8 is small are small and bright.

【0033】Z係数を変えたこれら4つ場合のコントラ
ストを実際のパネルで、通常の天井照明の室内で調べた
ところ、Z係数が(1.0,1.0)ではコントラストは3.5
であったが、Z係数が(1.5,0.5),(0.5,0.5)では、コン
トラストは9.5と11と高く、前述のシミュレーショ
ンと同じ結果が得られた。
When the contrast in these four cases where the Z coefficient was changed was examined on an actual panel in a room with normal ceiling illumination, when the Z coefficient was (1.0, 1.0), the contrast was 3.5.
However, when the Z coefficient was (1.5, 0.5), (0.5, 0.5), the contrast was as high as 9.5 and 11, and the same result as the above-described simulation was obtained.

【0034】そして、黒、および白のZ係数による角度
依存の傾向は、(表1)から(表3)の他の構成でも同
様であった。偏光板に近い方の位相差板のZ係数として
は、0.3から0.7で、コントラスト改善の効果が顕
著で、Z係数が0.8以上ではコントラストは5未満と
低かった。これは、位相差板が1枚の場合でも同様であ
った。
The tendency of the angle dependence depending on the Z coefficient of black and white was the same in other configurations of (Table 1) to (Table 3). The Z coefficient of the retardation plate closer to the polarizing plate was 0.3 to 0.7, and the effect of improving the contrast was remarkable. When the Z coefficient was 0.8 or more, the contrast was as low as less than 5. This was the same even when the number of the phase difference plates was one.

【0035】また、液晶層に近い側の位相差板のZ係数
が大きい方がやや良かったが、Z係数2.0以上になる
と逆に悪くなる。また、液晶層に近い側の位相差板のZ
係数による違いはもう一方の位相差板に比べると小さい
ので、コスト面を重視するとZ係数が1.0を使うのが
安いので、Z係数が1.0から2.0がコストパフォー
マンスの点から望ましい。
The larger the Z coefficient of the phase difference plate on the side closer to the liquid crystal layer , the better, but worse when the Z coefficient is 2.0 or more. Also, the Z of the retardation plate on the side closer to the liquid crystal layer
Since the difference due to the coefficient is smaller than that of the other retardation plate, it is cheaper to use a Z coefficient of 1.0 when emphasizing cost, so that a Z coefficient of 1.0 to 2.0 is preferable from the viewpoint of cost performance. desirable.

【0036】また、本実施の形態ではSTN液晶層とし
て、250度ねじれで配向させたが、STN配向であれ
ば、ねじれ角は180度から260度の範囲を用いて
も、同様の結果が得られる。
In this embodiment, the STN liquid crystal layer is oriented with a twist of 250 degrees. However, if the orientation is STN, the same result can be obtained even if the twist angle is in the range of 180 to 260 degrees. Can be

【0037】次に、以下では、本発明の液晶パネル用基
板の製造法を用いて作成した、前方散乱膜11について
説明する。
Next, the forward scattering film 11 formed by using the method for manufacturing a substrate for a liquid crystal panel of the present invention will be described below.

【0038】ポリアクリル樹脂をシクロヘキサノンに溶
かした溶液と、ポリスチレン樹脂をシクロヘキサノンに
溶かした溶液を混合、攪拌して混合溶液を作り、ブレー
ド法により乾燥時に5ミクロンの厚みとなる厚みでガラ
ス上に塗布した。2つの樹脂の重量%を1:1として、
固形分濃度を変えると、2つの樹脂固形分の合計の濃度
が30%以上のときには、攪拌時に2つの樹脂の分離が
生じ、数百ミクロン以上の大きな固まりになる。固形分
濃度を20%として、混合溶液を塗布後、25℃で放置
してシクロヘキサノンを蒸散させると、2つの樹脂が分
離して一方の樹脂が約2ミクロンの微粒子状になり、他
方の樹脂中に均一に分散することが顕微鏡で観察され、
透かしてみると前方散乱による白濁が確認された。どち
らの樹脂が微粒子状になっているかは確認できていな
い。これを、180℃で焼成して重合度を上げた後に、
この膜の上に、スパッタ法で基板を180℃に加熱して
ITOを成膜したが、前方散乱の程度にほとんど変化は
なかった。図1のように反射膜との間に液晶層を挟む
と、従来のフィルムの上にアルミ蒸着した散乱反射板と
同等以上の明るさ、視野角が得られ、また、後方散乱は
非常に小さいので、コントラストは10前後は確保でき
た。
A solution in which a polyacrylic resin is dissolved in cyclohexanone and a solution in which a polystyrene resin is dissolved in cyclohexanone are mixed and stirred to form a mixed solution, which is applied to glass with a thickness of 5 microns when dried by a blade method. did. The weight percentage of the two resins is 1: 1 and
When the solid content concentration is changed, when the total concentration of the two resin solid contents is 30% or more, the two resins are separated during the stirring, resulting in a large lump of several hundred microns or more. When the mixed solution is applied at a solid concentration of 20% and left at 25 ° C. to evaporate the cyclohexanone, the two resins are separated and one resin becomes fine particles of about 2 μm. Is observed under a microscope to be uniformly dispersed in
Looking through it, cloudiness due to forward scattering was confirmed. It has not been confirmed which resin is in the form of fine particles. After firing at 180 ° C. to increase the degree of polymerization,
The substrate was heated to 180 ° C. by sputtering to form an ITO film on this film, but the degree of forward scattering was hardly changed. When a liquid crystal layer is interposed between the reflective film and the reflective film as shown in FIG. 1, brightness and viewing angle equal to or higher than those of a scattering reflector obtained by vapor-depositing aluminum on a conventional film can be obtained, and backscattering is very small. Therefore, a contrast of about 10 could be secured.

【0039】混合溶液を塗布後、80℃のホットプレー
トに基板を置いて、シクロヘキサノンを蒸散させると、
微粒子の粒径は非常に小さくなり、電子顕微鏡観察で
0.3ミクロン前後となっており、前方散乱が弱まり、
後方散乱が強くなった。このため、反射膜と組み合わせ
たときに明るさが落ち、コントラストが低下した。ま
た、樹脂の固形分濃度を上げると、粒径が大きくなり、
前方散乱、後方散乱ともに弱まった。溶媒の蒸散温度を
制御して、粒径を変えた結果、微粒子の平均径が0.5
ミクロンから3ミクロンのときに、前方散乱が十分あ
り、後方散乱が弱い前方散乱膜が得られた。また、ポリ
アクリル樹脂の屈折率は約1.5で、ポリスチレン樹脂
の屈折率は1.6で、屈折率差は0.1あるが、屈折率
差が0.05未満になると散乱膜の厚みが数十ミクロン
と厚くなるので、望ましくなく、差が大きすぎると後方
散乱が強まるので、0.3以下程度がよいことが、散乱
光学シミュレーションから分かっており、屈折率差が
0.05以上0.3以下の透明で複屈折の小さい樹脂
で、相溶しにくい樹脂であれば、本実施の形態以外の樹
脂でもよい。
After applying the mixed solution, the substrate is placed on a hot plate at 80 ° C. to evaporate cyclohexanone.
The particle size of the fine particles has become extremely small, and is about 0.3 micron when observed with an electron microscope.
Backscattering became stronger. For this reason, when combined with a reflective film, the brightness was reduced and the contrast was reduced. Also, increasing the solids content of the resin increases the particle size,
Both forward scatter and back scatter weakened. As a result of controlling the evaporation temperature of the solvent and changing the particle diameter, the average diameter of the fine particles is 0.5
When the size was from 3 microns to 3 microns, a forward scattering film having sufficient forward scattering and weak back scattering was obtained. Also, the refractive index of the polyacryl resin is about 1.5, the refractive index of the polystyrene resin is 1.6, and the difference in refractive index is 0.1. Scattered optics simulations show that the difference is too large because the backscattering is enhanced if the difference is too large. A resin other than this embodiment may be used as long as it is a transparent resin having a small birefringence of 0.3 or less and is hardly compatible with each other.

【0040】これに対して、従来例のように微粒子を樹
脂中に分散させる方法として、立方晶の酸化マグネシウ
ム微粒子0.2ミクロンをアクリル樹脂に分散させたと
ころ、樹脂に対して微粒子の重量%を30%程度にして
も表面に凹凸が生じて、液晶の配向に問題が出るし、前
方散乱の度合いも本実施の形態の散乱膜に比べて小さか
った。さらに微粒子の割合を増やすと、均一な塗膜がで
きなかった。
On the other hand, as a method of dispersing fine particles in a resin as in the conventional example, 0.2 micron of cubic magnesium oxide fine particles were dispersed in an acrylic resin. When about 30%, irregularities were generated on the surface, causing a problem in the alignment of the liquid crystal, and the degree of forward scattering was smaller than that of the scattering film of the present embodiment. When the ratio of the fine particles was further increased, a uniform coating film could not be formed.

【0041】以上のように、本発明の液晶パネル用基板
の製造法は、散乱性能のよい前方散乱膜を、均一に、か
つ容易に作成できる。本実施の形態では、散乱膜はガラ
スの上に作成したが、カラーフィルターの上に作成する
こともできるし、ガラスの外側に設けることも可能であ
る。
As described above, according to the method for manufacturing a substrate for a liquid crystal panel of the present invention, a forward scattering film having good scattering performance can be uniformly and easily formed. In the present embodiment, the scattering film is formed on glass. However, it can be formed on a color filter or provided outside glass.

【0042】また、本発明の液晶パネル用基板の製造法
により作成した液晶パネル用基板を、図1のように、反
射膜を設けた対向基板との間に液晶を挟んだ反射型液晶
パネルで用いることで、明るい1枚偏光板の反射型液晶
パネルが実現できるが、透過型液晶パネルで用いても、
散乱膜をパネル内に設けることで、視野角の拡大などが
期待される。
Also, as shown in FIG. 1, a liquid crystal panel substrate produced by the method of manufacturing a liquid crystal panel substrate of the present invention is a reflection type liquid crystal panel in which liquid crystal is sandwiched between a counter substrate provided with a reflection film. By using this, it is possible to realize a reflective liquid crystal panel with a single bright polarizing plate.
Providing the scattering film in the panel is expected to increase the viewing angle.

【0043】[0043]

【発明の効果】本発明の反射型液晶表示パネルは、偏光
板1枚と反射膜の間にSTN液晶層と位相差板を挟み
相差板のZ係数を特定して入出射角依存性を補償する
ことにより、明るく、コントラストの高い反射型液晶表
示素子を実現できる。
According to the reflection type liquid crystal display panel of the present invention, an STN liquid crystal layer and a phase difference plate are sandwiched between one polarizing plate and a reflection film .
By compensating for the phase difference plate identify and incidence and emission angle dependence Z coefficient, bright, can realize a high reflection type liquid crystal display device contrast.

【0044】[0044]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の反射型液晶パネルの断面
FIG. 1 is a sectional view of a reflective liquid crystal panel according to an embodiment of the present invention.

【図2】本発明の実施の形態の反射型液晶パネルの平面
FIG. 2 is a plan view of a reflective liquid crystal panel according to an embodiment of the present invention.

【図3】本発明の実施の形態の反射型液晶パネルの電圧
−反射率特性を示す図
FIG. 3 is a diagram showing a voltage-reflectance characteristic of the reflective liquid crystal panel according to the embodiment of the present invention;

【図4】本発明の実施の形態の反射型液晶パネルの角度
依存性評価の斜視図
FIG. 4 is a perspective view of an evaluation of the angle dependence of the reflective liquid crystal panel according to the embodiment of the present invention.

【図5】本発明の実施の形態の反射型液晶パネルの角度
依存特性を示す図
FIG. 5 is a diagram showing an angle-dependent characteristic of the reflective liquid crystal panel according to the embodiment of the present invention.

【図6】本発明の実施の形態の反射型液晶パネルの角度
依存特性を示す図
FIG. 6 is a diagram showing an angle-dependent characteristic of the reflective liquid crystal panel according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 上基板 2 下基板 3 ミラー反射膜 4 透明電極 5 配向膜 6 シール樹脂 7 ネマチック液晶 8,9 位相差板 10 偏光板 11 前方散乱板 DESCRIPTION OF SYMBOLS 1 Upper substrate 2 Lower substrate 3 Mirror reflection film 4 Transparent electrode 5 Alignment film 6 Seal resin 7 Nematic liquid crystal 8, 9 Phase difference plate 10 Polarizing plate 11 Forward scattering plate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02F 1/1335 G02F 1/1333 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G02F 1/1335 G02F 1/1333

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 180度から260度ねじれた超ねじれ
ネマチック液晶層と、前記超ねじれネマチック液晶層を
挟み込んだ一枚の偏光板及び反射膜と、前記偏光板と前
記液晶層の間に少なくとも1枚配置された位相差板とを
有する反射型液晶表示パネルであって、前記位相差板の
うちの前記偏光板に最も近い位相差板の、遅相軸方向の
屈折率npと進相軸方向の屈折率nsと厚み方向の屈折率
nzのときのZ係数=(nz−np)/(ns−np)が
0.3以上0.7以下であることを特徴とする反射型液
晶表示パネル。
1. A super-twisted nematic liquid crystal layer twisted from 180 degrees to 260 degrees, a single polarizing plate and a reflection film sandwiching the super-twisted nematic liquid crystal layer, and at least one polarizing plate between the polarizing plate and the liquid crystal layer. A liquid crystal display panel having a plurality of retardation plates, wherein a retardation plate closest to the polarizing plate among the retardation plates has a refractive index np in a slow axis direction and a fast axis direction. A reflection type liquid crystal display panel, wherein the Z coefficient = (nz−np) / (ns−np) is 0.3 or more and 0.7 or less when a refractive index ns and a refractive index nz in a thickness direction are used.
【請求項2】 450nmに光に対する第1の複屈折率Δ
n1を590nmの光に対する第2の複屈折率Δn2で割っ
た値をΔn波長分散値として、液晶層の前記Δn波長分
散値と位相差板の前記Δn波長分散値の差が0.08よ
り小さいことを特徴とする請求項1記載の反射型液晶表
示パネル。
2. The first birefringence Δ for light at 450 nm
The value obtained by dividing n1 by the second birefringence index Δn2 with respect to light of 590 nm is defined as Δn wavelength dispersion value, and the difference between the Δn wavelength dispersion value of the liquid crystal layer and the Δn wavelength dispersion value of the retardation plate is smaller than 0.08. The reflective liquid crystal display panel according to claim 1, wherein:
【請求項3】 液晶層の550nmの光に対する第3の
複屈折率Δn3と厚みdの積Δndが、0.8ミクロン
より大きく、かつ1.1ミクロン以下であり、位相差板
がポリカーボネートからなり、前記液晶層の450nmの
光に対する第1の複屈折率Δn1を590nmの光に対す
る第2の複屈折率Δn2で割った値が、1.06から
1.16の範囲にある液晶材料を有することを特徴とす
る請求項2記載の反射型液晶表示パネル。
3. A product Δnd of a third birefringence index Δn3 and a thickness d of the liquid crystal layer with respect to light of 550 nm is greater than 0.8 μm and 1.1 μm or less, and the retardation plate is made of polycarbonate. Having a liquid crystal material in which the value obtained by dividing the first birefringence Δn1 for 450 nm light of the liquid crystal layer by the second birefringence Δn2 for 590 nm light is in the range of 1.06 to 1.16. 3. The reflective liquid crystal display panel according to claim 2, wherein:
【請求項4】 偏光板に最も近い液晶層の液晶分子の配
向方向と前記液晶分子に最も近い位相差板の遅相軸のな
す角が70度以上110度以下であることを特徴とする
請求項3記載の反射型液晶表示パネル。
4. An angle between a direction of orientation of liquid crystal molecules of a liquid crystal layer closest to a polarizing plate and a slow axis of a retardation plate closest to the liquid crystal molecules is 70 degrees or more and 110 degrees or less. Item 4. A reflective liquid crystal display panel according to item 3.
JP8185766A 1996-07-16 1996-07-16 Reflective LCD panel Expired - Fee Related JP2970541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185766A JP2970541B2 (en) 1996-07-16 1996-07-16 Reflective LCD panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185766A JP2970541B2 (en) 1996-07-16 1996-07-16 Reflective LCD panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18128899A Division JP3211813B2 (en) 1999-06-28 1999-06-28 Reflective LCD panel

Publications (2)

Publication Number Publication Date
JPH1031211A JPH1031211A (en) 1998-02-03
JP2970541B2 true JP2970541B2 (en) 1999-11-02

Family

ID=16176512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185766A Expired - Fee Related JP2970541B2 (en) 1996-07-16 1996-07-16 Reflective LCD panel

Country Status (1)

Country Link
JP (1) JP2970541B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098107A (en) * 1998-09-24 2000-04-07 Kimoto & Co Ltd Forward scattering film
EP1074874A4 (en) * 1999-02-23 2004-07-28 Citizen Watch Co Ltd Liquid crystal display
EP1111437B1 (en) * 1999-06-07 2003-10-08 Citizen Watch Co. Ltd. Liquid crystal display
JP2001013500A (en) 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Reflection type liquid crystal display element
JP3493321B2 (en) 1999-07-21 2004-02-03 シャープ株式会社 Liquid crystal display
KR100812271B1 (en) * 2000-05-17 2008-03-13 후지필름 가부시키가이샤 Phase shift plate, producing method thereof, and circular polarizing plate, 1/2 wavelength plate and refelective crystal display using the same
JP2002006306A (en) * 2000-06-19 2002-01-09 Nippon Mitsubishi Oil Corp Reflection type liquid crystal display element
KR100488962B1 (en) * 2001-05-25 2005-05-11 현대엘씨디주식회사 Dstn mode lcd device
JP2003107476A (en) * 2001-09-28 2003-04-09 Nippon Oil Corp Liquid crystal display element

Also Published As

Publication number Publication date
JPH1031211A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
KR0147929B1 (en) Liquid crystal display device and laminated retardation film applied thereto
US5408344A (en) Reflection type liquid crystal display with selective reflecting means
US6717641B2 (en) Liquid crystal display device
KR100474057B1 (en) A liquid crystal display device
US6407787B1 (en) Reflective liquid crystal display device
JP2002525680A (en) Transflective LCD
US5241408A (en) Liquid crystal display device with compensation and lc twist angle varying in a nonlinear fashion in the thickness direction
US6373541B1 (en) Reflection type liquid crystal display element
US6271905B1 (en) Reflective liquid crystal display device
EP1156359A1 (en) Liquid crystal display unit
JP2970541B2 (en) Reflective LCD panel
US6633352B2 (en) Reflection type liquid crystal display device
JP3289386B2 (en) Color liquid crystal display
JP3322397B2 (en) Laminated retarder
JP3007555B2 (en) Liquid crystal display device
JP3211813B2 (en) Reflective LCD panel
JP2882965B2 (en) Reflective liquid crystal display
JP3725187B2 (en) Liquid crystal display device and electronic device
JP3289385B2 (en) Color liquid crystal display
JP2002006318A (en) Reflection type liquid crystal display device
JP2000081619A (en) Reflection type liquid crystal display device
JPH09297304A (en) Reflection type liquid crystal display element and its production
JP3219733B2 (en) Reflective liquid crystal display
JP3289392B2 (en) Color liquid crystal display
JP3289391B2 (en) Color liquid crystal display

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 15

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees