JP2970297B2 - High resistance magnetic shield material - Google Patents

High resistance magnetic shield material

Info

Publication number
JP2970297B2
JP2970297B2 JP5062833A JP6283393A JP2970297B2 JP 2970297 B2 JP2970297 B2 JP 2970297B2 JP 5062833 A JP5062833 A JP 5062833A JP 6283393 A JP6283393 A JP 6283393A JP 2970297 B2 JP2970297 B2 JP 2970297B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic shield
resin
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5062833A
Other languages
Japanese (ja)
Other versions
JPH06252586A (en
Inventor
貴則 遠藤
政美 三宅
浩之 今井
芳彦 土木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5062833A priority Critical patent/JP2970297B2/en
Publication of JPH06252586A publication Critical patent/JPH06252586A/en
Application granted granted Critical
Publication of JP2970297B2 publication Critical patent/JP2970297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気シールド効果と加
工性に優れ、強磁場中でも発熱し難い磁気シールド材に
関する。近年、電子機器の急速な普及に伴い、磁気が原
因である機器の誤動作や相互干渉が増加し、広い分野に
おいて磁気シールドが必要とされている。例えば、電磁
調理器の底面部材、高圧線近傍の建築物の壁材、病院の
磁気断層写真室の壁材や床材、自動車の電子回路ボック
ス、小型モータのケーシング材、リニアモーターカの壁
材や床材などは磁気による影響を与えないように、また
は外部から磁気の影響を受けないように磁気ノイズをシ
ールドする必要がある。本発明はこれらの部材に最適な
磁気シールド材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shielding material which is excellent in magnetic shielding effect and workability and hardly generates heat even in a strong magnetic field. 2. Description of the Related Art In recent years, with the rapid spread of electronic devices, malfunctions and mutual interference of devices caused by magnetism have increased, and magnetic shields have been required in a wide range of fields. For example, bottom members of electromagnetic cookers, wall materials of buildings near high-voltage lines, walls and floor materials of magnetic tomography rooms in hospitals, electronic circuit boxes of automobiles, casing materials of small motors, wall materials of linear motors It is necessary to shield magnetic noise so as not to be affected by magnetism or floor material, etc., or to be not affected by magnetism from the outside. The present invention relates to a magnetic shield material optimal for these members.

【0002】[0002]

【従来技術とその課題】従来、磁場から発生する不必要
な磁気を遮断する磁気シールド材としては、パーマロイ
合金板、珪素鋼板およびフェライトなどが用いられてお
り、また複合材料としては、軟磁性アモルファス合金粉
末を2枚の樹脂フィルムの間に挟み込んで張合わせた形
状のものなどが知られている。ところが、パーマロイ合
金板や珪素鋼板は電磁調理器や電磁釜などの強力な交流
磁場に設置すると、ヒステリシス損と板状内部を流れる
渦電流のために板材が発熱する問題がある。さらにパー
マロイ合金板は折り曲げや絞り加工または切断加工など
を施すと、加工部分の合金組織が歪み磁気シールド特性
が極端に低下する。これを元に戻すには加工品を1000℃
以上で焼鈍した後に非酸化性雰囲気下で徐冷しなければ
ならず、製造に手間がかかり大幅なコスト高になるなど
加工性に問題がある。またフェライト焼結体は強磁場中
で発熱しないが硬く脆いので加工性に劣る。軟磁性アモ
ルファス合金粉末を樹脂フィルム間に挟み込んだ磁気シ
ールド材は、バインダによって樹脂フィルムを張合わ
せ、その間に軟磁性粉末を介在させているために軟磁性
粉末の量が限られ、磁気シールド効果が低い。
2. Description of the Related Art Conventionally, permalloy alloy plates, silicon steel plates, ferrites, and the like have been used as magnetic shielding materials for blocking unnecessary magnetism generated from a magnetic field, and soft magnetic amorphous materials have been used as composite materials. There is known an alloy powder in which an alloy powder is sandwiched between two resin films and bonded together. However, when a permalloy alloy plate or a silicon steel plate is installed in a strong AC magnetic field such as an electromagnetic cooker or an electromagnetic pot, there is a problem that the plate material generates heat due to hysteresis loss and eddy current flowing inside the plate. Further, when a permalloy alloy plate is subjected to bending, drawing, cutting, or the like, the alloy structure of the processed portion is distorted, and the magnetic shielding characteristics are extremely reduced. To restore this, the processed product must be 1000 ° C
As described above, after annealing, it is necessary to gradually cool in a non-oxidizing atmosphere, which is troublesome in manufacturing and causes a significant increase in cost. Further, the ferrite sintered body does not generate heat in a strong magnetic field, but is hard and brittle, and thus has poor workability. The magnetic shielding material in which the soft magnetic amorphous alloy powder is sandwiched between the resin films, the resin film is stuck by the binder, and the amount of the soft magnetic powder is limited because the soft magnetic powder is interposed between them. Low.

【0003】上記磁気シールド材の他に、パーマロイ合
金粉末やセンダスト合金粉末などの金属系軟磁性粉末を
樹脂に混合した磁気シールド材、あるいはフェライト粉
末などの酸化物系軟磁性粉末を樹脂に混合した磁気シー
ルド材が知られている。ところが合金粉末などの金属系
軟磁性粉末を樹脂に配合したものは、該磁性粉末を高密
度で樹脂に充填すると該粉末が相互に接触して絶縁性が
低下し、渦電流の発生による発熱を避けることができ
ず、充填量を減らすと絶縁性は向上するが磁気抵抗も高
くなり、磁気シールド効果が低下する問題がある。また
フェライトなどの酸化物系軟磁性粉末を用いたものは発
熱を生じないものの磁気的性能が劣る。また樹脂中にセ
ンダスト合金粉末を配合した磁性材料も知られている
(特開平4-94502 号)が、これは磁芯材料として用いら
れるセンダスト合金性材料の加工性を高めることを目的
としたものであって磁気シールド材とは異なり、しか
も、磁束密度を高めるために上記合金粉末を薄片状とし
て用いているが、発熱の問題は解決されていない。
[0003] In addition to the above magnetic shield material, a magnetic shield material in which a metal soft magnetic powder such as a permalloy alloy powder or a sendust alloy powder is mixed with a resin, or an oxide soft magnetic powder such as a ferrite powder is mixed with a resin. Magnetic shielding materials are known. However, when a resin containing a metal soft magnetic powder such as an alloy powder is mixed with a resin at a high density, the powders come into contact with each other to reduce the insulating property, and generate heat due to the generation of eddy current. Inevitably, when the filling amount is reduced, the insulating property is improved, but the magnetic resistance is also increased, and there is a problem that the magnetic shielding effect is reduced. Further, those using an oxide soft magnetic powder such as ferrite do not generate heat, but have poor magnetic performance. A magnetic material in which a sendust alloy powder is blended in a resin is also known (JP-A-4-94502), which aims to enhance the workability of a sendust alloy material used as a magnetic core material. Therefore, unlike the magnetic shield material, the alloy powder is used in the form of a flake to increase the magnetic flux density, but the problem of heat generation has not been solved.

【0004】[0004]

【発明の解決課題】本発明は、従来の磁気シールド材に
おける上記課題を解決した磁気シールド材を提供するこ
とを目的とする。樹脂に軟磁性粉末を配合した磁気シー
ルド材において、該磁気シールド材を強磁場に置いたと
き、磁気シールド材が発熱する主な理由の1つは、磁束
が磁気シールド材内部の磁気シールド層を流れる際に、
該磁気シールド層に渦電流が発生するためである。この
渦電流は磁束の向き対して垂直に流れる。そこで本発明
は、磁気シールド層に絶縁層を積層することにより、磁
気シールド層に誘発される渦電流を該絶縁層によって分
断し、実質的に渦電流が流れないようにしてその発熱を
防止したものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic shield material which solves the above-mentioned problems in the conventional magnetic shield material. One of the main reasons why the magnetic shielding material generates heat when the magnetic shielding material is placed in a strong magnetic field in a magnetic shielding material in which a soft magnetic powder is blended with a resin is that the magnetic flux generates a magnetic shielding layer inside the magnetic shielding material. As it flows,
This is because an eddy current is generated in the magnetic shield layer. This eddy current flows perpendicular to the direction of the magnetic flux. In view of the above, according to the present invention, by stacking an insulating layer on the magnetic shield layer, the eddy current induced in the magnetic shield layer is divided by the insulating layer, and the generation of heat is prevented by substantially preventing the eddy current from flowing. Things.

【0005】[0005]

【発明の構成】本発明は、(1)軟磁性粉末が層状に配向
してなる層厚0.1〜5mmの磁気シールド層と、絶縁性
軟磁性粉末を含む非導電性の絶縁層とが樹脂中に交互に
複数積層されていることを特徴とする高抵抗磁気シール
ド材に関する。本発明の高抵抗磁気シールド材は、好ま
しくは、(2)磁気シールドを形成する軟磁性粉末がパー
マロイ合金、センダスト合金またはこれらのアモルファ
ス合金からなる平均粒径5〜300μmの鱗片状粉末で
あり、絶縁層に含まれる絶縁性粉末が平均粒径5〜50
μmのMn-Znフェライト粉末またはNi-Znフェラ
イト粉末であって、該絶縁層の層厚が0.05μm〜1mm
のものである。
According to the present invention, there is provided (1) a magnetic shield layer having a thickness of 0.1 to 5 mm in which soft magnetic powder is oriented in layers and a non-conductive insulating layer containing insulating soft magnetic powder. The present invention relates to a high-resistance magnetic shield material characterized by being alternately laminated in a resin. The high-resistance magnetic shield material of the present invention is preferably (2) a soft magnetic powder forming a magnetic shield is a scaly powder having an average particle diameter of 5 to 300 μm made of a permalloy alloy, a sendust alloy or an amorphous alloy thereof, The insulating powder contained in the insulating layer has an average particle size of 5 to 50.
μm Mn—Zn ferrite powder or Ni—Zn ferrite powder, wherein the thickness of the insulating layer is 0.05 μm to 1 mm
belongs to.

【0006】以下、図面を参照して本発明を具体的に説
明する。図1は本発明に係る磁気シールド材に用いられ
る磁気シールド層の配列を示す参考例の模式的断面図で
あり、図2は本発明の磁気シールド材の積層構造の一例
を示す模式断面図である。同図において、磁気シールド
材10は、樹脂11と該樹脂11に軟磁性粉末12を均
一に分散配合させてなる複数の磁気シールド層20と非
導電性の絶縁層30とが交互に積層して形成されてい
る。樹脂の種類としては熱可塑性樹脂、熱硬化性樹脂な
どが使用条件に応じて適宜用いられる。具体的には、成
形体が剛性を必要とする場合には硬質樹脂が用いられ、
また、磁気シールド材が支持部材に張合わせて用いられ
る場合など剛性を必要としないときには軟質樹脂が用い
られる。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view of a reference example showing an arrangement of magnetic shield layers used in a magnetic shield material according to the present invention, and FIG. 2 is a schematic sectional view showing an example of a laminated structure of the magnetic shield material of the present invention. is there. In FIG. 1, a magnetic shield material 10 is formed by alternately laminating a resin 11, a plurality of magnetic shield layers 20 formed by uniformly dispersing and mixing a soft magnetic powder 12 in the resin 11, and a non-conductive insulating layer 30. Is formed. As the type of the resin, a thermoplastic resin, a thermosetting resin, or the like is appropriately used according to use conditions. Specifically, when the molded body requires rigidity, a hard resin is used,
Further, when rigidity is not required, for example, when a magnetic shield material is used by being attached to a support member, a soft resin is used.

【0007】磁気シールド層20を形成する軟磁性粉末
12は鱗片状のものが好ましい。鱗片状の軟磁性粉末と
しては一般の軟磁性材を薄片状に偏平化した粉末であれ
ばよく、高透磁率、低保磁力を有するものが望ましい。
具体的には、パーマロイ合金、センダスト合金または鉄
およびコバルトを主成分とするアモルファス合金などが
好適である。上記軟磁性粉末は平均粒径5μm 〜300
μm 、アスペクト比(長径/厚さ比)10以上のものが
好ましい。平均粒径が5μm より小さいと粉末を樹脂中
に混合したときに磁気抵抗となる粒子間の接触点が増す
ので好ましくない。また平均粒径が300μm よりも大
きいと粉末を樹脂中に混練したときに均一に分散し難く
なる。アスペクト比が10より小さいと粉末相互の接触
面積が少なくなり磁気抵抗が増すので好ましくない。ア
スペクト比が10より大きいものは粉末相互の接触面積
が大きく磁気抵抗が小さくなる。同様の理由から、鱗片
状の軟磁性粉末が樹脂中で層状に配向していることが好
ましい。
The soft magnetic powder 12 forming the magnetic shield layer 20 is preferably in the form of a scale. The scaly soft magnetic powder may be a powder obtained by flattening a general soft magnetic material into a flaky shape, and preferably has a high magnetic permeability and a low coercive force.
Specifically, a permalloy, a sendust alloy, or an amorphous alloy containing iron and cobalt as main components is suitable. The soft magnetic powder has an average particle size of 5 μm to 300 μm.
μm and an aspect ratio (major axis / thickness ratio) of 10 or more are preferred. If the average particle size is smaller than 5 μm, the number of contact points between particles that becomes a magnetic resistance when the powder is mixed with the resin is not preferred. When the average particle size is larger than 300 μm, it becomes difficult to uniformly disperse the powder when kneading the resin. If the aspect ratio is smaller than 10, the contact area between the powders decreases, and the magnetic resistance increases, which is not preferable. If the aspect ratio is larger than 10, the contact area between the powders is large and the magnetic resistance is small. For the same reason, it is preferable that the flaky soft magnetic powder is oriented in a layered manner in the resin.

【0008】シールド材中の上記混合粉末の割合は50
〜90重量%が好ましい。混合粉末の添加量が50重量
%より少ないと樹脂が粉末間に介在して磁気抵抗が増
す。また添加量が90重量%よりも多いと樹脂中に粉末
を含みきれず、このため極めて脆く、成形することがで
きなくなる。磁気シールド層20の層厚は、使用環境下
の磁場の強さおよび粉末の種類にもよるが、通常、0.
1〜5mmが好ましい。磁気シールド層が0.1mmより薄
いと十分な磁気シールド効果が得られず、一方、5mmよ
り厚いと渦電流が発生し易いので好ましくない。なお、
複数の磁気シールド層と絶縁層を交互に積層する場合に
は各磁気シールド層の層厚が上記範囲であれば良い。
The ratio of the mixed powder in the shielding material is 50
~ 90% by weight is preferred. If the amount of the mixed powder is less than 50% by weight, the resin is interposed between the powders and the magnetic resistance increases. On the other hand, if the amount is more than 90% by weight, the powder cannot be contained in the resin, so that the resin is extremely brittle and cannot be molded. Although the thickness of the magnetic shield layer 20 depends on the strength of the magnetic field and the type of powder under the use environment, it is usually 0.
1-5 mm is preferred. If the magnetic shield layer is thinner than 0.1 mm, a sufficient magnetic shield effect cannot be obtained. On the other hand, if the magnetic shield layer is thicker than 5 mm, an eddy current is easily generated, which is not preferable. In addition,
When a plurality of magnetic shield layers and insulating layers are alternately laminated, the thickness of each magnetic shield layer may be within the above range.

【0009】絶縁層30は Mn-Znフェライト粉末な
どのように絶縁性軟磁性粉末を樹脂に配合したものが好
ましい。このような絶縁層を用いることにより磁気シー
ルド効果が高くしかも電気抵抗が高い磁気シールド材が
得られる。絶縁性の軟磁性粉末としては酸化物系の軟磁
性粉末であればよく、高透磁率、低保磁力を有するもの
が望ましい。具体的には、Mn-Znフェライト粉末、
Ni-Znフェライト粉末などが一般に用いられる。該
絶縁性粉末の大きさは平均粒径5〜50μm のものが好
ましい。平均粒径が50μm より大きいと樹脂中で鱗片
状粉末の間に分散するのが難しくなる。また粒径が5μ
m より小さい場合も粉末の凝集が起こり、同様に鱗片状
粉末の間に分散し難くなる。上記絶縁層30の層厚は
0.05μm〜1mmが好ましい。絶縁層30が0.05μm
よりも薄いと安定した絶縁効果が期待できず、また1m
mよりも厚いと次シールド材全体が厚くなり加工性が悪
くなるので好ましくない。
The insulating layer 30 is preferably made of a resin mixed with an insulating soft magnetic powder such as a Mn-Zn ferrite powder. By using such an insulating layer, a magnetic shield material having a high magnetic shield effect and a high electric resistance can be obtained. The insulating soft magnetic powder may be any oxide soft magnetic powder, and preferably has high magnetic permeability and low coercive force. Specifically, Mn-Zn ferrite powder,
Ni-Zn ferrite powder or the like is generally used. The size of the insulating powder is preferably one having an average particle size of 5 to 50 μm. If the average particle size is larger than 50 μm, it becomes difficult to disperse between the flaky powder in the resin. The particle size is 5μ
When the particle size is smaller than m, agglomeration of the powder occurs, and similarly, dispersion between the flaky powder becomes difficult. The thickness of the insulating layer 30 is preferably 0.05 μm to 1 mm. The insulating layer 30 is 0.05 μm
If it is thinner, a stable insulation effect cannot be expected, and 1m
If the thickness is larger than m, the entire thickness of the next shield material is increased, and the workability is deteriorated.

【0010】本発明の磁気シールド材は、以上のように
樹脂の内部に磁気シールド層20と絶縁層30を設けた
ものであり、具体的には、図示するように、磁気シール
ド層20と絶縁層30とが交互に複数回積層したもので
ある(図2)。本発明の磁気シールド材は、その内部に磁
気シールド層に沿って絶縁層が設けられているので、磁
束が磁気シールド層を流れる際に、磁束の向きと垂直の
方向に誘発される渦電流が絶縁層によって分断され、そ
の流れが妨げられるので実質的に渦電流が生じない。従
って渦電流に起因する発熱が防止される。
The magnetic shield material of the present invention is provided with the magnetic shield layer 20 and the insulating layer 30 inside the resin as described above. Specifically, as shown in the drawing, the magnetic shield layer 20 and the insulating layer 30 are insulated from each other. The layers 30 are alternately stacked a plurality of times (FIG. 2). In the magnetic shield material of the present invention, an insulating layer is provided along the magnetic shield layer inside the magnetic shield material, so that when a magnetic flux flows through the magnetic shield layer, an eddy current induced in a direction perpendicular to the direction of the magnetic flux is generated. Since the flow is interrupted by the insulating layer, substantially no eddy current is generated. Therefore, heat generation due to the eddy current is prevented.

【0011】上記磁気シールド材は、鱗片状の軟磁性粉
末を樹脂中に均一に混練し分散させた後にプレス成形に
よりシート状に加工して磁気シールド層用樹脂シートを
形成し、これを絶縁層となる非導電性樹脂シートと積層
し一体化することによって形成することができる。ま
た、鱗片状の軟磁性粉末と樹脂との混合物を絶縁層樹脂
シートの表面に塗布して磁気シールド層を形成してもよ
く、さらに該磁気シールド層の表面に樹脂シートを設け
てもよい。また絶縁層として絶縁性軟磁性粉末を配合し
たものを用いる場合には、絶縁性軟磁性粉末を樹脂中に
均一に混練し分散させたものをシート状に加工して上記
磁気シールド層用樹脂シートと積層してもよく、または
この混練物を磁気シールド層の表面に塗布して絶縁層を
形成してもよい。なお、この成形過程において、樹脂と
粉末との混合物をプレス加圧し、または磁気を加えるこ
とにより樹脂中に含まれる鱗片状軟磁性粉末を層状に配
向することができ、磁気シールド効果の高い磁気シール
ド材を得ることができる。
[0011] The magnetic shield material is obtained by uniformly kneading and dispersing flaky soft magnetic powder in a resin, and then processing it into a sheet by press molding to form a resin sheet for a magnetic shield layer. Can be formed by laminating and integrating with a non-conductive resin sheet to be formed. Further, a mixture of a flaky soft magnetic powder and a resin may be applied to the surface of the insulating layer resin sheet to form a magnetic shield layer, and a resin sheet may be provided on the surface of the magnetic shield layer. When the insulating layer is prepared by mixing the insulating soft magnetic powder, the insulating soft magnetic powder is uniformly kneaded and dispersed in a resin, and then processed into a sheet to form the resin sheet for the magnetic shield layer. Or the kneaded material may be applied to the surface of the magnetic shield layer to form an insulating layer. In this molding process, the mixture of the resin and the powder is press-pressed, or by applying magnetism, the flaky soft magnetic powder contained in the resin can be oriented in a layered manner. Material can be obtained.

【0012】[0012]

【実施例】以下に本発明の実施例を示す。なお、実施例
1,2は本発明の基本構造である磁気シールド層と絶縁
層の積層構造を示す参考例であり、実施例3,4はこの
積層構造に基づき、磁気シールド層と絶縁性粉末を含む
絶縁層とを積層した本発明の高抵抗磁気シールド材を示
す実施例である。 実施例1(参考例) 鱗片状のFe系軟磁性合金粉末(平均長径15μm,平均短
径7μm,平均厚さ0.5μm)と塩化ビニル樹脂を重量比で
75:25の割合で混合し、2本ロールを用いて混練し
た後に混練物をシート状に射出成形した。このシートを
プレスにて0.5mmの厚さに成形して磁気シールドシート
を得た。一方、上記軟磁性粉末を含有しない塩化ビニル
樹脂を厚さ0.3mmのシート状に成形して絶縁シートを得
た。該絶縁シート3枚と上記磁気シールドシート4枚を
交互に重ね、ロールミルで圧着接合して厚さ2.9mmの磁
気シールド積層材を得た(試料1)。この磁気シールド材
について、図3に示す測定装置30により、その磁気シ
ールド特性を測定した。装置30は基台31、支柱3
2、アーム33よりなるスタンドを有し、該スタンドの
上に昇降手段41、載置台42が設けられており、載置
台42の上に載せた箱43の中に強度既知の磁石44が
装入されている。また磁気強度検出器50の検知端51
が上記アーム33に上下動可能に支持され、その先端が
上記磁石44に臨むように設置されている。試料60は
上記箱43の上に置かれ、検知端51の高さを変えて検
出器50が適確な値を示すように磁石44と検出端51
との距離を調整する。上記箱43の上面に磁気シールド
材(試料1)を置き、検出器50によって磁気強度を測定
する。本実施例では初期磁気強度として100ガウス、
80ガウス、60ガウス、40ガウス、20ガウスの位
置に検出端51を設置し、試料1によって遮蔽された磁
気強度を測定した。また比較のため、上記絶縁性シート
を積層せずに磁気シールドシートからなる厚さ2mmの磁
気シールド材(試料2)を製造し、試料1と同一の方法で
その磁気シールド効果を測定した。表1がその結果であ
る(単位はガウス)。表1に示すように、試料1と試料2
はほぼ同等の遮蔽効果を達成している。
Examples of the present invention will be described below. Examples 1 and 2 are reference examples showing a laminated structure of a magnetic shield layer and an insulating layer, which are the basic structures of the present invention. Examples 3 and 4 are based on this laminated structure and are based on the magnetic shield layer and the insulating powder. This is an example showing a high-resistance magnetic shield material of the present invention in which an insulating layer containing is laminated. Example 1 (Reference Example) A flaky Fe-based soft magnetic alloy powder (average major axis: 15 μm, average minor axis: 7 μm, average thickness: 0.5 μm) and a vinyl chloride resin were mixed at a weight ratio of 75:25. After kneading using this roll, the kneaded material was injection molded into a sheet. This sheet was formed into a thickness of 0.5 mm by a press to obtain a magnetic shield sheet. On the other hand, the vinyl chloride resin containing no soft magnetic powder was formed into a sheet having a thickness of 0.3 mm to obtain an insulating sheet. The three insulating sheets and the four magnetic shield sheets were alternately stacked and pressure-bonded by a roll mill to obtain a magnetic shield laminate having a thickness of 2.9 mm (Sample 1). The magnetic shield characteristics of the magnetic shield material were measured by the measuring device 30 shown in FIG. The device 30 includes a base 31, a support 3
2, a stand including an arm 33, on which a lifting means 41 and a mounting table 42 are provided, and a magnet 44 of known strength is loaded into a box 43 mounted on the mounting table 42. Have been. Also, the detection end 51 of the magnetic intensity detector 50
Is supported by the arm 33 so as to be able to move up and down, and is installed so that the tip thereof faces the magnet 44. The sample 60 is placed on the box 43, and the height of the detection end 51 is changed so that the detector 44 shows an appropriate value.
And adjust the distance. A magnetic shield material (sample 1) is placed on the upper surface of the box 43, and the magnetic intensity is measured by the detector 50. In this embodiment, the initial magnetic intensity is 100 gauss,
The detection end 51 was set at a position of 80 Gauss, 60 Gauss, 40 Gauss, or 20 Gauss, and the magnetic intensity shielded by the sample 1 was measured. For comparison, a magnetic shield sheet (sample 2) having a thickness of 2 mm made of a magnetic shield sheet was manufactured without laminating the insulating sheets, and the magnetic shield effect was measured by the same method as that of sample 1. Table 1 shows the result (unit is Gauss). As shown in Table 1, Sample 1 and Sample 2
Achieves almost the same shielding effect.

【0013】[0013]

【表1】 磁場強度(G) 100 80.0 60.0 40.0 20.0 試料1(G) 29.0 25.9 21.2 15.1 8.3 試料2(G) 28.6 25.2 20.8 14.9 8.0 [Table 1] Magnetic field strength (G) 100 80.0 60.0 40.0 20.0 Sample 1 (G) 29.0 25.9 21.2 15.1 8.3 Sample 2 (G) 28.6 25.2 20.8 14.9 8.0

【0014】実施例2 市販されている電磁調理器を用い、その裏側に誘導加熱
コイルから2mm離れた位置に上記磁気シールド材(試料
1、2)を装着し、加熱時間ごとの各磁気シールド材の
温度を表面温度計によって測定した。この結果を表2に
示した。この結果から明らかなように、本実施例に係る
絶縁層を有する試料1は従来の鱗片状粉末のみを配合し
た試料2に比べて発熱量が半減しおり、顕著な発熱防止
効果を達成している。
Example 2 Using a commercially available electromagnetic cooker, the above-mentioned magnetic shield materials (samples 1 and 2) were mounted on the back side at a position 2 mm away from the induction heating coil, and each magnetic shield material was changed for each heating time. Was measured with a surface thermometer. The results are shown in Table 2. As is clear from this result, the heat generation amount of Sample 1 having the insulating layer according to the present example was reduced by half compared to Sample 2 in which only the conventional flaky powder was blended, and a remarkable heat generation preventing effect was achieved. .

【0015】[0015]

【表2】 加熱時間(分) 0 2 4 6 8 10 試料1(℃) 22.0 27.8 32.6 36.3 41.5 43.5 試料2(℃) 22.0 51.2 65.4 73.4 77.2 84.0 [Table 2] Heating time (min) 0 2 4 6 8 10 Sample 1 (° C) 22.0 27.8 32.6 36.3 41.5 43.5 Sample 2 (° C) 22.0 51.2 65.4 73.4 77.2 84.0

【0016】実施例3 鱗片状のFe系軟磁性合金粉末(平均長径 15 μm 、平
均短径 7μm 、平均厚さ 0.5μm )と塩化ビニル樹脂を
重量比で75:25の割合で混合し、2本ロールを用い
て混練した後に混練物をシート状に射出成形した。この
シートをプレスにて 0.5mmの厚さに成形して磁気シール
ドシートを得た。一方、Mn-Zn フェライト絶縁性軟磁性
粉末(平均粒径15μm )を混合した塩化ビニル樹脂(粉
末75wt%-樹脂25wt% )を厚さ0.3mm のシート状に成形し
て絶縁シートを得た。該絶縁シート3枚と上記磁気シー
ルドシート4枚を交互に重ね、ロールミルで圧着接合し
て厚さ2.9mm の磁気シールド積層材を得た(試料3)。
この磁気シールド材について実施例1と同一の方法で磁
気シールド効果を測定した。この結果を表3に示した
(単位はガウス)。
Example 3 A flaky Fe-based soft magnetic alloy powder (average major axis: 15 μm, average minor axis: 7 μm, average thickness: 0.5 μm) and a vinyl chloride resin were mixed at a weight ratio of 75:25. After kneading using this roll, the kneaded material was injection molded into a sheet. This sheet was formed into a thickness of 0.5 mm by a press to obtain a magnetic shield sheet. On the other hand, an insulating sheet was obtained by molding a vinyl chloride resin (powder 75 wt% -resin 25 wt%) mixed with Mn-Zn ferrite insulating soft magnetic powder (average particle size 15 μm) into a sheet having a thickness of 0.3 mm. The three insulating sheets and the four magnetic shield sheets were alternately stacked and pressure-bonded by a roll mill to obtain a magnetic shield laminate having a thickness of 2.9 mm (Sample 3).
The magnetic shield effect of this magnetic shield material was measured in the same manner as in Example 1. The results are shown in Table 3 (unit is Gauss).

【0017】[0017]

【表3】 磁場強度(G) 100 80.0 60.0 40.0 20.0 試料3(G) 22.3 20.1 17.3 11.0 6.1 [Table 3] Magnetic field strength (G) 100 80.0 60.0 40.0 20.0 Sample 3 (G) 22.3 20.1 17.3 11.0 6.1

【0018】実施例4 実施例3で得た磁気シールド材(試料3)について、実
施例2と同一の方法で磁界中の発熱量を測定した。この
結果を表4に示した。表3および4に示すように、本実
施例の磁気シールド材は高い磁気シールド効果を有しな
がら発熱量は半減しており、優れた発熱防止効果を達成
している。
Example 4 The amount of heat generated in the magnetic field of the magnetic shield material (sample 3) obtained in Example 3 was measured in the same manner as in Example 2. The results are shown in Table 4. As shown in Tables 3 and 4, the magnetic shield material of this example has a high magnetic shield effect, but the heat generation is reduced by half, and achieves an excellent heat prevention effect.

【0019】[0019]

【表4】 加熱時間(分) 0 2 4 6 8 10 試料3(℃) 22.0 30.2 35.1 37.9 42.2 44.0 [Table 4] Heating time (min) 0 2 4 6 8 10 Sample 3 (° C) 22.0 30.2 35.1 37.9 42.2 44.0

【0020】[0020]

【発明の効果】本発明の磁気シールド材は従来のシール
ド材よりも磁気シールド効果が格段に大きく、また強磁
場においても発熱しない実用性の高い磁気シールド材で
ある。また樹脂の種類を使用目的に応じて用いることに
より加工性に優れた磁気シールド材を得ることができ
る。一例として熱可塑性樹脂を用いることにより一定の
形状に曲げ加工することができ、加工部分の粉末は磁気
歪を生じないので磁気特性が低下しない。従って、現場
合せの施工を行うことができるなど施工性に優れる利点
を有する。また熱硬化性樹脂を用いた場合にも同様に施
工箇所に応じて加工することができる。
The magnetic shielding material of the present invention has a much higher magnetic shielding effect than conventional shielding materials, and is a highly practical magnetic shielding material that does not generate heat even in a strong magnetic field. In addition, a magnetic shield material having excellent workability can be obtained by using the type of resin according to the purpose of use. As an example, by using a thermoplastic resin, it can be bent into a certain shape, and the powder in the processed portion does not cause magnetostriction, so that the magnetic characteristics do not deteriorate. Therefore, there is an advantage that the workability is excellent such that the work can be performed on site. Also, when a thermosetting resin is used, processing can be similarly performed in accordance with the construction site.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る磁気シールド材の模式的断面図FIG. 1 is a schematic sectional view of a magnetic shield material according to the present invention.

【図2】 本発明に係る磁気シールド材の模式的断面図FIG. 2 is a schematic sectional view of a magnetic shield material according to the present invention.

【図3】 実施例に用いた磁気強度測定装置の概略図FIG. 3 is a schematic diagram of a magnetic intensity measuring device used in an embodiment.

【符号の説明】[Explanation of symbols]

10−磁気シールド材 11−樹脂 12−鱗片状軟磁性粉末 20−磁気シールド層 30−絶縁層 Reference Signs List 10-magnetic shield material 11-resin 12-flaky soft magnetic powder 20-magnetic shield layer 30-insulating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 浩之 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社新素材開発センタ ー内 (72)発明者 土木田 芳彦 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社新素材開発センタ ー内 (56)参考文献 特開 昭59−119900(JP,A) 特開 昭63−305600(JP,A) 特開 平2−42798(JP,A) 特開 平5−95197(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05K 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Imai 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Inside the New Material Development Center, Mitsubishi Materials Corporation (72) Inventor Yoshihiko Ciudata 1 Kitabukurocho, Omiya City, Saitama Prefecture 297-chome, Mitsubishi Materials Corporation New Materials Development Center (56) References JP-A-59-119900 (JP, A) JP-A-63-305600 (JP, A) JP-A-2-42798 (JP, A A) JP-A-5-95197 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H05K 9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軟磁性粉末が層状に配向してなる層厚0.
1〜5mmの磁気シールド層と、絶縁性軟磁性粉末を含む
非導電性の絶縁層とが樹脂中に交互に複数積層されてい
ることを特徴とする高抵抗磁気シールド材。
1. A layer thickness of a soft magnetic powder oriented in a layered manner.
A high-resistance magnetic shield material comprising a magnetic shield layer having a thickness of 1 to 5 mm and a plurality of non-conductive insulating layers containing insulating soft magnetic powder alternately laminated in a resin.
【請求項2】 磁気シールドを形成する軟磁性粉末がパ
ーマロイ合金、センダスト合金またはこれらのアモルフ
ァス合金からなる平均粒径5〜300μmの鱗片状粉末
であり、絶縁層に含まれる絶縁性粉末が平均粒径5〜5
0μmのMn-Znフェライト粉末またはNi-Znフェ
ライト粉末であって、該絶縁層の層厚が0.05μm〜1
mmである請求項1の高抵抗磁気シールド材。
2. The soft magnetic powder forming the magnetic shield is a flaky powder of a permalloy alloy, a sendust alloy or an amorphous alloy thereof, having an average particle size of 5 to 300 μm, and the insulating powder contained in the insulating layer is an average particle size. Diameter 5-5
0 μm Mn—Zn ferrite powder or Ni—Zn ferrite powder, wherein the thickness of the insulating layer is 0.05 μm to 1 μm.
The high-resistance magnetic shield material according to claim 1, which is mm.
JP5062833A 1993-02-26 1993-02-26 High resistance magnetic shield material Expired - Fee Related JP2970297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5062833A JP2970297B2 (en) 1993-02-26 1993-02-26 High resistance magnetic shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5062833A JP2970297B2 (en) 1993-02-26 1993-02-26 High resistance magnetic shield material

Publications (2)

Publication Number Publication Date
JPH06252586A JPH06252586A (en) 1994-09-09
JP2970297B2 true JP2970297B2 (en) 1999-11-02

Family

ID=13211719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5062833A Expired - Fee Related JP2970297B2 (en) 1993-02-26 1993-02-26 High resistance magnetic shield material

Country Status (1)

Country Link
JP (1) JP2970297B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204380A (en) * 1995-01-31 1996-08-09 Tokin Corp Noise suppressing method for electric apparatus and noise suppressed electronic apparatus using this method
JPH1074613A (en) * 1996-08-30 1998-03-17 Tokin Corp Tape, adhesive tape and self-fusion tape
CN100360001C (en) 2001-11-09 2008-01-02 Tdk株式会社 Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
US20060099454A1 (en) * 2004-11-08 2006-05-11 Tdk Corporation Method for producing electromagnetic wave absorbing sheet, method for classifying powder, and electromagnetic wave absorbing sheet
US9364293B2 (en) * 2006-04-28 2016-06-14 Biosense Webster, Inc. Reduced field distortion in medical tools
JP4974803B2 (en) * 2007-08-03 2012-07-11 タツタ電線株式会社 Shield film for printed wiring board and printed wiring board
JP6190835B2 (en) * 2015-03-06 2017-08-30 株式会社タムラ製作所 Current sensor device
CN110088855B (en) * 2016-12-19 2021-03-02 3M创新有限公司 Thermoplastic polymer composite material containing soft ferromagnetic particle material and preparation method thereof
JP6375020B2 (en) * 2017-06-13 2018-08-15 株式会社タムラ製作所 Current sensor device
KR102539178B1 (en) * 2020-12-07 2023-06-05 덕산하이메탈(주) Composite powder and Electromagnetic shielding sheet comprising the same

Also Published As

Publication number Publication date
JPH06252586A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
US4543208A (en) Magnetic core and method of producing the same
Kollar et al. AC magnetic properties of Fe-based composite materials
EP0087781B2 (en) Core material
EP2680281A1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
JP2970297B2 (en) High resistance magnetic shield material
JP4069480B2 (en) Electromagnetic wave and magnetic shielding soft magnetic powder and shielding sheet
JP2020017690A (en) Dust core
EP2830070A1 (en) Composite magnetic material and method for manufacturing same
KR20150041321A (en) Magnetic sheet, and magnetic material for wireless charging having the same
JPH0244606A (en) Composite material for magnetic and electron shield and permanent magnet
JPH06252587A (en) High resistance magnetic shield material
CN116622316A (en) Adhesive bond coating with magnetic filler
JP5453036B2 (en) Composite magnetic material
JP2011017057A (en) Composite sintered compact of aluminum oxide and iron and method for producing the same
WO2011046125A1 (en) Magnetic material for high frequency applications and high frequency device
JP3094727B2 (en) Powder for magnetic shielding
Cardoso et al. Original Fe–Co–Ni–Ga–Nb multicomponent alloy with soft magnetic properties
CN102834207B (en) Magnaglo metallurgical material
Gautam et al. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy
JP2001023811A (en) Pressed powder magnetic core
JP2003203752A (en) Induction heating cooking device
Yang et al. Correlation Between Structural Features and Magnetic Performance of Fe93. 5Si6. 5 (wt.%) Soft Magnetic Materials
TWI845612B (en) Inductors
WO2024034009A1 (en) Method for manufacturing magnetic wedge, magnetic wedge, stator for rotating electric machine, and rotating electric machine
JP2011086788A (en) Magnetic material for high frequency and high frequency device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727

LAPS Cancellation because of no payment of annual fees