JP2970024B2 - How to measure junction temperature - Google Patents

How to measure junction temperature

Info

Publication number
JP2970024B2
JP2970024B2 JP3076104A JP7610491A JP2970024B2 JP 2970024 B2 JP2970024 B2 JP 2970024B2 JP 3076104 A JP3076104 A JP 3076104A JP 7610491 A JP7610491 A JP 7610491A JP 2970024 B2 JP2970024 B2 JP 2970024B2
Authority
JP
Japan
Prior art keywords
temperature
forward voltage
diode
junction
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3076104A
Other languages
Japanese (ja)
Other versions
JPH04311055A (en
Inventor
充明 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3076104A priority Critical patent/JP2970024B2/en
Publication of JPH04311055A publication Critical patent/JPH04311055A/en
Application granted granted Critical
Publication of JP2970024B2 publication Critical patent/JP2970024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の接合部温
度の測定方法に関し、特にショットキダイオードの接合
部温度の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a junction temperature of a semiconductor device, and more particularly to a method for measuring a junction temperature of a Schottky diode.

【0002】[0002]

【従来の技術】接合部温度とは、半導体装置に各種設け
られる接合部(例えばPN接合など)の温度をいい、環
境温度と、接合部のジュール発熱による温度上昇との和
として与えられる。接合部温度は半導体装置の定格の一
つであり、接合部温度が定格を越えると、リーク電流の
増大、長期信頼性の低下、あるいはブレークダウンが生
ずる。このため接合部温度の測定は、ICを設計する際
や、あるいは実際にICを使ってシステムを構築する際
に必須である。
2. Description of the Related Art A junction temperature refers to a temperature of a junction (for example, a PN junction) provided in a semiconductor device and is given as a sum of an environmental temperature and a temperature rise due to Joule heat generated in the junction. The junction temperature is one of the ratings of the semiconductor device. If the junction temperature exceeds the rating, an increase in leakage current, a decrease in long-term reliability, or a breakdown occurs. Therefore, measurement of the junction temperature is essential when designing an IC or when actually constructing a system using the IC.

【0003】従来、半導体装置の接合部温度を測定する
方法にダイオード法がある。これはダイオードの順方向
電圧が接合部温度の変化に対して非常に敏感であり、か
つ再現性良く規則的に変化するためである。この特徴を
生かして、一部のダイオードは温度センサにも使用され
ている。
Conventionally, there is a diode method as a method for measuring a junction temperature of a semiconductor device. This is because the forward voltage of the diode is very sensitive to changes in junction temperature and changes regularly with good reproducibility. Taking advantage of this feature, some diodes are also used in temperature sensors.

【0004】下記の数式1は、ショットキダイオードの
順方向の電流電圧特性を表す式である。
Equation 1 below is an equation representing the forward current-voltage characteristics of a Schottky diode.

【0005】[0005]

【数1】 (Equation 1)

【0006】なお、上記の数式1において、IF は順方
向電流、Sは接合部面積、Aは有効リチャードソン定
数、Tは絶対温度、qは電子の電荷、ΦB はショットキ
バリア高さ、kはボルツマン定数、VF は順方向電圧、
nは理想因子を表す。
In the above equation 1, IF is the forward current, S is the junction area, A is the effective Richardson constant, T is the absolute temperature, q is the electron charge, Φ B is the Schottky barrier height, k is Boltzmann's constant, V F is the forward voltage,
n represents an ideal factor.

【0007】この数式1を変形すると、[0007] By transforming equation (1),

【0008】[0008]

【数2】 (Equation 2)

【0009】となる。この数式2において、k、q、A
は定数であり、ΦB、S、nは個々のダイオードに特有
の定数である。厳密にはΦB 、nには温度依存性がある
が、通常我々が必要とする室温から150℃付近では、
ほぼ定数とみなせる。つまり数式2において、絶対温度
T以外はほぼ定数とみなすことができるので、順方向電
圧VF から絶対温度(接合部温度)Tを知ることができ
る。
## EQU1 ## In this equation 2, k, q, A
Is a constant, and Φ B , S, and n are constants specific to individual diodes. Strictly speaking, Φ B and n have temperature dependence, but from room temperature, which we usually need, to around 150 ° C.,
It can be considered almost constant. That is, in Equation 2, can be regarded as almost constant except absolute temperature T, it is possible to know the forward voltage V F from the absolute temperature (junction temperature) T.

【0010】[0010]

【発明が解決しようとする課題】GaAs等の化合物半
導体装置では、金属電極と半導体の接触部に生ずるポテ
ンシャルバリアを利用したショットキバリアダイオード
が広く用いられている。しかしこのショットキバリアダ
イオードの特性は、金属電極と半導体の界面の状態に大
きく依存し、しかも化合物半導体基板の均一性がシリコ
ンほど良好とは言えないため、ばらつきが大きい。
In a compound semiconductor device such as GaAs, a Schottky barrier diode utilizing a potential barrier generated at a contact portion between a metal electrode and a semiconductor is widely used. However, the characteristics of the Schottky barrier diode greatly depend on the state of the interface between the metal electrode and the semiconductor, and the uniformity of the compound semiconductor substrate is not as good as that of silicon.

【0011】この界面の状態は、数式2では理想因子n
に反映される。数式2においてnはすべての項に係って
おり、このnのばらつきはそのまま順方向電圧VF に反
映される。これをわかりやすくするために数式2を絶対
温度Tで微分すると、
The state of this interface is expressed by the ideal factor n
Is reflected in In Equation 2 n is Kakari' to all terms, variations in the n is directly reflected in the forward voltage V F. To make this easier to understand, differentiating Equation 2 with the absolute temperature T gives:

【0012】[0012]

【数3】 (Equation 3)

【0013】となる。数式3での理想因子nの変化はそ
のまま順方向電圧VF の温度係数T.C.に反映され
る。つまり何らかの理由により界面の状況が違い、理想
因子nの値がダイオード毎に異なると、それぞれ順方向
電圧VF の温度係数T.C.が異なることになる。そし
てこのようなことは珍しいことではなく、ごく普通に起
こっていることである。
## EQU1 ## Temperature coefficient as the forward voltage V F is the change in ideality n in formulas 3 T. C. Is reflected in That status of the interface is a difference for any reason, the value of the ideal factor n is different for each diode, the temperature coefficients of the forward voltage V F T. C. Will be different. And this is not unusual, it is a common occurrence.

【0014】図4は、同一ウエハからとった3つのショ
ットキダイオードについて、順方向電圧VF の温度依存
性を測定したグラフである。この順方向電圧VF の温度
依存性は、ダイオード1〜3で微妙に異なっており、こ
れは上述したばらつきによるものである。このように順
方向電圧VF の温度依存性がまちまちであるため、測定
のつど周囲温度を変化させて順方向電圧VF の温度依存
性を測定してから、改めて接合部温度Tの測定を行う必
要があった。
[0014] Figure 4, for three Schottky diodes taken from the same wafer, a graph of the temperature dependence of the forward voltage V F. Temperature dependence of the forward voltage V F is slightly different in the diode 1-3, which is due to the variation described above. Thus the temperature dependence of the forward voltage V F is mixed, by changing the ambient temperature each time measured from measuring the temperature dependency of the forward voltage V F, the measurement of newly junction temperature T Had to do.

【0015】この順方向電圧VF の温度依存性測定は非
常に時間を要するため、接合部温度測定の効率化の妨げ
となっていた。
[0015] Accordingly, determined by temperature dependence measurement of the forward voltage V F is very time consuming, which hinders the efficiency of junction temperature measurement.

【0016】そこで本発明では、接合部温度測定の効率
化を促進させる方法を提供する。
Therefore, the present invention provides a method for promoting the efficiency of measuring the junction temperature.

【0017】[0017]

【課題を解決するための手段】本発明に係る接合部温度
の測定方法は、測定するダイオードの室温での電流電圧
測定を行い、ダイオードの室温での順方向電圧、及び理
想因子を求めた後、順方向電圧の温度による変化を示す
温度係数と理想因子との関係を示すチャートから、理想
因子の値に対応する温度係数を読み取る測定準備段階
と、前記ダイオードを実際に接合部温度を測定したい状
況下において順方向電圧を測定し、順方向電圧の値と、
測定準備段階において求めた順方向電圧の値と、測定準
備段階において読み取った前記温度係数とから、接合部
温度を求める本測定段階とを有することを特徴とする。
A method of measuring a junction temperature according to the present invention is to measure a current-voltage of a diode to be measured at room temperature, and to obtain a forward voltage and an ideal factor of the diode at room temperature. From a chart showing the relationship between the temperature coefficient indicating the change in the forward voltage with temperature and the ideality factor, a measurement preparation stage for reading the temperature coefficient corresponding to the value of the ideality factor, and actually want to measure the junction temperature of the diode Measure the forward voltage under the circumstances, the value of the forward voltage,
The method further comprises a main measurement step of obtaining a junction temperature from the value of the forward voltage obtained in the measurement preparation step and the temperature coefficient read in the measurement preparation step.

【0018】なお、上述のチャートは、室温で測定した
ダイオードの電流電圧特性から得られる理想因子と、実
際に周囲温度を変化させて測定した順方向電圧の温度係
数を直線近似した値との相関をとって作成されたもので
ある。
The above chart shows the correlation between the ideality factor obtained from the current-voltage characteristics of the diode measured at room temperature and the value obtained by linearly approximating the temperature coefficient of the forward voltage measured by actually changing the ambient temperature. It was created by taking

【0019】[0019]

【作用】測定準備段階において、ダイオードの理想因
子、及びそれに対応する温度係数を推定することがで
き、さらにそれらの値をもとにして、本測定段階で接合
部温度を算出することができる。従って、実測すること
なく順方向電圧の温度依存性を予測でき、接合部温度を
算出することができる。
In the measurement preparation stage, the ideal factor of the diode and the temperature coefficient corresponding thereto can be estimated, and based on these values, the junction temperature can be calculated in the main measurement stage. Therefore, the temperature dependency of the forward voltage can be predicted without actually measuring, and the junction temperature can be calculated.

【0020】また、理想因子と温度係数との相関をとっ
て作成したチャートを用いることにより、実測せずにダ
イオード毎の温度係数を推定することができる。
Further, by using a chart created by correlating the ideal factor with the temperature coefficient, it is possible to estimate the temperature coefficient for each diode without actually measuring it.

【0021】[0021]

【実施例】図1は、本発明に係る接合部温度測定法のフ
ローチャートである。まず始めに測定するダイオードの
室温での電流電圧測定を行い、室温での理想因子n及び
順方向電圧VF を求める。次に、予め準備してある理想
因子nと温度係数T.C.の関係を示すチャート(図2
図示)から、今求めた理想因子nの値に対応する温度係
数T.C.を読み取る。以上が測定準備段階である。
FIG. 1 is a flowchart of a method for measuring a junction temperature according to the present invention. First to perform current-voltage measurements at room temperature of the diode to be measured, obtaining the ideality factor n and the forward voltage V F at room temperature. Next, the ideality factor n and the temperature coefficient T.T. C. (FIG. 2)
(Shown), the temperature coefficient T.C. corresponding to the value of the ideality factor n just obtained. C. Read. The above is the measurement preparation stage.

【0022】次に、本測定段階に入る。ダイオードを実
際に接合部温度を測定したい状況下におき、順方向電圧
F を測定する。このときの順方向電圧VF の値と、先
の測定準備段階において、室温で求めた順方向電圧VF
の値、及び推定した温度係数T.C.から、数式3によ
って目的とする接合部温度を求めることができる。
Next, a main measurement stage is entered. Indeed placed under conditions to be measured the junction temperature diode, measuring the forward voltage V F. The value of the forward voltage V F of this time, in the previous measurement preparation stage, the forward voltage V F obtained at room temperature
And the estimated temperature coefficient T. C. From Equation (3), the target junction temperature can be obtained by Expression 3.

【0023】数式3を詳細に検討した結果、測定したい
温度範囲である室温から150℃程度では、数式3の括
弧内の変化は小さく、ほぼ一定とみなしても大きな誤差
は生じない。さらに、括弧内が一定とみなせるのであれ
ば、数式3における温度係数T.C.は理想因子nに比
例することになり、この理想因子nを室温で測定するこ
とによって温度係数T.C.が推定できる。そこで、実
際に室温で測定した理想因子nと、実際に周囲温度を0
℃から150℃まで変化させて順方向電圧VF の温度係
数T.C.を直線近似した値の相関を調査したところ、
図2に示すように相関係数0.988と強い相関がある
ことが確認された。この相関図が、前述のチャートであ
る。
As a result of a detailed study of Equation (3), the change in the parentheses in Equation (3) is small from room temperature, which is a temperature range to be measured, to about 150 ° C., and a large error does not occur even if it is regarded as almost constant. Furthermore, if the value in parentheses can be regarded as constant, the temperature coefficient T.E. C. Is proportional to the ideality factor n. By measuring this ideality factor n at room temperature, the temperature coefficient T. C. Can be estimated. Therefore, the ideal factor n actually measured at room temperature and the ambient temperature actually
° C. After varied from 0.99 ° C. The temperature coefficient of the forward voltage V F T. C. After investigating the correlation between the values obtained by linear approximation of
As shown in FIG. 2, it was confirmed that there was a strong correlation with the correlation coefficient of 0.988. This correlation diagram is the aforementioned chart.

【0024】そこで、今度は別のダイオードを用い、室
温における理想因子nの値を求め、その値と図2のチャ
ートを使って温度係数T.C.を推定した。次に、実際
にそのダイオードの周囲温度を変化させて順方向電圧V
F の温度依存性を測定した。その結果を示したのが図3
である。
Then, another diode is used to determine the value of the ideality factor n at room temperature, and the temperature coefficient T.T. C. Was estimated. Next, by actually changing the ambient temperature of the diode, the forward voltage V
The temperature dependence of F was measured. Fig. 3 shows the results.
It is.

【0025】図3において、実線は室温での理想因子n
の値から推定した順方向電圧VF の温度依存性であり、
プロットは実際に周囲温度を変化させて測定した温度依
存性である。このときの推定値と実測値との差は、最大
でも±1℃以内であった。
In FIG. 3, the solid line represents the ideality factor n at room temperature.
Is the temperature dependence of the forward voltage V F estimated from the value of
The plot is the temperature dependency measured by actually changing the ambient temperature. At this time, the difference between the estimated value and the actually measured value was within ± 1 ° C. at the maximum.

【0026】[0026]

【発明の効果】本発明による接合部温度測定方法によれ
ば、非常に簡単な室温での理想因子の測定結果から順方
向電圧の温度依存性が予測できる。その結果、従来必要
だった順方向電圧の温度依存性の測定が不用となり、接
合部温度測定が、僅かの時間で効率的に行えるようにな
る。
According to the method of measuring the junction temperature according to the present invention, the temperature dependency of the forward voltage can be predicted from the very simple measurement result of the ideality factor at room temperature. As a result, the measurement of the temperature dependency of the forward voltage, which is conventionally required, becomes unnecessary, and the junction temperature measurement can be efficiently performed in a short time.

【0027】また、個々のダイオードについて温度係数
等を実測により求める必要がなく、一層効率的な接合部
の温度測定を行うことができる。
In addition, it is not necessary to obtain a temperature coefficient or the like for each diode by actual measurement, so that a more efficient junction temperature measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る接合部温度測定方法のフローチャ
ートである。
FIG. 1 is a flowchart of a joint temperature measuring method according to the present invention.

【図2】室温での理想因子と実測の温度係数との相関を
示す図である。
FIG. 2 is a diagram showing a correlation between an ideal factor at room temperature and an actually measured temperature coefficient.

【図3】本発明に係る接合部温度測定方法により求めた
順方向電圧の温度依存性と実測した温度依存性の一致を
示す図である。
FIG. 3 is a diagram showing the coincidence of the temperature dependence of the forward voltage obtained by the junction temperature measurement method according to the present invention with the actually measured temperature dependence.

【図4】従来の測定方法において、理想因子のばらつき
により順方向電圧の温度依存性がばらつくことを示した
図である。
FIG. 4 is a diagram showing that the temperature dependency of a forward voltage varies due to a variation in an ideal factor in a conventional measurement method.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定するダイオードの室温での電流電圧
測定を行い、当該ダイオードの室温での順方向電圧、及
び理想因子を求めた後、順方向電圧の温度による変化を
示す温度係数と理想因子との関係を示すチャートから、
前記理想因子の値に対応する温度係数を読み取る測定準
備段階と、 前記ダイオードを実際に接合部温度を測定したい状況下
において順方向電圧を測定し、当該順方向電圧の値と、
前記測定準備段階において求めた順方向電圧の値と、前
記測定準備段階において読み取った前記温度係数とか
ら、前記接合部温度を求める本測定段階とを有すること
を特徴とする接合部温度の測定方法。
1. A temperature coefficient and an ideality factor indicating a change in a forward voltage with temperature after a current-voltage measurement of a diode to be measured is performed at room temperature to determine a forward voltage and an ideality factor of the diode at room temperature. From the chart showing the relationship with
A measurement preparation step for reading a temperature coefficient corresponding to the value of the ideality factor, and measuring a forward voltage under a situation where the junction temperature of the diode is to be actually measured, and a value of the forward voltage.
A method of measuring the junction temperature, comprising: a main measurement step of determining the junction temperature from the value of the forward voltage obtained in the measurement preparation step and the temperature coefficient read in the measurement preparation step. .
【請求項2】 前記チャートは、室温で測定した前記ダ
イオードの電流電圧特性から得られる理想因子と、実際
に周囲温度を変化させて測定した順方向電圧の温度係数
を直線近似した値との相関をとって作成されたことを特
徴とする請求項1記載の接合部温度の測定方法。
2. The chart shows a correlation between an ideal factor obtained from a current-voltage characteristic of the diode measured at room temperature and a value obtained by linearly approximating a temperature coefficient of a forward voltage measured by actually changing an ambient temperature. 2. The method for measuring a junction temperature according to claim 1, wherein the method is performed by using the following method.
JP3076104A 1991-04-09 1991-04-09 How to measure junction temperature Expired - Fee Related JP2970024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076104A JP2970024B2 (en) 1991-04-09 1991-04-09 How to measure junction temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076104A JP2970024B2 (en) 1991-04-09 1991-04-09 How to measure junction temperature

Publications (2)

Publication Number Publication Date
JPH04311055A JPH04311055A (en) 1992-11-02
JP2970024B2 true JP2970024B2 (en) 1999-11-02

Family

ID=13595580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076104A Expired - Fee Related JP2970024B2 (en) 1991-04-09 1991-04-09 How to measure junction temperature

Country Status (1)

Country Link
JP (1) JP2970024B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193053B (en) * 2010-03-08 2013-10-09 上海时代之光照明电器检测有限公司 Method for measuring relation curve of forward voltage and junction temperature of LED (Light Emitting Diode) in lamp

Also Published As

Publication number Publication date
JPH04311055A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
US6554469B1 (en) Four current transistor temperature sensor and method
US9016939B2 (en) Thermal sensor with second-order temperature curvature correction
EP1434036B1 (en) Thermal flow sensor and method for correcting its output signal
US6290388B1 (en) Multi-purpose integrated intensive variable sensor
Scott et al. New thermocouple-based microwave/millimeter-wave power sensor MMIC techniques in GaAs
US11187592B2 (en) Thermocouple arrangement and method for measuring temperatures
US7922389B2 (en) Substrate based on temperature sensing
US20230003586A1 (en) Method for estimating parameters of a junction of a power semi-conductor element and power unit
Gromov et al. Modified methods for the calculation of real Schottky-diode parameters
Von Arx et al. Test structures to measure the Seebeck coefficient of CMOS IC polysilicon
Matthus et al. Advanced 4H-SiC pin diode as highly sensitive high-temperature sensor up to 460° C
Elbel et al. Model of thermoelectric radiation sensors made by CMOS and micromachining
JP2970024B2 (en) How to measure junction temperature
Shih et al. High sensitive and wide detecting range MOS tunneling temperature sensors for on-chip temperature detection
Hower et al. Stable hot spots and second breakdown in power transistors
JPH0540064A (en) Schottky junction temperature sensor
Swirhun et al. Temperature dependence of specific contact resistivity
CN107622958A (en) A kind of accurate measurement method of heterogeneous semiconductor device longitudinal direction thermal resistance
Gaitan et al. Performance of commercial CMOS foundry-compatible multijunction thermal converters
Soltani et al. Gaussian distribution of inhomogeneous nickel–vanadium Schottky interface on silicon (100)
Morris Some device applications of spreading resistance measurements on epitaxial silicon
EP3644080A1 (en) Sensor circuit with offset compensation
Moise et al. Intelligent Temperature Sensor with SiC Schottky Diode
Krasnov et al. The equation of nonisothermal I–V characteristic of a Schottky diode with thick drift layer
JP3284731B2 (en) Wiring evaluation device and method of using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees