JP2967646B2 - Temperature sensor and conductor abnormal overheat monitor - Google Patents

Temperature sensor and conductor abnormal overheat monitor

Info

Publication number
JP2967646B2
JP2967646B2 JP13023992A JP13023992A JP2967646B2 JP 2967646 B2 JP2967646 B2 JP 2967646B2 JP 13023992 A JP13023992 A JP 13023992A JP 13023992 A JP13023992 A JP 13023992A JP 2967646 B2 JP2967646 B2 JP 2967646B2
Authority
JP
Japan
Prior art keywords
temperature sensor
temperature
light
conductor
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13023992A
Other languages
Japanese (ja)
Other versions
JPH05322665A (en
Inventor
克秋 仙波
石川  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP13023992A priority Critical patent/JP2967646B2/en
Publication of JPH05322665A publication Critical patent/JPH05322665A/en
Application granted granted Critical
Publication of JP2967646B2 publication Critical patent/JP2967646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えば電力機器等の
通電部導体の異常過熱を検出するため等に使用される温
度センサおよび異常過熱監視装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor and an abnormal overheat monitoring device used for detecting abnormal overheating of a current-carrying conductor of a power device or the like.

【0002】[0002]

【従来の技術】電力機器の通電部導体には高電圧印加さ
れ、しかも大電流が流れるために、その導体が異常過熱
されることがある。このため、その導体にサーモラベル
を貼って色の変化を遠方から観察して異常過熱の検出を
行ったり、サーモカメラを用いて導体の異常過熱状態を
検出したりする手段を採っている。この他、導体の温度
を計測するには熱電対、測温体およびサーミスタがあ
る。
2. Description of the Related Art Since a high voltage is applied to a current-carrying conductor of a power device and a large current flows, the conductor may be abnormally overheated. For this reason, a means is employed to detect abnormal overheating by attaching a thermo label to the conductor and observing a change in color from a distance, or to detect an abnormal overheating state of the conductor using a thermo camera. In addition, there are a thermocouple, a thermometer, and a thermistor for measuring the temperature of the conductor.

【0003】[0003]

【発明が解決しようとする課題】上記のように電力機器
の導体の異常過熱を検出するには、第1にサーモラベ
ル、第2にサーモカメラがあるが、第1のサーモラベル
は安価であるけれども、色の変化を検出する方法を検討
しないと、常時監視ができない問題があるとともに耐久
性に劣る問題もある。
As described above, in order to detect the abnormal overheating of the conductor of the power equipment as described above, the first is a thermo label and the second is a thermo camera, but the first thermo label is inexpensive. However, unless a method for detecting a color change is considered, there is a problem that monitoring cannot be performed at all times and also a problem that durability is poor.

【0004】また、第2のサーモカメラの場合には高価
であるけれども、センサ部分の長期安定性に問題があ
る。さらに、熱電対、測温体やサーミスタの場合、導体
に電気的絶縁上のため直接取り付けられない問題があ
り、これら各温度センサはガスや絶縁物に伝達する温度
を計測するので、感度が低い問題があるとともに、他の
熱源の影響が大きい。
Although the second thermo camera is expensive, it has a problem in long-term stability of the sensor portion. In addition, thermocouples, thermometers and thermistors have the problem that they cannot be directly attached to conductors due to their electrical insulation.These temperature sensors measure the temperature transmitted to gas and insulators, and therefore have low sensitivity. There is a problem, and the influence of other heat sources is great.

【0005】この発明は上記の事情に鑑みてなされたも
ので、小型,軽量で耐久性かつ耐震性に優れ、しかも常
時監視ができるとともに導体の異常状態を直接監視でき
る温度センサおよび導体異常過熱監視装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a temperature sensor and a conductor abnormal overheat monitor which are small, lightweight, have excellent durability and earthquake resistance, can always monitor, and can directly monitor an abnormal state of the conductor. It is intended to provide a device.

【0006】[0006]

【課題を解決するための手段】この発明は上記の目的を
達成するために、第1発明は円筒状に形成され、温度変
化に応じて強磁性状態から常磁性状態に変化する感温磁
性体と、この磁性体の中空部に挿入され、外部の磁界に
より中空部内で揺動する円柱あるいは円筒状の永久磁石
と、前記感温磁性体の両端に固着された透光部材とから
なる温度センサ。
In order to achieve the above object, the present invention is directed to a temperature-sensitive magnetic material which is formed in a cylindrical shape and changes from a ferromagnetic state to a paramagnetic state in response to a temperature change. A temperature sensor comprising: a cylindrical or cylindrical permanent magnet inserted into the hollow portion of the magnetic material and oscillating in the hollow portion by an external magnetic field; and a light transmitting member fixed to both ends of the temperature-sensitive magnetic material. .

【0007】第2発明は透光部材の一方は光反射部材に
したことを特徴とするものである。。
The second invention is characterized in that one of the light transmitting members is a light reflecting member. .

【0008】第3発明は通電導体に設けられた温度セン
サと、この温度センサの透光部材に取り付けられ、発光
光線を温度センサに照射するとともに温度センサを透光
した光線あるいは温度センサ内部から反射した光線を受
光する光ファイバと、この光ファイバに設けられた光電
変換部と、この光電変換部の電気出力信号が供給され、
この出力信号状態から導体の異常を判断する判断部とを
備えたことを特徴とするものである。
According to a third aspect of the present invention, there is provided a temperature sensor provided on a current-carrying conductor, and attached to a light-transmitting member of the temperature sensor. An optical fiber that receives the light beam, a photoelectric conversion unit provided in the optical fiber, and an electrical output signal of the photoelectric conversion unit are supplied,
And a judging unit for judging an abnormality of the conductor from the output signal state.

【0009】[0009]

【作用】第1発明において、感温磁性体の周囲の温度が
設定温度異常になると、感温磁性体は常磁性状態にな
る。すると、外部の磁界が感温磁性体内の永久磁石に作
用を及ぼす。すると、永久磁石は外部磁界の作用により
揺動される。この揺動により感温磁性体内を通る光線量
が変化する。
In the first aspect of the invention, when the temperature around the temperature-sensitive magnetic material becomes abnormal at the set temperature, the temperature-sensitive magnetic material enters a paramagnetic state. Then, the external magnetic field acts on the permanent magnet in the temperature-sensitive magnetic material. Then, the permanent magnet is swung by the action of the external magnetic field. This swing changes the amount of light passing through the temperature-sensitive magnetic body.

【0010】第2発明において、光反射部材で反射され
た光線が感温磁性体内を通るとき光線量が変化する。
[0010] In the second invention, the amount of light reflected by the light reflecting member changes when passing through the temperature-sensitive magnetic material.

【0011】第3発明において、温度センサ内を透光し
た光線あるいは反射して来た光線が通電導体の異常過熱
のために変化する。この変化を光電変換部で電気信号に
変換して導体の異常を判断する。
In the third aspect, the light beam transmitted through the temperature sensor or the reflected light beam changes due to abnormal heating of the current-carrying conductor. The change is converted into an electric signal by the photoelectric conversion unit, and the abnormality of the conductor is determined.

【0012】[0012]

【実施例】以下この発明の実施例を図面に基づいて説明
する。まず、温度センサの第1実施例について図1の分
解斜視図により述べる。図1において、1は感温フェラ
イトからなる円筒状の感温磁性体で、この感温磁性体1
はある設定温度(キュリー温度)までは強磁性状態を示
し、その温度以上になると、常磁性状態に変化する性質
を持ったものである。感温磁性体1の貫通孔1aには、
例えば黄銅からなる非磁性薄肉パイプ2を挿着する。非
磁性薄肉パイプ2内には円柱状の永久磁石3を揺動可能
となるように収納する。4,5は光が通過可能な透光部
材で、これら透光部材4,5は感温磁性体1の両端面に
接着して温度センサ6が構成される。図2は温度センサ
6の完成図である。
Embodiments of the present invention will be described below with reference to the drawings. First, a first embodiment of the temperature sensor will be described with reference to an exploded perspective view of FIG. In FIG. 1, reference numeral 1 denotes a cylindrical temperature-sensitive magnetic material made of a temperature-sensitive ferrite.
Shows a ferromagnetic state up to a certain set temperature (Curie temperature), and has a property of changing to a paramagnetic state when the temperature exceeds that temperature. In the through hole 1a of the temperature-sensitive magnetic body 1,
For example, a nonmagnetic thin pipe 2 made of brass is inserted. A cylindrical permanent magnet 3 is accommodated in the non-magnetic thin pipe 2 so as to be swingable. Reference numerals 4 and 5 denote translucent members through which light can pass. These translucent members 4 and 5 are adhered to both end surfaces of the temperature-sensitive magnetic body 1 to constitute a temperature sensor 6. FIG. 2 is a completed view of the temperature sensor 6.

【0013】次に上記第1実施例の動作について述べ
る。図2のように構成された温度センサ6において、感
温磁性体1が強磁性状態のときには、永久磁石3から出
る磁力線は図3の矢印で示すようにほとんど感温磁性体
1内を通る。一方、外部磁界による磁力線は図4に示す
ように感温磁性体1の内部にはほとんど影響を及ぼさな
い。図4において、Hoは外部磁界、Hiは内部磁界であ
る。
Next, the operation of the first embodiment will be described. In the temperature sensor 6 configured as shown in FIG. 2, when the temperature-sensitive magnetic body 1 is in the ferromagnetic state, the lines of magnetic force emitted from the permanent magnet 3 almost pass through the temperature-sensitive magnetic body 1 as indicated by arrows in FIG. 3. On the other hand, the lines of magnetic force caused by the external magnetic field hardly affect the inside of the temperature-sensitive magnetic body 1 as shown in FIG. In FIG. 4, H o is the external magnetic field, the H i is the internal magnetic field.

【0014】図5は温度センサ6を構成する感温磁性体
1の径方向から外部磁界Hoが作用したときの説明図
で、感温磁性体1が強磁性状態から常磁性状態になり、
永久磁石3の感温磁性体1への吸引力Ffと、永久磁石
3の外部磁界Hoによる振動力FHiがFf<FHiの条件に
なると、永久磁石3は振動する。図6A,B,Cは外部
磁界の方向により永久磁石3が振動する様子を示したも
ので、温度センサ6の軸方向から光線を照射すると、そ
の光線の透過する様子を図示斜線で示した。すなわち、
磁界の方向により永久磁石3が振動して光量が変化す
る。
[0014] Figure 5 is a schematic diagram where the external magnetic field H o is applied from the radial direction of the temperature-sensitive magnetic substance 1 constituting the temperature sensor 6, the temperature-sensitive magnetic substance 1 is made of a ferromagnetic state to a paramagnetic state,
A suction force F f of the temperature-sensitive magnetic substance 1 of the permanent magnet 3, the vibration force F Hi by the external magnetic field H o of the permanent magnet 3 is the condition of F f <F Hi, permanent magnet 3 vibrates. FIGS. 6A, 6B, and 6C show how the permanent magnet 3 vibrates in the direction of the external magnetic field. When a light beam is irradiated from the axial direction of the temperature sensor 6, the light beam is shown by oblique lines. That is,
The permanent magnet 3 vibrates depending on the direction of the magnetic field, and the amount of light changes.

【0015】図7は外部磁界Hoが温度センサ6に軸方
向から作用したときの説明図で、この図7において、感
温磁性体1が強磁性状態のとき、内部の永久磁石3は温
度センサ6の傾斜方向によって、そのN極あるいはS極
が図示上方に吸引される。図8は永久磁石3のN極が上
方に吸着されたときのものである。その後、感温磁性体
1が強磁性状態から常磁性状態に変化すると、永久磁石
3は外部磁界Hoの作用を受けて、図9Aの状態から図
9Bまたは図9Cのどちらかのように振動する。
[0015] Figure 7 is a schematic diagram where the external magnetic field H o is applied to the temperature sensor 6 in the axial direction, in FIG. 7, when the temperature-sensitive magnetic substance 1 is the ferromagnetic state, the interior of the permanent magnet 3 Temperature Depending on the tilt direction of the sensor 6, its north pole or south pole is attracted upward in the drawing. FIG. 8 shows a case where the N pole of the permanent magnet 3 is attracted upward. Thereafter, when the temperature-sensitive magnetic substance 1 is changed from a ferromagnetic state to a paramagnetic state, the vibration permanent magnet 3 is subjected to the action of an external magnetic field H o, as from the state of FIG. 9A of either FIG. 9B or FIG. 9C I do.

【0016】図10は温度センサの第2実施例を示す分
解斜視図で、第1実施例と異なる部分は永久磁石が円柱
状から円筒状になった点でだけである。図10におい
て、3aはその永久磁石である。この第2実施例の場合
も第1実施例と同様に永久磁石3aは外部磁界Hoによ
って振動される。図11A,B,Cは外部磁界Hoが温
度センサ6の径方向から作用したときのもので、その動
作は図6A,B,Cと同様であるからその詳細な説明は
省略する。しかし、永久磁石3aは円筒状となっている
ため、光線の透光量は第1実施例の場合より多くなり、
振動の検出、すなわち導体の異常過熱の検出がより確実
になる利点がある。
FIG. 10 is an exploded perspective view showing a second embodiment of the temperature sensor. The only difference from the first embodiment is that the permanent magnet is changed from a cylindrical shape to a cylindrical shape. In FIG. 10, 3a is the permanent magnet. The same manner as in the first embodiment the permanent magnet 3a in the case of this second embodiment is vibrated by an external magnetic field H o. Figure 11A, B, C is obtained when the external magnetic field H o is applied from the radial direction of the temperature sensor 6, the operation of FIG. 6A, B, the detailed description because it is same as C is omitted. However, since the permanent magnet 3a has a cylindrical shape, the amount of transmitted light is larger than that of the first embodiment,
There is an advantage that detection of vibration, that is, detection of abnormal overheating of the conductor, becomes more reliable.

【0017】また、図12A,B,Cは温度センサ6に
外部磁界Hが軸方向から作用したときの永久磁石3aの
動作状態を示す説明図で、第1実施例の図9A,B,C
と同様の動作であるからその詳細な説明は省略する。
FIGS. 12A, 12B and 12C are explanatory views showing the operating state of the permanent magnet 3a when an external magnetic field H acts on the temperature sensor 6 from the axial direction. FIGS. 9A, 9B and 9C of the first embodiment.
Since the operation is the same as that described above, a detailed description thereof will be omitted.

【0018】図13Aは、第1,第2実施例をおいて、
永久磁石3,3aが感温磁性体1へ作用する吸引力Ff
と外部磁界Hoの関係を説明するための説明図で、この
図13Aにおいて、永久磁石3,3aの傾き角度θo
吸引力Ffとの関係は図13Bに示す曲線B1のようにな
っていて、感温磁性体1の周囲の温度が上昇すると、感
温磁性体1は常磁性状態に変化する。このため、吸引力
fは低下して図13Bの曲線B2のようになる。
FIG. 13A shows the first and second embodiments,
Attraction force F f applied to the temperature-sensitive magnetic body 1 by the permanent magnets 3 and 3a
And an explanatory view for explaining the relationship between the external magnetic field H o, in this FIG. 13A, the relationship between the inclination angle theta o and the suction force F f of the permanent magnet 3,3a, as the curve B 1 shown in FIG. 13B When the temperature around the temperature-sensitive magnetic body 1 rises, the temperature-sensitive magnetic body 1 changes to a paramagnetic state. Therefore, the suction force F f is as the curve B 2 of Fig. 13B decreases.

【0019】図14A,Bは感温磁性体1がキュリー温
度以下のときと、以上のときの吸引力Ffと外部磁界Ho
により永久磁石3,3aに作用する力FHiとの関係を示
す特性図で、図14Aはキュリー温度以下のときで、こ
のときはFf>FHiであるから永久磁石3,3aは図1
3Aのようになっている。また、図14Bはキュリー温
度以上のときで、このときはFf<FHiであるから、永
久磁石3,3aは外部磁界Hoの作用を受けて永久磁石
3,3aが振動する。
FIG. 14A, B is the case temperature-sensitive magnetic substance 1 is less than or equal to the Curie temperature, or more suction force F f and the external magnetic field H o when
A characteristic diagram showing the relationship between the force F Hi acting on the permanent magnet 3,3a by, Figure 14A is a time lower than the Curie temperature, the permanent magnet 3,3a Since this time is F f> F Hi Figure 1
It looks like 3A. Further, FIG. 14B when the Curie temperature or more, because this time is F f <F Hi, permanent magnets 3,3a permanent magnets 3,3a vibrates under the action of external magnetic field H o.

【0020】図15は、第1,第2実施例の温度センサ
6を円柱状の導体10に設けた貫通孔11内に配置し
て、導体11の異常過熱状態を遠方で監視するようにし
た第3実施例で、この第3実施例は温度センサ6に光フ
ァイバ12(発光側)と13(受光側)を透光部材4,
5に取り付けて、光ファイバ12,13に光電スイッチ
のアンプ14を設けたものである。光電スイッチのアン
プ14の出力信号は第1実施例の場合、図15Bに示す
ように比較的パスル幅の短い出力信号を送出し、また、
第2実施例の場合、図15Cのような比較的パスル幅の
広い出力信号が送出される。この出力信号の状態から導
体異常過熱を判断部17で行う。なお、図示点線矢印は
光反射型にした温度センサを用いたときの光ファイバの
配置状態を示す。
FIG. 15 shows that the temperature sensor 6 of the first and second embodiments is disposed in a through hole 11 provided in a cylindrical conductor 10, and an abnormal overheating state of the conductor 11 is monitored from a distance. In the third embodiment, an optical fiber 12 (light emitting side) and 13 (light receiving side) are connected to a temperature sensor 6 by a light transmitting member 4.
5, the optical fibers 12 and 13 are provided with an amplifier 14 of a photoelectric switch. In the case of the first embodiment, the output signal of the amplifier 14 of the photoelectric switch sends out an output signal having a relatively short pulse width as shown in FIG. 15B.
In the case of the second embodiment, an output signal having a relatively wide pulse width as shown in FIG. 15C is transmitted. Based on the state of this output signal, the conductor abnormal overheating is performed by the determination unit 17. The dotted arrows in the figure show the arrangement of the optical fibers when the light reflection type temperature sensor is used.

【0021】図16は平帯導体15に温度センサ6をケ
ース16に収納して取り付けたときの第4実施例であ
る。なお、作用等は第3実施例と同様である。
FIG. 16 shows a fourth embodiment in which the temperature sensor 6 is housed in the case 16 and attached to the flat band conductor 15. The operation and the like are the same as in the third embodiment.

【0022】[0022]

【発明の効果】以上述べたように、この発明によれば、
温度センサは小型,軽量であるから、例えば電力機器の
導体に取り付けて直接導体の温度を検出できる利点があ
り、しかも耐震性にも優れている。また、温度センサと
光ファイバを使用することにより高電圧部分の導体の過
熱検出でき、しかも耐久性に優れていて、かつこの温度
センサは正常状態においても光の透過があるため、光フ
ァイバの切断やアンプ等の故障の自己点検機能も備えて
いる。
As described above, according to the present invention,
Since the temperature sensor is small and lightweight, it has an advantage that it can be directly attached to a conductor of a power device to detect the temperature of the conductor, for example, and is also excellent in earthquake resistance. Also, by using a temperature sensor and an optical fiber, it is possible to detect overheating of the conductor in the high-voltage portion, and it is excellent in durability. It also has a self-checking function for malfunctions of amplifiers and amplifiers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例を示す分解斜視図。FIG. 1 is an exploded perspective view showing a first embodiment of the present invention.

【図2】図1の実施例を組立たときの完成図。FIG. 2 is a completed view when the embodiment of FIG. 1 is assembled.

【図3】感温磁性体が強磁性状態のときの磁力線の分布
状態を示す図。
FIG. 3 is a diagram showing a distribution state of magnetic force lines when the temperature-sensitive magnetic material is in a ferromagnetic state.

【図4】感温磁性体が強磁性状態のときの外部磁界によ
る磁力線の分布状態を示す図。
FIG. 4 is a diagram illustrating a distribution state of magnetic lines of force due to an external magnetic field when the temperature-sensitive magnetic body is in a ferromagnetic state.

【図5】感温磁性体に径方向から外部磁界が作用したと
きの説明図。
FIG. 5 is an explanatory diagram when an external magnetic field acts on a temperature-sensitive magnetic body from a radial direction.

【図6】A,B,Cは外部磁界の方向により永久磁石が
振動する様子を示した説明図。
FIGS. 6A, 6B, and 6C are explanatory diagrams illustrating a state in which a permanent magnet vibrates depending on the direction of an external magnetic field.

【図7】外部磁界が温度センサの軸方向から作用したと
きの説明図。
FIG. 7 is an explanatory diagram when an external magnetic field acts from the axial direction of the temperature sensor.

【図8】感温磁性体が強磁性状態のときの説明図。FIG. 8 is an explanatory diagram when the temperature-sensitive magnetic material is in a ferromagnetic state.

【図9】A,B,Cは外部磁界の方向により永久磁石が
振動する要素を示す説明図。
FIGS. 9A, 9B, and 9C are explanatory diagrams showing elements in which a permanent magnet vibrates depending on the direction of an external magnetic field.

【図10】この発明の第2実施例を示す分解斜視図。FIG. 10 is an exploded perspective view showing a second embodiment of the present invention.

【図11】A,B,Cは外部磁界が温度センサの径方向
から作用したときの説明図。
11A, 11B, and 11C are explanatory diagrams when an external magnetic field acts from the radial direction of the temperature sensor.

【図12】A,B,Cは外部磁界が温度センサの軸方向
から作用したときの説明図。
12A, 12B and 12C are explanatory diagrams when an external magnetic field acts from the axial direction of the temperature sensor.

【図13】Aは永久磁石が感温磁性体へ作用する吸引力
と外部磁界との関係を示す説明図、Bは永久磁石の傾き
角度と吸引力との関係を示す説明図。
13A is an explanatory diagram showing a relationship between an attractive force acting on a temperature-sensitive magnetic body by a permanent magnet and an external magnetic field, and FIG. 13B is an explanatory diagram showing a relationship between a tilt angle of the permanent magnet and an attractive force.

【図14】A,Bは永久磁石の傾き角度とキュリー温度
との関係を示す特性図。
FIGS. 14A and 14B are characteristic diagrams showing the relationship between the inclination angle of the permanent magnet and the Curie temperature.

【図15】この発明の第3実施例を示す構成説明図。FIG. 15 is a configuration explanatory view showing a third embodiment of the present invention.

【図16】この発明の第4実施例を示す構成説明図。FIG. 16 is a configuration explanatory view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…感温磁性体 2…非磁性薄肉パイプ 3,3a…永久磁石 4,5…透光部材 6…温度センサ 10…円柱状導体 12,13…光ファイバ 14…光電スイッチのアンプ 15…平帯導体 17…判断部 DESCRIPTION OF SYMBOLS 1 ... Temperature-sensitive magnetic body 2 ... Non-magnetic thin pipe 3, 3a ... Permanent magnet 4, 5 ... Translucent member 6 ... Temperature sensor 10 ... Cylindrical conductor 12, 13 ... Optical fiber 14 ... Photoelectric switch amplifier 15 ... Flat belt Conductor 17 ... Judgment unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−105580(JP,A) 特開 昭56−86322(JP,A) 特開 昭63−300926(JP,A) 特開 昭62−179623(JP,A) 実開 昭56−48032(JP,U) 実開 昭56−66835(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01K 7/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-49-105580 (JP, A) JP-A-56-86322 (JP, A) JP-A-63-300926 (JP, A) JP-A-62 179623 (JP, A) Japanese Utility Model Showa 56-48032 (JP, U) Japanese Utility Model Showa 56-66835 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) G01K 7/36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒状に形成され、温度変化に応じて強磁
性状態から常磁性状態に変化する感温磁性体と、この磁
性体の中空部に挿入され、外部の磁界により中空部内で
揺動する円柱あるいは円筒状の永久磁石と、前記感温磁
性体の両端に固着された透光部材とからなる温度セン
サ。
1. A temperature-sensitive magnetic body which is formed in a cylindrical shape and changes from a ferromagnetic state to a paramagnetic state in response to a temperature change, and is inserted into a hollow portion of the magnetic body and shakes inside the hollow portion by an external magnetic field. A temperature sensor comprising: a moving cylindrical or cylindrical permanent magnet; and a light-transmitting member fixed to both ends of the temperature-sensitive magnetic body.
【請求項2】前記透光部材の一方は光反射部材にしたこ
とを特徴とする請求項1に記載の温度センサ。
2. The temperature sensor according to claim 1, wherein one of said light transmitting members is a light reflecting member.
【請求項3】通電導体に設けられた温度センサと、この
温度センサの透光部材に取り付けられ、発光光線を温度
センサに照射するとともに温度センサを透光した光線あ
るいは温度センサ内部から反射した光線を受光する光フ
ァイバと、この光ファイバに設けられた光電変換部と、
この光電変換部の電気出力信号が供給され、この出力信
号状態から導体の異常を判断する判断部とを備えたこと
を特徴とする導体異常過熱監視装置。
3. A temperature sensor provided on a current-carrying conductor, and a light beam attached to a light-transmitting member of the temperature sensor for irradiating an emitted light beam to the temperature sensor and transmitting light through the temperature sensor or light reflected from the inside of the temperature sensor. An optical fiber that receives light, a photoelectric conversion unit provided in the optical fiber,
A conductor abnormality monitoring device, comprising: an electrical output signal of the photoelectric conversion unit; and a determination unit configured to determine an abnormality of the conductor based on the output signal state.
JP13023992A 1992-05-22 1992-05-22 Temperature sensor and conductor abnormal overheat monitor Expired - Lifetime JP2967646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13023992A JP2967646B2 (en) 1992-05-22 1992-05-22 Temperature sensor and conductor abnormal overheat monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13023992A JP2967646B2 (en) 1992-05-22 1992-05-22 Temperature sensor and conductor abnormal overheat monitor

Publications (2)

Publication Number Publication Date
JPH05322665A JPH05322665A (en) 1993-12-07
JP2967646B2 true JP2967646B2 (en) 1999-10-25

Family

ID=15029452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13023992A Expired - Lifetime JP2967646B2 (en) 1992-05-22 1992-05-22 Temperature sensor and conductor abnormal overheat monitor

Country Status (1)

Country Link
JP (1) JP2967646B2 (en)

Also Published As

Publication number Publication date
JPH05322665A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP2967646B2 (en) Temperature sensor and conductor abnormal overheat monitor
JP3166485B2 (en) Temperature sensor
JP2943460B2 (en) Temperature sensor
JP3182910B2 (en) Temperature sensor
US5148707A (en) Heat-sensitive flow sensor
JPH07122160A (en) Disconnector
JP2993208B2 (en) Temperature sensor
CN109612600B (en) Optical fiber sensing probe and optical fiber sensing system based on Curie temperature jump
JPH05142064A (en) Temperature sensor
JP3156505B2 (en) Temperature sensor
JPH05108992A (en) Device for detecting abnormal over heat of conductor
JP2979842B2 (en) Temperature sensor
JP2979843B2 (en) Temperature sensor
JPH0499935A (en) Overheat detector
CN209310942U (en) Optical fiber sensing probe and optical fiber sensing system based on Curie temperature jump
JPH05302859A (en) Temperature sensor
JP2842303B2 (en) Fluid measurement probe
CN109612600A (en) Optical fiber sensing probe and optical fiber sensing system based on Curie temperature jump
JP3186357B2 (en) Ultrasonic generation temperature detector in gas
JPH0125299Y2 (en)
JPH04283632A (en) Temperature sensor
JPH0566157A (en) Temperature sensor and temperature sensor switch
JP3149646B2 (en) Conductor temperature monitoring device
JP3158804B2 (en) Temperature sensor
JP3218644B2 (en) Abnormal overheat detector