JP2966570B2 - Hydrogen gas purification method - Google Patents

Hydrogen gas purification method

Info

Publication number
JP2966570B2
JP2966570B2 JP3116191A JP11619191A JP2966570B2 JP 2966570 B2 JP2966570 B2 JP 2966570B2 JP 3116191 A JP3116191 A JP 3116191A JP 11619191 A JP11619191 A JP 11619191A JP 2966570 B2 JP2966570 B2 JP 2966570B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
gas
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3116191A
Other languages
Japanese (ja)
Other versions
JPH0597403A (en
Inventor
眞臣 河野
佳明 有川
浩二 得重
昭夫 出羽
博 宮本
定二 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUGOKU DENRYOKU KK
Mitsubishi Heavy Industries Ltd
Original Assignee
CHUGOKU DENRYOKU KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUGOKU DENRYOKU KK, Mitsubishi Heavy Industries Ltd filed Critical CHUGOKU DENRYOKU KK
Priority to JP3116191A priority Critical patent/JP2966570B2/en
Publication of JPH0597403A publication Critical patent/JPH0597403A/en
Application granted granted Critical
Publication of JP2966570B2 publication Critical patent/JP2966570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金を用いた
電機冷却用水素ガスの精製方法に関する。
The present invention relates to using a hydrogen storage alloy originating
The present invention relates to a method for purifying hydrogen gas for cooling electric machines .

【0002】[0002]

【従来の技術】従来、水素吸蔵合金の精製機能を利用し
た発電機冷却用水素の純度維持方法においてはこれに用
いる水素吸蔵合金は特別な前処理は行なわれず、一般的
な活性化処理のみ実施し用いているのが現状である。こ
ゝにいう活性化処理とは、製造した状態の合金は表面に
酸化膜を形成しているため不活性であり、水素を吸収し
ないため、水素雰囲気にて加熱、冷却を繰り返し(数回
〜20回後)合金に水素吸収能を付加する前処理をい
ゝ、粒径は製造したまゝの大きさを有している。
2. Description of the Related Art Conventionally, in a method for maintaining the purity of hydrogen for cooling a generator using the function of purifying a hydrogen storage alloy, the hydrogen storage alloy used for this purpose is not subjected to any special pretreatment, and only a general activation treatment is performed. It is currently used. The activation treatment referred to here means that the alloy in a manufactured state is inactive because an oxide film is formed on its surface and does not absorb hydrogen. Therefore, heating and cooling are repeatedly performed in a hydrogen atmosphere (several times to several times). (After 20 times) Pretreatment for adding hydrogen absorbing ability to the alloy, the particle size is as produced.

【0003】[0003]

【発明が解決しようとする課題】[Problems to be solved by the invention]

(1)発電機は通常1回/年の定期検査を実施し、解放
点検後の水素充填はまず機内の空気を比重の大きい炭酸
ガスで置換し次いで水素ガスで段階的に置換する方法を
用いている。発電機内水素純度はこの水素置換を行う毎
に上昇するが、純度が高くなるにつれその純度アップ効
率は悪くなり到達純度もおのずと限られてくる。
(1) The generator is normally inspected once a year, and the hydrogen filling after the open inspection is carried out by first replacing the air inside the machine with carbon dioxide having a large specific gravity and then gradually replacing it with hydrogen gas. ing. The hydrogen purity in the generator increases each time the hydrogen replacement is performed. However, as the purity increases, the efficiency of increasing the purity decreases, and the ultimate purity is naturally limited.

【0004】(2)発電機内水素中の不純物成分は、前
述から判るように、空気(酸素、窒素)及び炭酸ガスと
水分(水蒸気)及び軸封装置から漏入するオイルベーパ
等が主成分である。
(2) As is understood from the above, the main components of the impurity component in the hydrogen in the generator are air (oxygen, nitrogen), carbon dioxide gas and water (water vapor), oil vapor leaking from a shaft sealing device, and the like. .

【0005】(3)水素吸蔵合金は前述した不純物成分
等によって被毒と称し、吸蔵性能の低下を起すことが知
られており、上記の従来法においても同様で、前述の到
達純度にもよるが、合金の前処理として活性化処理のみ
を実施したものでは吸蔵性能の低下を起す。
[0005] (3) It is known that the hydrogen storage alloy is poisoned due to the above-mentioned impurity components and the like, and it is known that the storage performance is deteriorated. However, when only the activation treatment is performed as a pretreatment of the alloy, the occlusion performance is reduced.

【0006】本発明は上記技術水準に鑑み、従来技術に
おけるような不具合が解消された発電機冷却用水素ガス
の精製方法を提供しようとするものでる。
The present invention has been made in view of the above-mentioned state of the art, and an object of the present invention is to provide a method for purifying hydrogen gas for cooling a generator, in which the problems as in the prior art are eliminated.

【0007】[0007]

【課題を解決するための手段】不純物ガスによる被毒性
は、一つには合金の種類によっても異なると報じられて
いるが、本発明者らは他の大きな因子として合金粒径に
よって対被毒性が大きく異なることを見い出した。すな
わち合金粒径を小さくすることにより、被毒性が小さく
なるものであることを見い出した。
It has been reported that the toxicity of impurity gas depends on the type of alloy in part. However, the present inventors have found that another major factor is the toxicity of alloy gas depending on the alloy particle size. Was found to be very different. That is, it has been found that poisoning is reduced by reducing the alloy particle size.

【0008】本発明は上記知見によって完成されたもの
であって、不純物ガスを含有する発電機冷却用水素ガス
を水素吸蔵合金を使用して精製するに当って、発電機に
接続した水素吸蔵合金容器に水素吸蔵合金を充填し、高
純度の水素ガスを用いて水素ガスの吸蔵・放出を繰り返
すことにより、水素吸蔵合金の平均粒径を30μm以下
とする前処理を施すことを特徴とする発電機冷却用水素
ガスの精製方法である。
The present invention has been completed on the basis of the above findings, and comprises a hydrogen gas for cooling a generator containing an impurity gas.
Is purified using a hydrogen storage alloy,
Fill the connected hydrogen storage alloy container with hydrogen storage alloy,
Repeated occlusion and release of hydrogen gas using pure hydrogen gas
By doing so, the average particle diameter of the hydrogen storage alloy is 30 μm or less
A method for purifying hydrogen gas for cooling a generator, characterized by performing a pretreatment .

【0009】本発明においては、製造されたままの状態
の水素吸蔵合金粉末を発電機に接続した水素吸蔵合金容
器に充填し、装置の運転に先立ちボンベ等からの高純度
水素ガスを使用して水素の吸蔵・放出を繰り返すことに
より、水素吸蔵合金の平均粒径が30μm以下になるま
で微細化する前処理を施す。合金粒径微細化処理は、
えば一対の合金を充填した容器を用いて交互に吸蔵及び
放出を行なわせることにより行われれる。この前処理を
行った水素吸蔵合金を用いた発電機冷却水素ガスの
度上昇維持方法によれば、定検後の水素純度の低い領域
ら効率よく純度上昇維持を行うことができる。
[0009] In the present invention, the state as manufactured
Hydrogen storage alloy container with the hydrogen storage alloy powder connected to a generator
High-purity from cylinders etc. before operation of the equipment
Using hydrogen gas to repeatedly store and release hydrogen
The average particle size of the hydrogen storage alloy is 30 μm or less.
A pretreatment for miniaturization is performed. An example of alloy particle size reduction is
The cracking Rigyo by the fact to perform the insertion and extraction alternately with a container filled with a pair of alloy if e. According to pure <br/> degree increase maintenance method of the generator cooling hydrogen gas using a hydrogen storage alloy was subjected to the pretreatment may hydrogen impure region <br/> or al efficiency after regular inspection Purity increase can be maintained .

【0010】[0010]

【作用】水素吸蔵合金を用いた水素精製機能は、水素吸
蔵合金を内蔵する容器に不純物ガスを含む水素ガスを導
き、水素は水素吸蔵合金と反応して水素化物を形成し、
不純物ガスは合金容器内空間部に濃縮される。次いで濃
縮された不純物ガスを系外にパージした後水素吸蔵合金
より水素を放出させるものであるが、合金容器空間部に
濃縮した不純物ガスの一部は合金表面に吸蔵する。容器
空間部に存在する不純物ガスは圧力差及び水素吸蔵合金
より放出される水素によって容易に系外にパージされ
る。一方、合金表面に吸着した不純物ガスは水素吸蔵合
金より放出される水素によって離脱分離される。その分
離程度は放出ガス量に左右され、放出ガス量が多い程、
離脱分離は促進される。
[Function] The hydrogen purification function using a hydrogen storage alloy introduces a hydrogen gas containing an impurity gas into a container containing the hydrogen storage alloy, and hydrogen reacts with the hydrogen storage alloy to form a hydride.
The impurity gas is concentrated in the space inside the alloy container. Next, after the concentrated impurity gas is purged out of the system, hydrogen is released from the hydrogen storage alloy, but a part of the impurity gas concentrated in the alloy container space is occluded on the alloy surface. The impurity gas existing in the container space is easily purged out of the system by the pressure difference and the hydrogen released from the hydrogen storage alloy. On the other hand, the impurity gas adsorbed on the alloy surface is separated and separated by hydrogen released from the hydrogen storage alloy. The degree of separation depends on the amount of released gas.
Separation is promoted.

【0011】また水素吸蔵量は、一つにはその合金のも
つ基本性能(圧力P−水素吸蔵量C−温度T)と、容器
形状(空間容積)すなわち、水素吸蔵合金の水素吸蔵に
伴う不純物ガスの濃縮、分圧増加により定まる水素分圧
に従う水素吸蔵量と、もう一つには不純物ガスの合金表
面への吸着による吸蔵阻害が挙げられる。すなわち水素
吸蔵合金の水素吸蔵に伴ない不純物ガスの濃縮が起る
が、合金表面への吸着も進行し、ついには水素ガスと合
金との接触をさまたげ合金の水素化をはばむ。この現象
は合金の粒径に大きく影響される。
[0011] The hydrogen storage capacity is determined, in part, by the basic performance (pressure P-hydrogen storage capacity C-temperature T) of the alloy and the shape of the container (space volume), that is, the impurities associated with hydrogen storage of the hydrogen storage alloy. The hydrogen storage amount according to the hydrogen partial pressure determined by the gas concentration and the increase of the partial pressure, and the other is the storage inhibition due to the adsorption of the impurity gas to the alloy surface. That is, although the impurity gas is concentrated due to the hydrogen storage of the hydrogen storage alloy, the adsorption of the impurity gas to the alloy surface also progresses, and eventually the contact between the hydrogen gas and the alloy is stopped, and the hydrogenation of the alloy is stopped. This phenomenon is greatly affected by the grain size of the alloy.

【0012】本発明の如く事前に合金の微細化処理を行
うことにより合金の単位重量当りの表面積が増加し、水
素吸蔵量の増加が図れる。
The surface area per unit weight of the alloy can be increased by pre-refining the alloy as in the present invention, so that the hydrogen storage capacity can be increased.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1によって説明
する。1は発電機、2は水素吸蔵合金容器でA、Bの一
対からなる。容器形状は例えばシエルアンドチューブ方
式でチューブ内に水素吸蔵合金を収容し、シエル側を冷
・熱媒が流れる形状とする。4は冷・熱媒切替弁で各容
器に入口及び出口が付設され、図示省略の冷・熱媒源と
接続、切替えられるようになっている。3は吸蔵ライン
で発電機1内の水素を水素吸蔵合金容器2に導くもので
ある。5は不純物ガスパージラインで水素吸蔵合金容器
1内に濃縮した不純物ガスを系外にパージするものであ
る。6は放出ラインで、発電機1内水素を水素吸蔵合金
に吸蔵させ、濃縮した不純物ガスを系外にパージした
後、水素吸蔵合金より発生する水素ガスを発電機1に戻
すラインである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 denotes a generator, and 2 denotes a hydrogen storage alloy container, which comprises a pair of A and B. The container is formed, for example, by a shell-and-tube method, in which a hydrogen-absorbing alloy is accommodated in a tube, and a cooling / heating medium flows on the shell side. Reference numeral 4 denotes a cooling / heating medium switching valve, which is provided with an inlet and an outlet for each container so as to be connected and switched to a cooling / heating medium source (not shown). Reference numeral 3 denotes an occlusion line for guiding hydrogen in the generator 1 to the hydrogen storage alloy container 2. Reference numeral 5 denotes an impurity gas purge line for purging the impurity gas concentrated in the hydrogen storage alloy container 1 to the outside of the system. Reference numeral 6 denotes a discharge line which stores hydrogen in the generator 1 in the hydrogen storage alloy, purges the concentrated impurity gas out of the system, and returns the hydrogen gas generated from the hydrogen storage alloy to the generator 1.

【0014】次に作用について記す。発電機1内の水素
ガスは水素吸蔵合金容器2のいずれかに導くライン3系
統となり、その容器2には冷媒を通し吸蔵を促進させ
る。その後、容器2内に濃縮した不純物ガスをパージラ
イン5より容器2外にパージし、次に容器2に熱媒を通
じ水素吸蔵合金より水素を放出させ、放出ライン6より
発電機1に戻す。一対の各容器2は交互に吸蔵又は放出
させるようバルブが切り替るように制御される。
Next, the operation will be described. The hydrogen gas in the generator 1 becomes a three-line system that leads to any of the hydrogen storage alloy containers 2, and a refrigerant is passed through the container 2 to promote storage. After that, the impurity gas concentrated in the container 2 is purged out of the container 2 through the purge line 5, and then the hydrogen is released from the hydrogen storage alloy through the heating medium through the container 2, and returned to the generator 1 through the release line 6. The valves of the pair of containers 2 are controlled so that the valves are alternately inserted and extracted.

【0015】次に、この方法に用いた水素吸蔵合金の前
処理方法及び性状について示す。微細化処理方法は図2
に示す通り、水素吸蔵合金容器2を接続し、内部に水素
ボンベ7より水素を充填した後、水素吸蔵合金容器2に
冷・熱媒を交互に通じ、各々吸蔵又は放出をくり返し
た。その時のくり返し回数Nと合金の粒径分布を図3に
示す。なお、図3中、相対体積とは最も体積の大きい粒
径のものを100とし、それに対する各粒径の比較体積
を示す。
Next, the pretreatment method and properties of the hydrogen storage alloy used in this method will be described. Fig. 2
As shown in Fig. 7, after the hydrogen storage alloy container 2 was connected and hydrogen was filled from the inside of the hydrogen cylinder 7, a cooling medium and a heat medium were alternately passed through the hydrogen storage alloy container 2 to repeatedly store or release the hydrogen. FIG. 3 shows the number of repetitions N and the particle size distribution of the alloy at that time. In FIG. 3, the relative volume is defined as 100 where the largest particle size is 100, and the relative volume of each particle size relative thereto is shown.

【0016】また、合金及び操作条件を以下に示す。 合金 : LaMmNi5 (Mm:ミッシュメタル) 熱媒 : 温水 80℃ 冷媒 : 水道水 30℃ 系内平均水素圧力 : 5kg/cm2 ・G 吸蔵・放出サイクル時間 : 吸蔵10分、放出10分The alloys and operating conditions are shown below. Alloy: LaMmNi 5 (Mm: misch metal) Heat medium: Hot water 80 ° C. Refrigerant: Tap water 30 ° C. Average hydrogen pressure in the system: 5 kg / cm 2 · G Storage / release cycle time: Storage / release 10 minutes, release 10 minutes

【0017】また、図4に前処理として実施した吸蔵及
び放出のくり返し回数をN=20、N=1000、N=
1500、N=2000とした水素吸蔵合金について下
記組成の発電機ガスを吸蔵及び放出させた時の吸蔵放出
くり返し回数と水素吸蔵量の関係を示す。
FIG. 4 shows the number of cycles of occlusion and release performed as preprocessing, N = 20, N = 1000, and N = 20.
The relationship between the number of cycles of occlusion and release and the amount of hydrogen occlusion when a generator gas having the following composition is occluded and released for a hydrogen storage alloy with 1500 and N = 2000 is shown.

【0018】図4に示す通り、前処理として実施した吸
蔵・放出回数N=20の場合には吸蔵くり返し回数4回
で1回目の約13%まで水素吸蔵量は低下し、N=10
00の場合同じく約50%まで低下は吸蔵くり返し回数
4回においても生ずるが、N=2000の場合、ほぼ1
回目の水素吸蔵量を維持した。又N=1500(平均粒
径30μm )の場合初期においては吸蔵量の低下を示す
が4回目以降は一定の吸蔵量を維持した。
As shown in FIG. 4, when the number of occlusions / releases N = 20 performed as a pre-treatment, the number of storage occlusions is four, and the amount of hydrogen occlusion decreases to about 13% for the first time, and N = 10.
In the case of 00, similarly, the decrease to about 50% occurs even when the number of storage cycles is four.
The second hydrogen storage amount was maintained. In the case of N = 1500 (average particle size 30 μm), the amount of occlusion decreases at the initial stage, but the amount of occlusion is kept constant after the fourth time.

【0019】 発電機ガス組成 H2 : 95.5 vol% H2 O : 0.04vol% O2 : 0.30 〃 その他 : 0.05 〃 N2 : 1.60 〃 CO2 : 0.50 〃Generator gas composition H 2 : 95.5 vol% H 2 O: 0.04 vol% O 2 : 0.30 〃 Others: 0.05 N N 2 : 1.60 CO CO 2 : 0.50 〃

【0020】また図5に合金の平均粒径と吸蔵量の低下
率の関係を示す。図5に示すように、合金の平均粒径を
20μm とすることにより吸蔵量を安定しているが平均
粒径40μm 及び100μm の場合吸蔵率の低下が認め
られ、回数と重ねる毎にその低下率は大きくなる。平均
粒径30μm の場合においては4回目以降一定の吸蔵量
を維持していることから判るように水素吸蔵合金の平均
粒径を30μm 以下好ましくは20μm 以下にすること
が必要である。
FIG. 5 shows the relationship between the average particle size of the alloy and the rate of decrease in the amount of occlusion. As shown in FIG. 5, the amount of occlusion is stabilized by setting the average particle size of the alloy to 20 μm, but the occlusion rate decreases when the average particle size is 40 μm and 100 μm. Becomes larger. In the case of an average particle size of 30 μm, it is necessary to keep the average particle size of the hydrogen storage alloy to 30 μm or less, preferably 20 μm or less, as can be seen from the fact that a constant storage amount is maintained after the fourth time.

【0021】[0021]

【発明の効果】本発明の如く水素吸蔵合金を前処理とし
て粒径を平均30μm、特に20μm以下に微細化処理す
ることにより、比較的低い水素純度から安定的に水素吸
蔵量が維持され、水素精製装置の運用が可能となり、発
電機の定期検査後の機内水素ガス置換回数も減少しそれ
に供される水素消費量も削減がはかれる。
According to the present invention, the hydrogen storage alloy is pretreated and the particle size is reduced to an average of 30 μm, particularly 20 μm or less by pretreatment, so that the hydrogen storage amount can be stably maintained from a relatively low hydrogen purity. The operation of the refining device becomes possible, the number of hydrogen gas replacements in the machine after the periodic inspection of the generator is reduced, and the amount of hydrogen consumed for it is also reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する発電機内水素ガスの精製の一
態様の説明図。
FIG. 1 is an explanatory diagram of one embodiment of purification of hydrogen gas in a generator to which the present invention is applied.

【図2】本発明で使用する水素吸蔵合金の微細化処理の
一態様の説明図。
FIG. 2 is an explanatory view of one embodiment of a process for miniaturizing a hydrogen storage alloy used in the present invention.

【図3】図2で示した態様で行った時の微細化処理くり
返し回数に対する水素吸蔵合金の粒度分布、相対体積の
関係を示す図表。
FIG. 3 is a chart showing the relationship between the number of repetitions of the refinement treatment and the particle size distribution and relative volume of the hydrogen storage alloy when the treatment is performed in the mode shown in FIG. 2;

【図4】図2で示した態様で行った微細化処理くり返し
回数に対する水素吸蔵合金の水素吸蔵量を示す図表。
FIG. 4 is a table showing the amount of hydrogen occlusion of the hydrogen occlusion alloy with respect to the number of repetitions of the refinement treatment performed in the mode shown in FIG. 2;

【図5】水素吸蔵合金の平均粒径と水素吸蔵率の関係を
示す図表。
FIG. 5 is a table showing a relationship between an average particle diameter of a hydrogen storage alloy and a hydrogen storage rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 得重 浩二 広島市中区小町4番33号 中国電力株式 会社内 (72)発明者 出羽 昭夫 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 宮本 博 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 西田 定二 広島県三原市糸崎町5007番地 三菱重工 業株式会三原製作所内 (56)参考文献 特開 昭63−79701(JP,A) 特開 昭63−85001(JP,A) 特開 昭63−264869(JP,A) 特開 昭62−187101(JP,A) 特開 平1−246101(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 3/00 - 3/58 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Tokushige, Inventor Koji 4-33, Komachi, Naka-ku, Hiroshima City Inside Chugoku Electric Power Company (72) Inventor Akio Dewa 4--22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi Sanishi Heavy Industries Hiroshima Research Institute, Inc. (72) Hiroshi Miyamoto 4-2-2 Kannon Shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries, Ltd.Hiroshima Research Institute Co., Ltd. (72) Sadaji Nishida 5007 Itozakicho, Mihara City, Hiroshima Prefecture Mitsubishi Heavy Industries (56) References JP-A-63-79701 (JP, A) JP-A-63-85001 (JP, A) JP-A-63-264869 (JP, A) JP-A-62-187101 ( JP, A) JP-A-1-246101 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01B 3/00-3/58

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不純物ガスを含有する発電機冷却用水素
ガスを水素吸蔵合金を使用して精製するに当って、発電
機に接続した水素吸蔵合金容器に水素吸蔵合金を充填
し、高純度の水素ガスを用いて水素ガスの吸蔵・放出を
繰り返すことにより、水素吸蔵合金の平均粒径を30μ
m以下とする前処理を施すことを特徴とする発電機冷却
水素ガスの精製方法。
1. A generator cooling hydrogen gas containing impurity gas hitting the purified using a hydrogen storage alloy, the generator
Filling the hydrogen storage alloy container connected to the machine
And use high-purity hydrogen gas to store and release hydrogen gas.
By repeating, the average particle size of the hydrogen storage
generator cooling, characterized in that pretreated m or less
Of hydrogen gas for industrial use .
JP3116191A 1991-05-21 1991-05-21 Hydrogen gas purification method Expired - Fee Related JP2966570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116191A JP2966570B2 (en) 1991-05-21 1991-05-21 Hydrogen gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116191A JP2966570B2 (en) 1991-05-21 1991-05-21 Hydrogen gas purification method

Publications (2)

Publication Number Publication Date
JPH0597403A JPH0597403A (en) 1993-04-20
JP2966570B2 true JP2966570B2 (en) 1999-10-25

Family

ID=14681091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116191A Expired - Fee Related JP2966570B2 (en) 1991-05-21 1991-05-21 Hydrogen gas purification method

Country Status (1)

Country Link
JP (1) JP2966570B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498188B2 (en) * 2010-02-08 2014-05-21 株式会社神戸製鋼所 Container for hydrogen separation and purification
US8378535B2 (en) 2010-02-26 2013-02-19 General Electric Company Scavenging filter system for hydrogen-cooled dynamoelectric machines

Also Published As

Publication number Publication date
JPH0597403A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US5080875A (en) Process and apparatus for the purification of hydrogen gas
US5895519A (en) Method and apparatus for purifying hydrogen gas
JPS5953201B2 (en) Hydrogen gas purification method
KR100357293B1 (en) Hydrogen Gas Purification Method
US4736779A (en) Process and apparatus for using a hydride-forming alloy to store hydrogen
Bernauer et al. Properties of metal hydrides for use in industrial applications
JP2966570B2 (en) Hydrogen gas purification method
US9878277B2 (en) Regeneration of a hydrogen impurity trap using the heat exiting a hydride tank
US5122338A (en) Hydrogen heat pump alloy combination
US5851690A (en) Hydrogen absorbing alloys
JP2018035397A (en) Hydrogen storage alloy and hydrogen purification device
JPS6141978B2 (en)
JP5237873B2 (en) Hydrogen purification method and hydrogen storage alloy reaction vessel
JP2008297130A (en) Method for concentrating ozone gas
US4215008A (en) Rare earth-containing alloys and method for purification of hydrogen gas therewith
JPS6348802B2 (en)
JP2607677B2 (en) Generator hydrogen purity maintenance device by metal hydride
JPS5947022B2 (en) Alloy for hydrogen storage
JP2019099847A (en) Feeding device and feeding method of acetylene gas for vacuum carburization furnace
JPS6340703A (en) Method for refining gaseous hydrogen
JPS6086005A (en) Hydrogen gas purification
JP2001313049A (en) Hydrogen supply device for fuel cell
JPH05310403A (en) Gas purification process and apparatus therefor
JPH11137969A (en) Method for separating and recovering hydrogen isotope and device therefor
JPH0940401A (en) Purity maintaining device for hydrogen sealed in generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees