JP2964974B2 - Foreign matter inspection method - Google Patents

Foreign matter inspection method

Info

Publication number
JP2964974B2
JP2964974B2 JP2883397A JP2883397A JP2964974B2 JP 2964974 B2 JP2964974 B2 JP 2964974B2 JP 2883397 A JP2883397 A JP 2883397A JP 2883397 A JP2883397 A JP 2883397A JP 2964974 B2 JP2964974 B2 JP 2964974B2
Authority
JP
Japan
Prior art keywords
foreign matter
scattered light
intensity
inspection method
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2883397A
Other languages
Japanese (ja)
Other versions
JPH10227743A (en
Inventor
敏孝 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2883397A priority Critical patent/JP2964974B2/en
Publication of JPH10227743A publication Critical patent/JPH10227743A/en
Application granted granted Critical
Publication of JP2964974B2 publication Critical patent/JP2964974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は異物検査方法に係わ
り、特にレーザー光を使用した半導体ウエハの検査方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign matter inspection method, and more particularly to a semiconductor wafer inspection method using laser light.

【0002】[0002]

【従来の技術】従来のこの種の半導体装置の検査方法に
ついて、図4を参照して説明する。
2. Description of the Related Art A conventional method of inspecting a semiconductor device of this type will be described with reference to FIG.

【0003】図4(A)は、異物検査装置を用いて基板
表面をレーザー光で走査することにより得られる散乱光
強度取込み波形図であり、縦軸に検出された散乱光強
度、横軸に時間(走査時間)をとり、(a)−(e)の
5つの波形が示されている。
FIG. 4A is a scattered light intensity waveform diagram obtained by scanning the surface of a substrate with a laser beam using a foreign matter inspection device, wherein the scattered light intensity detected on the vertical axis is plotted on the horizontal axis. Time (scan time) is shown, and five waveforms (a) to (e) are shown.

【0004】図4(B)は、図4(A)の波形を任意の
散乱光の強度(各波形のピーク値、以下同様)で分類し
た結果の一例である。そして、これらの散乱光強度取込
み波形を得るための検査装置の構成図は、図2である。
FIG. 4B shows an example of a result obtained by classifying the waveform of FIG. 4A by an arbitrary intensity of scattered light (the peak value of each waveform, the same applies hereinafter). FIG. 2 is a configuration diagram of an inspection apparatus for obtaining these scattered light intensity acquisition waveforms.

【0005】図2を参照して、レーザー3から出力され
るレーザー光1は、基板駆動部7により直進回転運動
(渦巻き状)する半導体ウエハ(以後、ウエハ、と称
す)5の表面に垂直に照射される。
Referring to FIG. 2, a laser beam 1 output from a laser 3 is perpendicular to a surface of a semiconductor wafer (hereinafter, referred to as a wafer) 5 which is linearly and rotationally moved (spiral-shaped) by a substrate driving unit 7. Irradiated.

【0006】ウエハ5上に異物6がない場合は、ウエハ
表面に垂直に入射してきたレーザー光1は全反射し、レ
ーザー光の散乱を伴わない。よって、ウエハ表面より任
意の角度で取り付けれれている光検出器4では、光を検
出しない。
When there is no foreign matter 6 on the wafer 5, the laser light 1 which is vertically incident on the wafer surface is totally reflected and does not involve scattering of the laser light. Therefore, the light detector 4 attached at an arbitrary angle from the wafer surface does not detect light.

【0007】ウエハ5上に異物6がある場合は、ウエハ
表面に垂直に入射してきたレーザー光1は異物6により
散乱され、光検出器4により散乱光強度として検出され
る。レーザー光1でウエハ5全面を渦巻状に走査して得
られる散乱光の散乱光強度変化を連続的に取り込み、そ
の散乱光強度取込み波形の一部を示したのが、図4
(A)である。
When there is a foreign substance 6 on the wafer 5, the laser beam 1 which is vertically incident on the wafer surface is scattered by the foreign substance 6, and is detected by the photodetector 4 as a scattered light intensity. FIG. 4 shows a scattered light intensity change waveform of the scattered light intensity obtained by continuously scanning the entire surface of the wafer 5 with the laser light 1 in a spiral shape.
(A).

【0008】従来のこの種の検査装置は、各波形におい
て得られた散乱光の強度を任意のレベル(L1、L2、
L3)で類別し、散乱光の強度の大きい場合は大きい異
物、小さい場合は小さい異物として、散乱光の強度を異
物の大小に置き換えて分類していた。
In this type of conventional inspection apparatus, the intensity of the scattered light obtained in each waveform is adjusted to an arbitrary level (L1, L2,
L3), the scattered light was classified as a large foreign substance when the intensity of the scattered light was large, and as a small foreign substance when the intensity of the scattered light was small.

【0009】図4(A)を元に散乱光の強度を異物の大
小で各波形を分類すると、散乱光の強度XがL1<X<
L2に該当する異物(L1レベル)は2ヶになる。同様
に散乱光の強度XがL2<X<L3に該当する異物(L
2レベル)も2ヶになる。L3レベルの異物は散乱光の
強度XがL3<Xであり、0ヶである。これらの結果を
示したのが図4(B)である。
When the intensity of the scattered light is classified according to the magnitude of the foreign matter based on FIG. 4A, the intensity X of the scattered light is L1 <X <
The number of foreign substances (L1 level) corresponding to L2 is two. Similarly, a foreign substance (L) whose scattered light intensity X satisfies L2 <X <L3
2 levels) will be 2 months. The foreign matter at the L3 level has a scattered light intensity X of L3 <X and is zero. FIG. 4B shows these results.

【0010】従来のこの種の検査装置の場合、散乱光の
強度の大小のみで異物の大小を表現していた。その結
果、異物の種類による散乱率の違いが、散乱光の強度と
異物の大小との関係を不明確にしていた。
In the case of a conventional inspection apparatus of this type, the size of a foreign substance is expressed only by the intensity of the scattered light. As a result, the difference in scattering rate depending on the type of foreign matter has made the relationship between the intensity of scattered light and the size of foreign matter unclear.

【0011】例えば、同一状況でレーザー光を照射した
とき、散乱率の違いにより、同じ大きさでもシリコンの
破片は樹脂の破片より散乱光の強度が大きくなる。
For example, when a laser beam is irradiated in the same situation, the intensity of the scattered light of the silicon fragment becomes larger than that of the resin fragment even if the size is the same due to the difference in the scattering rate.

【0012】よって、散乱光の強度のみでの異物の大き
さ分類を行うと、散乱率の違う異物が混在した場合、異
物の大きさでの分類が不正確になる。
Therefore, if the size classification of the foreign matter based only on the intensity of the scattered light is performed, the classification based on the size of the foreign matter becomes inaccurate when the foreign matter having a different scattering rate is mixed.

【0013】次に特開昭62−121339号公報に
「表面欠陥検査装置」と題して開示されてある従来技術
を説明する。これは、異物が付着している基板材料の光
学的性質に依存せずに、同一基準で異物の大きさを判別
する装置である。したがって、異物種による散乱率の違
いは特に考慮されていないので、同一基準で散乱率の異
なる異物の大きさを正しく判別することが出来ない。
Next, a conventional technique disclosed in Japanese Patent Application Laid-Open No. 62-121339 entitled "Surface Defect Inspection Apparatus" will be described. This is an apparatus for determining the size of a foreign substance on the same basis without depending on the optical properties of the substrate material to which the foreign substance is attached. Therefore, since the difference in the scattering rate depending on the kind of the foreign matter is not particularly considered, it is impossible to correctly determine the size of the foreign matter having a different scattering rate on the same basis.

【0014】続いて特開平4−245660号公報に
「異物検査方法」と題して開示されてある従来技術を説
明する。これは、ウエハ基板上にレーザー光を低角度で
2本直交させて異物に照射することで、異物の付着個
数、基板上の付着位置と形状を正確に検査しようとする
方法である。したがってこの従来技術においても、異物
種固有の散乱率の違いが考慮されていないので、散乱率
の異なる異物の大きさを正しく分類する事は不可能であ
る。
Next, a description will be given of a conventional technique disclosed in Japanese Patent Application Laid-Open No. Hei 4-245660 entitled "Method of Inspection of Foreign Substances". This is a method in which two laser beams are orthogonally irradiated at a low angle on a wafer substrate to irradiate a foreign substance, thereby accurately inspecting the number of adhered foreign substances, the attached position and the shape on the substrate. Therefore, even in this prior art, it is impossible to correctly classify the sizes of the foreign substances having different scattering rates because the difference in the scattering rate specific to the foreign substance type is not considered.

【0015】最後に特開平5−6929号公報に「ウエ
ハ異物検査方法及び装置」と題して開示されてある従来
技術を説明する。これは、予め大きさの分かっている異
物にレーザー光を照射して得られた反射光と散乱光の関
係から、未知の異物の大きさを算出するものである。こ
の場合は、予め異物に対する反射光と散乱光の関係を確
認するので、散乱率の異なる異物についても、ある程度
の分類は可能であると思われる。しかしながら、基板上
に付着する異物を全て事前に確認することは無理であ
り、よって、基板上の異物を全て分類する事はできな
い。
Finally, a conventional technique disclosed in Japanese Patent Application Laid-Open No. Hei 5-6929, entitled "Method and Apparatus for Inspecting Wafer Contaminants" will be described. In this method, the size of an unknown foreign substance is calculated from the relationship between reflected light and scattered light obtained by irradiating a foreign substance whose size is known in advance with laser light. In this case, since the relationship between the reflected light and the scattered light with respect to the foreign matter is checked in advance, it is considered that foreign matter having different scattering rates can be classified to some extent. However, it is impossible to check in advance all foreign substances adhering to the substrate, and therefore, it is not possible to classify all foreign substances on the substrate.

【0016】[0016]

【発明が解決しようとする課題】以上説明したように従
来の問題点は、散乱光の強度のみで異物の大きさ分類を
行うと、散乱率の異なる異物が混在した場合、その大き
さの分類が不正確になる点である。
As described above, the conventional problem is that when the size of foreign matter is classified only by the intensity of scattered light, if foreign matter having different scattering rates coexist, the size of the foreign matter is classified. Is inaccurate.

【0017】その理由は、従来のこの種の検査方法の場
合、散乱光の強度の大小のみで異物を表現していたか
ら、その結果、異物の種類による散乱率の違いが、散乱
光の強度と異物の大小との関係を不明確にしていたから
である。
The reason is that, in the case of the conventional inspection method of this type, foreign matter is represented only by the magnitude of the scattered light, and as a result, the difference in the scattering rate depending on the type of the foreign matter causes the difference between the scattered light intensity and the foreign matter. This was because it made the relationship between the size and the size unclear.

【0018】例えば、同一状況でレーザー光を照射した
とき、散乱率の違いにより、シリコンの破片は樹脂の破
片より散乱光の強度が大きくなる。よって、従来のこの
種の検査方法では、同じ大きさの破片でも、シリコンの
破片は樹脂の破片より大きい異物と判断してしまう。
For example, when a laser beam is irradiated in the same situation, the intensity of the scattered light of the silicon fragments becomes larger than that of the resin fragments due to the difference in the scattering rate. Therefore, in this type of conventional inspection method, even if the pieces have the same size, the silicon pieces are determined to be foreign matters larger than the resin pieces.

【0019】本発明の目的は、同一基準で散乱率の異な
る種類の異物の大きさを正しく判別できる検査方法を提
供することである。
An object of the present invention is to provide an inspection method capable of correctly determining the size of foreign substances having different scattering rates on the same basis.

【0020】[0020]

【課題を解決するための手段】本発明の特徴は、レーザ
ー光を使用して基板表面の異物を検査する方法におい
て、前記基板表面をレーザー光で走査し、そのレーザー
光が異物に照射された時に得られる散乱光の強度および
その強度分布の幅を用いて異物を分類する異物検査方法
にある。ここで、前記基板は半導体装置の製造段階にお
ける半導体ウエハであることが好ましい。この場合、前
記異物にはシリコンの破片と樹脂の破片とを含み、前記
シリコンの破片と前記樹脂の破片とを分類することがで
きる。また、前記強度分布の幅は所定の散乱光強度レベ
ル以上の時間で示すことができる。あるいは、前記強度
分布の幅はそれぞれの波形において、(散乱光強度分布
の積分値)/(散乱光の強度:波形のピーク値)で算出
した時間で示すことができる。
SUMMARY OF THE INVENTION A feature of the present invention is a method for inspecting foreign matter on a substrate surface using a laser beam, wherein the substrate surface is scanned with the laser beam and the laser beam is irradiated on the foreign matter. There is a foreign matter inspection method for classifying foreign matter using the intensity of scattered light and the width of the intensity distribution obtained sometimes. Here, it is preferable that the substrate is a semiconductor wafer in a manufacturing stage of a semiconductor device. In this case, the foreign matter includes a piece of silicon and a piece of resin, and the piece of silicon and the piece of resin can be classified. Further, the width of the intensity distribution can be indicated by a time longer than a predetermined scattered light intensity level. Alternatively, the width of the intensity distribution can be indicated by the time calculated by (integrated value of scattered light intensity distribution) / (intensity of scattered light: peak value of waveform) in each waveform.

【0021】すなわち本発明は、散乱光の強度とその強
度分布との関係は、任意の異物から出る異物固有の関係
があることに着目し、散乱光の強度とその強度分布の幅
をそれぞれ適当な値で分類するものである。
That is, the present invention focuses on the fact that the relationship between the intensity of scattered light and its intensity distribution has a unique relationship with foreign matter emitted from any foreign matter, and adjusts the intensity of the scattered light and the width of the intensity distribution appropriately. Values.

【0022】[0022]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0023】図1は本発明の第1の実施の形態の検査方
法を示す図である。図1(A)は図4(A)と同様に、
基板表面をレーザー光で走査し、得られる散乱光強度取
込み波形図であり、縦軸に検出された散乱光強度、横軸
に時間(走査時間)をとり、(a)−(e)の5つの波
形が示されている。
FIG. 1 is a diagram showing an inspection method according to a first embodiment of the present invention. FIG. 1A is similar to FIG.
FIG. 4 is a waveform diagram of the scattered light intensity obtained by scanning the substrate surface with laser light, wherein the detected scattered light intensity is plotted on the vertical axis, and time (scanning time) is plotted on the horizontal axis. Two waveforms are shown.

【0024】すなわち、図1(A)は、本発明の第1の
実施の形態の検査方法で基板表面、例えばウエハ表面を
レーザー光で走査し、得られる散乱光強度取込み波形の
概念図である。図1(B)は、図1(A)の波形を任意
の散乱光の強度すなわち波形のピーク値と、その強度波
形の幅(時間)とで分類した結果の一例である。そし
て、これらの散乱光強度取込波形を得るために図2で示
す検査装置を用いることが出来る。
That is, FIG. 1A is a conceptual diagram of a scattered light intensity acquisition waveform obtained by scanning a substrate surface, for example, a wafer surface, with a laser beam in the inspection method according to the first embodiment of the present invention. . FIG. 1B is an example of a result obtained by classifying the waveform of FIG. 1A by the intensity of an arbitrary scattered light, that is, the peak value of the waveform and the width (time) of the intensity waveform. The inspection apparatus shown in FIG. 2 can be used to obtain these scattered light intensity acquisition waveforms.

【0025】レーザー光3から出力される例えば30m
Wのレーザー光1は、基板駆動部7により直進回転運動
(渦巻き状)するウエハ5表面に垂直に照射される。ウ
エハ5上に異物6がない場合は、ウエハ表面に垂直に入
射してきたレーザー光1は全反射し、レーザー光の散乱
を伴わない。よって、ウエハ表面より任意の角度、例え
ば30度の角度で取り付けられている光検出器4では、
光検出しない。
For example, 30 m output from the laser beam 3
The laser beam 1 of W is applied perpendicularly to the surface of the wafer 5 that is in a linearly rotating motion (a spiral shape) by the substrate driving unit 7. When there is no foreign matter 6 on the wafer 5, the laser light 1 vertically incident on the wafer surface is totally reflected and does not involve scattering of the laser light. Therefore, in the photodetector 4 mounted at an arbitrary angle from the wafer surface, for example, at an angle of 30 degrees,
No light detection.

【0026】ウエハ5上に異物がある場合は、ウエハ表
面に垂直に入射してきたレーザー光1は異物6により散
乱され、ウエハ表面より任意の角度、例えば30度の角
度で取り付けられている光検出器4により散乱光強度と
して検出される。
When there is a foreign matter on the wafer 5, the laser beam 1 which has been incident perpendicularly on the wafer surface is scattered by the foreign matter 6, and the light detecting means attached at an arbitrary angle from the wafer surface, for example, at an angle of 30 degrees. The light is detected by the detector 4 as scattered light intensity.

【0027】レーザー光1でウエハ5全面を渦巻状に走
査して得られる散乱光の散乱光強度変化を連続的に取り
組み、その散乱光強度取込波形の一部分を示したのが、
図1(A)である。
The scattered light intensity change of the scattered light obtained by spirally scanning the entire surface of the wafer 5 with the laser light 1 is continuously addressed, and a part of the scattered light intensity acquisition waveform is shown.
It is FIG. 1 (A).

【0028】本発明の検査方法では、得られた散乱光の
強度(波形のピーク値)Xを任意のレベル(L1、L
2、L3)で類別し、さらに散乱光強度分布の幅Yでも
任意のレベル(W1、W2、W3)で類別し、2次元的
に異物を分類する。
In the inspection method of the present invention, the intensity (peak value of the waveform) X of the obtained scattered light is set to an arbitrary level (L1, L2).
2, L3), and furthermore, the width Y of the scattered light intensity distribution is also classified at an arbitrary level (W1, W2, W3), and the foreign matter is classified two-dimensionally.

【0029】図1(A)を元に散乱光の強度とその強度
分布の幅で異物種と大きさに分類すると、例えば散乱光
の強度がL1<X<L2、強度分布幅がW1<Y<W2
に該当する異物(L1W1レベル)は1ヶになる。
When the intensity of the scattered light and the width of the intensity distribution are classified into foreign matter types and sizes based on FIG. 1A, for example, the intensity of the scattered light is L1 <X <L2, and the intensity distribution width is W1 <Y. <W2
Is one (L1W1 level).

【0030】同様に、散乱光の強度がL2<X<L3、
強度分布幅がW3<Yに該当する異物(L2W3レベ
ル)も1ヶになる。
Similarly, when the intensity of the scattered light is L2 <X <L3,
There is also one foreign matter (L2W3 level) whose intensity distribution width satisfies W3 <Y.

【0031】L3レベルの異物は散乱光の強度がL3<
Xであり、0ヶである。これらの結果を示したのが図1
(B)である。
For a foreign substance at the L3 level, the intensity of the scattered light is L3 <
X, zero. FIG. 1 shows these results.
(B).

【0032】図1(A)において、例えば、シリコンの
破片から得られる散乱光強度波形はナローな波形(c)
であり、樹脂のは破片から得られる散乱光強度波形はブ
ロードな波形(d)である。
In FIG. 1A, for example, the scattered light intensity waveform obtained from silicon fragments has a narrow waveform (c).
And the scattered light intensity waveform obtained from the resin fragments is a broad waveform (d).

【0033】例えば、散乱光の強度をしきい値10m
V、15mV、40mVで類別し、更に所定の散乱光強
度レベル(異物の存在が問題とならない程度の低レベ
ル)L0をクロスする波形部間の幅で規定する散乱光強
度分布の幅Yでも、走査している間に散乱光を検知して
いる時間のしきい値0.05m秒、0.07m秒、0.
10m秒で分類することにより、2次元的に異物を分類
する。その結果、例えば散乱光の強度Xが10mV<X
15mV、強度分布幅Yが0.05m秒<Y<0.07
m秒に該当する異物(L1W1レベル)は1ヶになる。
同様に散乱光強度が10mV<X15mV、強度分布幅
が0.1m秒<Yに該当する異物(L2W3レベル)も
1ヶになる。L3レベルの異物は散乱光強度が40mV
<Xであり、0ヶである。これらの結果を示したのが図
1(B)である。
For example, when the intensity of the scattered light is
V, 15 mV, and 40 mV, and furthermore, the width Y of the scattered light intensity distribution defined by the width between waveform portions crossing a predetermined scattered light intensity level (a low level at which the presence of foreign matter does not matter) L0, The threshold value of the time during which scattered light is detected during scanning is 0.05 ms, 0.07 ms, 0.
Foreign matter is classified two-dimensionally by performing classification in 10 ms. As a result, for example, the intensity X of the scattered light is 10 mV <X
15 mV, intensity distribution width Y is 0.05 ms <Y <0.07
The number of foreign substances (L1W1 level) corresponding to m seconds is one.
Similarly, the number of foreign substances (L2W3 level) having a scattered light intensity of 10 mV <X15 mV and an intensity distribution width of 0.1 ms <Y is also one. L3 level foreign matter has a scattered light intensity of 40 mV
<X, zero. FIG. 1B shows these results.

【0034】本発明の検査方法の場合、散乱光の強度
と、その強度分布の幅を異物の分類に利用する事で、同
一基準で散乱率の異なる異物の大きさを正しく判別する
ことができる。例えば、同一状況でレーザー光を照射し
たときの散乱率の違いにより、シリコンの破片は樹脂の
破片より散乱光強度が大きくなるが、強度分布の幅が小
さくなるので、2次元的に異物を分類すると異なるエリ
アに分類される。
In the case of the inspection method of the present invention, by using the intensity of the scattered light and the width of the intensity distribution for the classification of the foreign matter, it is possible to correctly determine the size of the foreign matter having a different scattering rate on the same basis. . For example, due to the difference in the scattering rate when irradiating laser light in the same situation, the scattered light intensity of the silicon fragments is larger than that of the resin fragments, but the width of the intensity distribution becomes smaller, so that the foreign substances are classified two-dimensionally. Then, they are classified into different areas.

【0035】すなわち、散乱率の違う異物が混在した場
合でも、散乱光の強度とその強度分布の幅との関係は、
任意の異物から出る異物固有の関係があるので、異物種
別に大きさを正確に分類する事が出来る。
That is, even when foreign substances having different scattering rates are mixed, the relationship between the intensity of the scattered light and the width of the intensity distribution is as follows.
Since there is a unique relationship between foreign matter coming from an arbitrary foreign matter, the size can be accurately classified into foreign matter types.

【0036】次に、本発明の第2の実施の形態について
図面を参照して詳細に説明する。
Next, a second embodiment of the present invention will be described in detail with reference to the drawings.

【0037】図3は本発明の第2の実施の形態の検査方
法を示す図である。図1(A)と同様に図3(A)は、
本発明の第2の実施の形態の検査方法で基板表面、例え
ばウエハ表面をレーザー光で走査し、得られる散乱光強
度取込み波形の概念図である。図3(B)は、図3
(A)の波形を任意の散乱光の強度Xと、強度分布の積
分値を散乱光の強度(各波形のピーク値)で除すことで
算出した時間幅幅Yをw値で分類した結果の一例であ
る。そして、これらの散乱光強度取込波形を得るために
も図2で示す検査装置を用いることが出来る。
FIG. 3 is a diagram showing an inspection method according to the second embodiment of the present invention. Like FIG. 1A, FIG.
FIG. 9 is a conceptual diagram of a scattered light intensity acquisition waveform obtained by scanning a substrate surface, for example, a wafer surface, with laser light in the inspection method according to the second embodiment of the present invention. FIG.
A result obtained by classifying the time width Y calculated by dividing the waveform of (A) by an arbitrary scattered light intensity X and an integrated value of the intensity distribution by the scattered light intensity (peak value of each waveform) by w value. This is an example. The inspection apparatus shown in FIG. 2 can also be used to obtain these scattered light intensity acquisition waveforms.

【0038】すなわち、第1の実施の形態と同様の方法
で得られる散乱光の散乱光強度変化を連続的に取り組
み、その散乱光強度取込み波形の一部分を示した図3
(A)において、得られた散乱光の強度(波形のピーク
値)Xを任意のレベル(L1、L2、L3)で類別し、
更に散乱光強度分布の積分値(各波形(a)、(b)、
(c)、(d)において、右上のハチングを付した面
積)を散乱光の強度Xでそれぞれ除して算出したY値を
任意のレベル(w1、w2、w3)で類別し、2次元的
に異物を分類する。
That is, the scattered light intensity change of the scattered light obtained by the same method as in the first embodiment is continuously addressed, and FIG.
In (A), the intensity (peak value of the waveform) X of the obtained scattered light is classified at an arbitrary level (L1, L2, L3),
Further, the integral value of the scattered light intensity distribution (each waveform (a), (b),
In (c) and (d), the Y value calculated by dividing the upper right hatched area) by the scattered light intensity X is classified at an arbitrary level (w1, w2, w3), and the two-dimensional value is obtained. Classify foreign substances.

【0039】図3(A)を元に散乱光の強度Xとその幅
値Yで異物の大きさを分類すると、例えば散乱光の強度
XがL1<X<L2、幅値Yがw1<Y<w2に該当す
る異物(L1w1レベル)は1ヶになる。同様に散乱光
の強度XがL1<X<L2、幅値Yがw3<Yに該当す
る異物(L2w3レベル)も1ヶになる。L3レベルの
異物は散乱光の強度がL3<Xであり、0ヶである。こ
れらの結果を示したのが図3(B)である。このように
w値で前第1の実施の形態と同様に分類することもでき
る。
When the size of the foreign substance is classified based on the intensity X of the scattered light and the width Y thereof based on FIG. 3A, for example, the intensity X of the scattered light is L1 <X <L2, and the width Y is w1 <Y. The number of foreign substances (L1w1 level) corresponding to <w2 is one. Similarly, there is only one foreign matter (L2w3 level) whose scattered light intensity X satisfies L1 <X <L2 and width value Y satisfies w3 <Y. The L3 level foreign matter has a scattered light intensity of L3 <X and is zero. FIG. 3B shows these results. As described above, it is also possible to classify by the w value in the same manner as in the first embodiment.

【0040】この第2の実施の形態は、散乱光強度波形
の積分値で分類するので波形のS/N比が小さい場合に
も、波形の時間幅から直接分類する第1の実施の形態よ
り、正確にwの比較を行うことができる。
In the second embodiment, since the scattered light intensity waveform is classified based on the integral value, even when the S / N ratio of the waveform is small, the classification is directly performed based on the time width of the waveform. , Can be accurately compared.

【0041】一方第1の実施の形態では積分を行わない
から、第2の実施の形態より、短かい時間で異物検査を
行うことができる。
On the other hand, since the integration is not performed in the first embodiment, the foreign substance inspection can be performed in a shorter time than in the second embodiment.

【0042】[0042]

【発明の効果】以上説明したように本発明によれば、同
一基準で散乱率の異なる未知の異物に対しても、その大
きさを正しく判別することが出来るという効果を有す
る。例えば、ウエハ上のシリコンの破片と樹脂の破片と
を区別してそれぞれの大きさを判断することができる。
As described above, according to the present invention, it is possible to correctly determine the size of an unknown foreign matter having a different scattering rate on the same basis. For example, the size of each piece of silicon on the wafer can be determined by distinguishing the piece of silicon from the piece of resin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す図であり、
(A)は散乱光強度取込み波形、(B)は(A)を分類
した結果をそれぞれ示している。
FIG. 1 is a diagram showing a first embodiment of the present invention,
(A) shows the scattered light intensity acquisition waveform, and (B) shows the result of classifying (A).

【図2】レーザー光を用いた異物検査装置の概念を示す
図である。
FIG. 2 is a diagram showing the concept of a foreign matter inspection device using laser light.

【図3】本発明の第2の実施の形態を示す図であり、
(A)は散乱光強度取込み波形、(B)は(A)を分類
した結果をそれぞれ示している。
FIG. 3 is a diagram showing a second embodiment of the present invention;
(A) shows the scattered light intensity acquisition waveform, and (B) shows the result of classifying (A).

【図4】従来技術を示す図であり、(A)は散乱光強度
取込み波形、(B)は(A)を分類した結果をそれぞれ
示している。
FIGS. 4A and 4B are diagrams showing a conventional technique, wherein FIG. 4A shows a scattered light intensity acquisition waveform, and FIG. 4B shows a result of classifying (A).

【符号の説明】[Explanation of symbols]

1 レーザー光 2 散乱光 3 レーザー 4 光検出器 5 ウエハ(基板) 6 異物 7 基板駆動部 REFERENCE SIGNS LIST 1 laser light 2 scattered light 3 laser 4 photodetector 5 wafer (substrate) 6 foreign matter 7 substrate drive unit

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザー光を使用して基板表面の異物を
検査する方法において、前記基板表面をレーザー光で走
査し、そのレーザー光が異物に照射された時に得られる
散乱光の強度およびその強度分布の幅を用いて異物を分
類することを特徴とする異物検査方法。
1. A method for inspecting foreign matter on a substrate surface using laser light, wherein the substrate surface is scanned with laser light, and the intensity of scattered light obtained when the laser light is applied to the foreign matter and the intensity thereof A foreign matter inspection method characterized by classifying foreign matter using a width of distribution.
【請求項2】 前記基板は半導体装置の製造段階におけ
る半導体ウエハであることを特徴とする請求項1記載の
異物検査方法。
2. The foreign matter inspection method according to claim 1, wherein the substrate is a semiconductor wafer in a stage of manufacturing a semiconductor device.
【請求項3】 前記異物にはシリコンの破片と樹脂の破
片とを含み、前記シリコンの破片と前記樹脂の破片とを
分類することを特徴とする請求項1もしくは請求項2記
載の異物検査方法。
3. The foreign matter inspection method according to claim 1, wherein the foreign matter includes silicon fragments and resin fragments, and the silicon fragments and the resin fragments are classified. .
【請求項4】 前記強度分布の幅は所定の散乱光強度レ
ベル以上の時間で示すことを特徴とする請求項1記載の
異物検査方法。
4. The foreign matter inspection method according to claim 1, wherein the width of the intensity distribution is indicated by a time longer than a predetermined scattered light intensity level.
【請求項5】 前記強度分布の幅は(散乱光強度分布の
積分値)/(散乱光の強度)で算出することを特徴とす
る請求項1記載の異物検査方法。
5. The foreign matter inspection method according to claim 1, wherein the width of the intensity distribution is calculated by (integral value of scattered light intensity distribution) / (intensity of scattered light).
JP2883397A 1997-02-13 1997-02-13 Foreign matter inspection method Expired - Fee Related JP2964974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2883397A JP2964974B2 (en) 1997-02-13 1997-02-13 Foreign matter inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2883397A JP2964974B2 (en) 1997-02-13 1997-02-13 Foreign matter inspection method

Publications (2)

Publication Number Publication Date
JPH10227743A JPH10227743A (en) 1998-08-25
JP2964974B2 true JP2964974B2 (en) 1999-10-18

Family

ID=12259391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2883397A Expired - Fee Related JP2964974B2 (en) 1997-02-13 1997-02-13 Foreign matter inspection method

Country Status (1)

Country Link
JP (1) JP2964974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564807B2 (en) * 2009-03-12 2014-08-06 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method

Also Published As

Publication number Publication date
JPH10227743A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
US6256093B1 (en) On-the-fly automatic defect classification for substrates using signal attributes
US7864310B2 (en) Surface inspection method and surface inspection apparatus
JP2004531735A (en) System and method for a wafer inspection system using multi-angle and multi-wavelength illumination
JPH1164234A (en) Method and device for detecting foreign matter
US20170336330A1 (en) Method of detecting defect location using multi-surface specular reflection
US20170336331A1 (en) Multi-surface specular reflection inspector
JP2964974B2 (en) Foreign matter inspection method
US7522290B2 (en) Apparatus and method for inspecting semiconductor wafer
JPH10221268A (en) Method and device for detecting surface state of wafer
JP2996263B2 (en) Optimal threshold value determination method for foreign object detection
US10338009B2 (en) Method and apparatus to detect defects in transparent solids
JP2002340811A (en) Surface evaluation device
JPH0518901A (en) Wafer-surface inspecting apparatus
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JP3280742B2 (en) Defect inspection equipment for glass substrates
JP2001284423A (en) Semiconductor inspection appliance and method of manufacturing semiconductor device
JPH08189896A (en) Surface foreign matter inspecting device and surface foreign matter classifying method using the inspecting device
JP3627562B2 (en) Evaluation method of trace organic substances on silicon wafer surface
JPH11284038A (en) Particle detection method and device thereof
JPH01314953A (en) Optical surface inspection apparatus
JP2709946B2 (en) Foreign matter inspection method and foreign matter inspection device
JP2022082966A (en) Substrate surface inspection method and inspection device
JP2022039137A (en) Method and device for detecting irregularity defects
JPH01156641A (en) Inspecting device for foreign matter on surface for manufacturing semiconductor
JPH0979989A (en) Foreign object inspection device and method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

LAPS Cancellation because of no payment of annual fees