JP2964589B2 - Methanol synthesis reactor - Google Patents

Methanol synthesis reactor

Info

Publication number
JP2964589B2
JP2964589B2 JP2235606A JP23560690A JP2964589B2 JP 2964589 B2 JP2964589 B2 JP 2964589B2 JP 2235606 A JP2235606 A JP 2235606A JP 23560690 A JP23560690 A JP 23560690A JP 2964589 B2 JP2964589 B2 JP 2964589B2
Authority
JP
Japan
Prior art keywords
reactor
catalyst
water
drum
hemispherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2235606A
Other languages
Japanese (ja)
Other versions
JPH04117336A (en
Inventor
勝利 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2235606A priority Critical patent/JP2964589B2/en
Publication of JPH04117336A publication Critical patent/JPH04117336A/en
Application granted granted Critical
Publication of JP2964589B2 publication Critical patent/JP2964589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超大型装置に適したメタノール合成反応器に
関する。
Description: TECHNICAL FIELD The present invention relates to a methanol synthesis reactor suitable for a very large apparatus.

(従来の技術およびその課題) メタノールは低公害で輸送が容易な安価な燃料として
大量に使用するために、5000T/Dあるいは10000T/D以上
の能力を持つ超大型装置の開発が要請されている。
(Conventional technology and its problems) In order to use methanol in large quantities as a low-pollution, easy-to-transport and low-cost fuel, development of an ultra-large device with a capacity of 5000T / D or 10,000T / D or more is required. .

メタノール製造装置の大型化に伴い、メタノール合成
反応器は種々の改良が行われており、次のような反応器
の形式が提案されている。
With the increase in size of the methanol production apparatus, various improvements have been made to the methanol synthesis reactor, and the following reactor types have been proposed.

(1)断熱クエンチ式反応器 通常は堅型円筒状の加圧容器に触媒を多段に充填し、
H2,CO,CO2を主成分とする合成ガスを上部より供給す
る。触媒層で反応が進行して発生する熱により温度が上
昇するので、触媒層間に低温の合成ガス(クエンチガ
ス)を導入して触媒層の温度制御が行われる。
(1) Adiabatic quench type reactor Usually, a catalyst is packed in multiple stages in a rigid cylindrical pressure vessel,
A synthesis gas containing H 2 , CO, and CO 2 as main components is supplied from above. Since the temperature rises due to the heat generated by the progress of the reaction in the catalyst layer, the temperature of the catalyst layer is controlled by introducing a low-temperature synthesis gas (quench gas) between the catalyst layers.

この方式は反応器の構造が単純で反応器の製作が容易
であるが、反応熱の回収は反応器の出口ガスで行うこと
になるので高度の熱回収が行われない。またクエンチガ
スにより反応ガスが希釈されることになるので転化率を
上げることができず、合成系装置において多量のガスを
循環する必要がある。更にクエンチガスとの均一混合が
困難であるため特に大型装置では触媒層の水平方向での
温度差が生じ易い。
This method has a simple structure of the reactor and is easy to manufacture the reactor. However, since the heat of the reaction is recovered by the outlet gas of the reactor, a high degree of heat recovery is not performed. In addition, since the reaction gas is diluted by the quench gas, the conversion cannot be increased, and a large amount of gas needs to be circulated in the synthesis system. Further, since it is difficult to uniformly mix with the quench gas, a temperature difference in the horizontal direction of the catalyst layer tends to occur particularly in a large-sized apparatus.

堅型円筒状の多段触媒層の上記反応器では大型装置で
の製作限界があるので、特開昭56−81129号には円筒状
容器の中心から外周または外周から中心へとガスを通過
させて断熱反応を行うラジアルフローの反応器が提案さ
れている。この場合にも反応器として転化率を上げるこ
とができず、熱回収効率が低いので高いエネルギー効率
を目指す超大型メタノール合成反応器には適当でない。
In the above-described reactor having a solid cylindrical multi-stage catalyst layer, there is a limit in the production of a large-sized apparatus. Radial flow reactors for performing adiabatic reactions have been proposed. Also in this case, the conversion cannot be increased as a reactor, and the heat recovery efficiency is low, so that it is not suitable for an ultra-large methanol synthesis reactor aiming at high energy efficiency.

(2)管型反応器 堅型の熱交換器の管内に触媒を充填し、シェル側にボ
イラ水を入れて反応熱を水蒸気として回収するものであ
り、特開昭56−22854には触媒管の径および長さと質量
流動密度等との関係が示されている。この方式は反応熱
を水蒸気として有効に回収でき、反応器としての転化率
を高めることができるが、構造的に管板を使用するので
その製作限界があり、大型化はメタノール生産量として
1000〜1500T/Dが限度である。
(2) Tube-type reactor A catalyst is filled in the tube of a rigid heat exchanger, boiler water is put into the shell side, and the reaction heat is recovered as steam. The relationship between the diameter and length of the sample and the mass flow density is shown. This method can effectively recover the heat of reaction as steam and increase the conversion rate as a reactor.However, since the tube sheet is structurally used, there is a limit to its production.
The limit is 1000 to 1500 T / D.

(3)管型二重管式反応器 堅型の熱交換器に二重管を用い、内管と外管の間の円
周部に触媒を充填し、内管中に合成ガスを通過させ、外
管の外側(シェル側)にボイラ水を入れて反応熱を水蒸
気として回収するものであり、特開昭60−106527号、特
開昭62−114644号、特開平1−85129号等にその具体的
構造が示されている。この方式は反応熱を水蒸気として
有効に回収できると共に、触媒層の温度を適切に制御す
ることができて反応器としての転化率を更に高めること
ができる等の利点があるが、この反応器でも管板を使用
するので製作限界があり、5000T/D程度の超大型装置で
は採用が困難である。
(3) Tube type double tube reactor A double tube is used for the rigid heat exchanger, the catalyst is filled in the circumference between the inner tube and the outer tube, and the synthesis gas is passed through the inner tube. The boiler water is placed outside the outer tube (shell side) to recover the heat of reaction as steam, as disclosed in JP-A-60-106527, JP-A-62-114644 and JP-A-1-85129. The specific structure is shown. This method has the advantages that the reaction heat can be effectively recovered as steam, the temperature of the catalyst layer can be appropriately controlled, and the conversion as a reactor can be further increased. Because of the use of tube sheet, there is a manufacturing limit, and it is difficult to adopt a super-large device of about 5000T / D.

(4)ラジアルフロー熱交換式反応器 特開昭55−149640号に記載されている如く、大型反応
器に対応するため反応ガスをラジアルフローとし、触媒
層内に軸方向に多数の伝熱管を設け、反応熱を高圧高温
の水蒸気として回収するものである。この場合伝熱管は
ヘッダーに連結されるが、その継手または溶接部は極め
て高い信頼度が要求される。即ちこれらの部分は小さな
欠陥といえどもプラントの操業を停止しなければなら
ず、且つその修復のために反応器を開放することとなる
ので、充填されている触媒に大きな損害を与える。更に
これらの連結部分は密集した複雑な構造となるため、検
査や補修が極めて困難である。従ってこの形式の反応器
の設計、製作は従来の反応器に比べ極めて慎重に行い、
且つ厳重な検査が必要となる。
(4) Radial flow heat exchange type reactor As described in Japanese Patent Application Laid-Open No. 55-149640, a reaction gas is used as a radial flow to cope with a large reactor, and a large number of heat transfer tubes are provided in a catalyst layer in an axial direction. And recovers the heat of reaction as high-pressure and high-temperature steam. In this case, the heat transfer tube is connected to the header, but its joints or welds require extremely high reliability. That is, these parts, even small defects, have to shut down the plant and open the reactor to repair them, thus causing serious damage to the packed catalyst. Furthermore, these connecting parts have a dense and complicated structure, so that inspection and repair are extremely difficult. Therefore, the design and construction of this type of reactor is extremely careful compared to conventional reactors,
In addition, strict inspection is required.

(課題を解決するための手段) 従来の反応器は上記の如き課題を有するので超大型装
置に適用することが困難である。発明者は10000T/D以上
の超大型メタノール合成にも対応できる反応器の構造に
ついて鋭意検討した結果、堅型状の反応器の上部と反応
器内の下部に蒸気発生用のドラムを設け、半球状の管板
を用いて冷却管を取り付け、反応器内に触媒を充填する
構造とすれば、超大型装置への対応が容易であり、且つ
製作、補修上も有利であることを見出し、本発明に至っ
た。
(Means for Solving the Problems) Since the conventional reactor has the above-mentioned problems, it is difficult to apply it to a very large-sized apparatus. The inventor has conducted intensive studies on the structure of a reactor that can also handle ultra-large methanol synthesis of 10,000 T / D or more.As a result, he installed a drum for steam generation at the top of the rigid reactor and at the bottom of the reactor, It was found that if a cooling pipe was attached using a tubular tube and the catalyst was filled in the reactor, it would be easy to cope with ultra-large equipment, and it was also advantageous in manufacturing and repairing. Invented the invention.

即ち本発明は、水素、一酸化炭素および炭酸ガスを有
効成分とする合成ガスからメタノールを合成する堅型円
筒状の反応器において、 (a)反応器の上部鏡板の中心部に堅型円筒状で下部に
半球状管板を有する気水ドラム、 (b)反応器内下部に半球状管板を有する水ドラム、 (c)反応器内で気水ドラムの半球状管板の中心部から
水ドラムの半球状管板の中心部に軸方向に連結される降
水管、 (d)反応器内で気水ドラムの半球状管板から水ドラム
の半球状管板に軸方向に連結される伝熱管群、 (e)伝熱管群の下で水平方向に水ドラムに取付けられ
た触媒受皿を有し、 触媒受皿上、伝熱管外の空間部に触媒を充填し、合成ガ
スを反応器内の上部から下部に通過させてメタノール合
成反応を行い、反応において発生する熱を気水ドラムか
ら水蒸気として回収することを特徴とするメタノール合
成反応器である。
That is, the present invention relates to a rigid cylindrical reactor for synthesizing methanol from a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide as active components. (A) A rigid cylindrical reactor is provided at the center of the upper end plate of the reactor. And (b) a water drum having a hemispherical tube sheet in the lower part of the reactor, and (c) water flowing from the center of the hemispherical tube sheet of the water and water drum in the reactor. A downcomer connected axially to the center of the hemispherical tubesheet of the drum; (d) a transmission connected axially from the hemispherical tubesheet of the steam drum to the hemispherical tubesheet of the water drum in the reactor. (E) a catalyst tray attached horizontally to the water drum below the heat transfer tube group, and a catalyst is filled in a space above the catalyst tray and outside the heat transfer tube, and the synthesis gas is supplied into the reactor. The methanol synthesis reaction is passed from the upper part to the lower part, and the heat generated in the reaction is transferred to a steam drum. A methanol synthesis reactor and recovering as Luo steam.

第1図は本発明によるメタノール合成反応器の構造の
一例である。第1図において反応容器1は堅型円筒状の
圧力容器であり、上下端は半球または皿型の鏡板を有す
る。上部鏡板の中心部には堅型円筒状の気水ドラム2が
設けられる。この気水ドラムの上部は半球または皿型の
鏡板であり、下部は半球型の管板を有する。この半球型
管板の中心部には降水管3が設けられており、水ドラム
4に連結される。水ドラムは反応容器内の下部に設置さ
れ、球型で上半部が半球型の管板であり、気水ドラムの
管板との間にほぼ軸方向に連結された伝熱管群5が設置
されている。なお降水管の上部に延長管6を設けること
により、ボイラ水の循環の効率化が図られる。
FIG. 1 is an example of the structure of a methanol synthesis reactor according to the present invention. In FIG. 1, a reaction vessel 1 is a rigid cylindrical pressure vessel, and upper and lower ends have hemispherical or dish-shaped end plates. A rigid cylindrical air-water drum 2 is provided at the center of the upper head plate. The upper part of the air-water drum is a hemispherical or dish-shaped head plate, and the lower part has a hemispherical tube plate. A downcomer 3 is provided at the center of the hemispherical tube sheet, and is connected to a water drum 4. The water drum is installed at the lower part in the reaction vessel, and a spherical and upper half is a hemispherical tube sheet, and a heat transfer tube group 5 connected substantially in the axial direction between the water drum tube sheet and the water drum is installed. Have been. By providing the extension pipe 6 above the downcomer pipe, the boiler water circulation can be made more efficient.

この伝熱管群の下に触媒受皿7が設置され、触媒受皿
上の伝熱管外側にメタノール合成触媒が充填されてい
る。合成ガスは流路8から導入され、触媒層に入りメタ
ノール合成反応が行われた後、反応ガスは流路9から抜
き出される。気水ドラムにはボイラ水が供給されている
ので、メタノール合成反応により発生する熱は伝熱管の
管壁を介して管内のボイラ水に伝えられ、35〜50kg/cm2
Gの高圧飽和水蒸気として流路10より抜出される。この
蒸発量に相当するボイラ給水は流路11から補給される。
またボイラ水中の不純物の濃縮を抑えるため一部の水は
流路12からブローされる。
A catalyst tray 7 is provided below the heat transfer tube group, and the outside of the heat transfer tubes on the catalyst tray is filled with a methanol synthesis catalyst. The synthesis gas is introduced from the flow channel 8, enters the catalyst layer and performs a methanol synthesis reaction, and then the reaction gas is extracted from the flow channel 9. Since the boiler water is supplied to the steam drum, the heat generated by the methanol synthesis reaction is transmitted to the boiler water in the tube through the tube wall of the heat transfer tube, and is 35 to 50 kg / cm 2.
It is extracted from the flow path 10 as G high-pressure saturated steam. Boiler feedwater corresponding to the evaporation amount is supplied from the flow channel 11.
Part of the water is blown from the flow channel 12 to suppress concentration of impurities in the boiler water.

本反応器の触媒充填はマンウェイ13から行われ、触媒
抜出しはマンウェイ14から行われる。なお触媒の抜出し
に際しては、触媒受皿7の一部が取り外せる構造となっ
ている。これらのマンウェイは必要に応じて複数個設置
され、効率良く触媒の換装を行うことができる。マンウ
ェイ15は気水ドラム2,降水管3および水ドラム4の内部
検査に用いられる。
In this reactor, the catalyst is charged from the manway 13 and the catalyst is withdrawn from the manway 14. When the catalyst is withdrawn, a part of the catalyst tray 7 can be removed. A plurality of these manways are provided as needed, and catalyst replacement can be performed efficiently. The manway 15 is used for the internal inspection of the steam drum 2, the downcomer 3 and the water drum 4.

本発明の反応器におけるメタノール合成反応には一般
に銅系触媒が用いられ、通常圧力50〜150kg/cm2G、温度
220〜300℃で反応が行われる。
A copper-based catalyst is generally used for the methanol synthesis reaction in the reactor of the present invention, and the pressure is usually 50 to 150 kg / cm 2 G, and the temperature is
The reaction takes place at 220-300 ° C.

本反応器の特徴の一つは半球型の管板を用いることで
ある。これは通常の平板状の場合と比較して2倍の表面
積が得られるので、管板径が約70% となる。また半球型の管板の肉厚は孔明けによる強度低
下を補正しても平板管板に比べて約1/3となるので従来
の装置に比較して更に大型化の装置が容易に製作ができ
るようになる。
One of the features of this reactor is that a hemispherical tube sheet is used. Since the surface area is twice as large as that of a normal flat plate, the tube sheet diameter is about 70%. Becomes The thickness of the hemispherical tube sheet is about one-third that of a flat tube sheet even if the strength loss due to perforation is corrected, so that a larger device can be easily manufactured compared to the conventional device. become able to.

更に本反応器では水ドラムを反応器の内部に設置して
降水管でこれを支える構造となっているので、降水管お
よび伝熱管の伸びは下方に開放されており、反応容器1
への伸び応力が除かれる。また各伝熱管は曲部を有する
ので熱応力が回避される。なお伝熱管は半球の中心部よ
り放射状に延長線を引いた管板貫通部に固定し、シール
加工が施される。放射状に延長される伝熱管は、反応容
器の垂直線に対して下向に曲げられ、必要に応じて垂直
線の適当な位置に相互のサポートが設けられる。
Further, in this reactor, a water drum is installed inside the reactor and is supported by a downcomer, so that the elongation of the downcomer and the heat transfer tube is opened downward, and the reactor 1
The elongational stress on the substrate is eliminated. Also, since each heat transfer tube has a curved portion, thermal stress is avoided. The heat transfer tube is fixed to a tube plate penetrating portion radially extended from the center of the hemisphere, and is subjected to sealing. The radially extending heat transfer tubes are bent downward with respect to the vertical line of the reaction vessel, and mutual support is provided at an appropriate position of the vertical line as necessary.

反応器の損傷の最も大きな問題は伝熱管の溶接部分か
らの漏洩であるので、伝熱管は半径方向に溶接部の無い
シームレス製作で、且つ長さ方向にも溶接継目の無い鋼
管が用いられる。この種の反応器で最も損傷し易い部分
は伝熱管を管板に取付けてシール溶接された部分やヘッ
ダーの溶接部である。本発明では半球状管板のシール溶
接部がこの部分に相当するが、もしその部分に欠陥が生
じた場合には触媒層を開放すること無く、マンウェイ15
から気水ドラム2および水ドラム4に入り修復作業を行
うことができる。
Since the biggest problem of damage to the reactor is leakage from the welded portion of the heat transfer tube, the heat transfer tube is a steel tube that is seamlessly manufactured without a weld in the radial direction and has no welded seam in the length direction. The most susceptible parts of this type of reactor are the parts where the heat transfer tubes are attached to the tube sheet and seal-welded, or the welded parts of the header. In the present invention, the seal welding portion of the hemispherical tube sheet corresponds to this portion, but if a defect occurs in that portion, the manway 15 is opened without opening the catalyst layer.
From the air-water drum 2 and the water drum 4 for repair work.

水蒸気の発生は自然循環ボイラにより行われ、ボイラ
水の循環ポンプが不要である。従って本願の反応器は運
転操作が非常に容易であり、運転によるトラブルが少な
く、反応熱が高圧の飽和水蒸気として有効に回収され
る。
The generation of steam is performed by a natural circulation boiler, and a circulation pump for boiler water is not required. Therefore, the operation of the reactor of the present application is very easy, there are few troubles due to the operation, and the reaction heat is effectively recovered as high-pressure saturated steam.

触媒は伝熱管の外側に充填されるので、大量の触媒が
効率良く充填され、超大型装置へ対応することができ
る。例えば内径7mの反応器に外径5mの気水ドラム及び水
ドラムを取付け、半球型管板の表面積の45%に外径40mm
の伝熱管を取付けた場合には約14000本の伝熱管とな
り、伝熱管の平均長さを20mとして総伝熱面積が約35000
m2となる。この場合の触媒充填量は約400m3であり、最
近の銅系触媒は合成圧力60〜80kg/cm2Gにおいて空時収
率(=触媒1m3単位時間当りのメタノール生産量)が0.9
〜1.2トンの性能を有することからして、先の総伝熱面
積と合せてこの反応器は10000T/Dの生産に十分な能力を
有している。
Since the catalyst is filled on the outside of the heat transfer tube, a large amount of catalyst is efficiently filled, and it is possible to cope with a very large device. For example, an air-water drum and a water drum with an outer diameter of 5 m are attached to a reactor with an inner diameter of 7 m, and an outer diameter of 40 mm covers 45% of the surface area of the hemispherical tube sheet.
When heat transfer tubes are installed, the number of heat transfer tubes is about 14,000, and the total heat transfer area is about 35,000, with the average length of the heat transfer tubes being 20 m.
the m 2. The catalyst loading in this case is about 400 m 3 , and a recent copper-based catalyst has a space-time yield (= methanol production per m 3 of catalyst per unit time) of 0.9 at a synthesis pressure of 60 to 80 kg / cm 2 G.
With a performance of ~ 1.2 tonnes, this reactor, combined with the total heat transfer area above, has sufficient capacity for 10,000 T / D production.

(検討例) 第1図に示される構造で10000T/Dの能力を有する超大
型メタノール合成反応器の主要寸法および運転緒元は次
の通りである。
(Examination Example) The main dimensions and operation specifications of the ultra-large methanol synthesis reactor having the capacity shown in FIG. 1 and having a capacity of 10,000 T / D are as follows.

(主要寸法) 反応器内径 7000mm 触媒層高 20000mm 伝熱管外径 40mm 伝熱管平均長さ 20000mm 伝熱管本数 14900本 気水ドラム外径 5000mm 水ドラム外径 5000mm 降水管外径 1200mm 触媒充填量 375m3 (運転諸元) 反応圧力 60kg/cm2G 合成ガス入口温度 220℃ 触媒層最高温度 279℃ 合成ガス出口温度 254℃ 合成ガス量 3874000Nm3/H 合成ガス組成(vol%) CO2 6.25 CO 10.48 H2 71.85 CH4 10.05 N2 0.97 H2O 0.03 CH3OH 0.36 ボイラ圧 41kg/cm2G 給水温度 225℃ 給水量 586T/H 蒸気発生量 562T/H ブロー量 6T/H (発明の効果) 本発明のメタノール合成反応器は次のような特徴を有
し、特に超大型メタノール製造装置において有利に用い
ることができる。
(Main dimensions) Reactor inner diameter 7000mm Catalyst layer height 20000mm Heat transfer tube outer diameter 40mm Heat transfer tube average length 20000mm Number of heat transfer tubes 14,900 Air / water drum outer diameter 5000mm Water drum outer diameter 5000mm Downcomer pipe outer diameter 1200mm Catalyst filling 375m 3 ( Operating specifications) Reaction pressure 60 kg / cm 2 G Syngas inlet temperature 220 ° C Catalyst bed maximum temperature 279 ° C Syngas outlet temperature 254 ° C Syngas amount 3874000Nm 3 / H Syngas composition (vol%) CO 2 6.25 CO 10.48 H 2 71.85 CH 4 10.05 N 2 0.97 H 2 O 0.03 CH 3 OH 0.36 Boiler pressure 41kg / cm 2 G Water supply temperature 225 ° C Water supply 586T / H Steam generation 562T / H Blow 6T / H (Effect of the invention) The methanol synthesis reactor has the following features, and can be advantageously used particularly in an ultra-large methanol production apparatus.

(1)半球型の管板を用い、伝熱管外に触媒を充填する
ことにより、上記の検討例に示される如く10000T/D程度
の超大型装置に適用することができる。
(1) By filling the outside of the heat transfer tube with a catalyst by using a hemispherical tube sheet, the present invention can be applied to an ultra-large device of about 10,000 T / D as shown in the above-mentioned study example.

(2)触媒層内に多くの伝熱管を均一に配置できること
から、合成ガスの反応率を高め、且つ均一な触媒層の温
度分布が得られる。また高圧の飽和水蒸気を有効に回収
することができる。
(2) Since many heat transfer tubes can be uniformly arranged in the catalyst layer, the reaction rate of the synthesis gas can be increased, and a uniform temperature distribution of the catalyst layer can be obtained. Further, high-pressure saturated steam can be effectively recovered.

(3)水ドラムが高圧容器内で固定されていないので熱
応力が回避され、また最も信頼性を左右する溶接部分は
管板におけるシール部分のみであるから、高い機械的信
頼性が得られる。もし仮にこの部分に欠陥が生じても、
その検査、発見および補修が容易である。
(3) Since the water drum is not fixed in the high-pressure vessel, thermal stress is avoided, and the most reliable welding portion is only the sealing portion in the tube sheet, so that high mechanical reliability can be obtained. If this part is defective,
Its inspection, discovery and repair are easy.

(4)触媒層が単一であり、触媒の充填および抜出しは
任意のマンウェイから行うことができるので、触媒の換
装が容易であり短時間で行うことができる。
(4) Since there is a single catalyst layer and the catalyst can be charged and withdrawn from any manway, replacement of the catalyst is easy and can be performed in a short time.

(5)触媒層の温度は一定の反応圧で発生する水蒸気の
圧力を変更するのみで制御でき、また自然循環ボイラ
で、ボイラ水の循環ポンプが不要なので、運転が非常に
容易であり、運転によるトラブルが少ない。
(5) The temperature of the catalyst layer can be controlled only by changing the pressure of steam generated at a constant reaction pressure, and the operation is very easy because the natural circulation boiler does not require a circulation pump for boiler water. Less trouble.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるメタノール合成反応器の構造の一
例を示すものである。 1:メタノール合成反応器、2:気水ドラム、 4:水ドラム、5:伝熱管、7:触媒受皿
FIG. 1 shows an example of the structure of a methanol synthesis reactor according to the present invention. 1: Methanol synthesis reactor, 2: Steam drum, 4: Water drum, 5: Heat transfer tube, 7: Catalyst tray

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素、一酸化炭素および炭酸ガスを有効成
分とする合成ガスからメタノールを合成する堅型円筒状
の反応器において、 (a)反応器の上部鏡板の中心部に堅型円筒状で下部に
半球状管板を有する気水ドラム、 (b)反応器内下部に半球状管板を有する水ドラム、 (c)反応器内で気水ドラムの半球状管板の中心部から
水ドラムの半球状管板の中心部に軸方向に連結される降
水管、 (d)反応器内で気水ドラムの半球状管板から水ドラム
の半球状管板に軸方向に連結される伝熱管群、 (e)伝熱管群の下で水平方向に水ドラムに取付けられ
た触媒受皿を有し、 触媒受皿上、伝熱管外の空間部に触媒を充填し、合成ガ
スを反応器内の上部から下部に通過させてメタノール合
成反応を行い、反応において発生する熱を気水ドラムか
ら水蒸気として回収することを特徴とするメタノール合
成反応器。
1. A rigid cylindrical reactor for synthesizing methanol from a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide as active ingredients, comprising: (a) a rigid cylindrical reactor at the center of an upper head plate of the reactor; And (b) a water drum having a hemispherical tube sheet in the lower part of the reactor, and (c) water flowing from the center of the hemispherical tube sheet of the water and water drum in the reactor. A downcomer connected axially to the center of the hemispherical tubesheet of the drum; (d) a transmission connected axially from the hemispherical tubesheet of the steam drum to the hemispherical tubesheet of the water drum in the reactor. (E) a catalyst tray attached horizontally to the water drum below the heat transfer tube group, and a catalyst is filled in a space above the catalyst tray and outside the heat transfer tube, and the synthesis gas is supplied into the reactor. The methanol synthesis reaction is passed from the top to the bottom, and the heat generated in the reaction is transferred to a steam drum. Methanol synthesis reactor and recovering as water vapor.
JP2235606A 1990-09-07 1990-09-07 Methanol synthesis reactor Expired - Lifetime JP2964589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235606A JP2964589B2 (en) 1990-09-07 1990-09-07 Methanol synthesis reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235606A JP2964589B2 (en) 1990-09-07 1990-09-07 Methanol synthesis reactor

Publications (2)

Publication Number Publication Date
JPH04117336A JPH04117336A (en) 1992-04-17
JP2964589B2 true JP2964589B2 (en) 1999-10-18

Family

ID=16988503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235606A Expired - Lifetime JP2964589B2 (en) 1990-09-07 1990-09-07 Methanol synthesis reactor

Country Status (1)

Country Link
JP (1) JP2964589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013422A (en) * 2008-07-07 2010-01-21 Takuma Co Ltd Methanol synthesis reactor and methanol synthesis method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512255A (en) * 1994-12-06 1996-04-30 Wright Malta Corporation Apparatus for producing methanol
JP5312355B2 (en) * 2010-01-15 2013-10-09 株式会社タクマ Reactor and reaction product manufacturing method using the same
CN105582856B (en) * 2016-02-29 2019-08-16 南京敦先化工科技有限公司 A kind of double spherical cavities controllably move thermal conversion reactor and its CO reaction method
CN109173938A (en) * 2018-09-30 2019-01-11 中石化宁波工程有限公司 A kind of temperature-changeable methanol-fueled CLC water-cooled reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013422A (en) * 2008-07-07 2010-01-21 Takuma Co Ltd Methanol synthesis reactor and methanol synthesis method

Also Published As

Publication number Publication date
JPH04117336A (en) 1992-04-17

Similar Documents

Publication Publication Date Title
JP4477432B2 (en) Reformer
US7763215B2 (en) Reactor having detachably fixed tubesheet plate member
JPS5839572B2 (en) Reactor and its use
EP1048343A2 (en) Heat exchanger type reactor
US20170028373A1 (en) Isothermal tubular catalytic reactor
US4359448A (en) Fluidized bed reactor for exothermic reactions
JP2964589B2 (en) Methanol synthesis reactor
JPH10182101A (en) Reforming unit
CN109294627B (en) Isothermal conversion device and synthesis gas complete conversion reaction system comprising same
WO2001091894A1 (en) A gas-solid phase exothermic catalytic reactor with low temperature difference and its process
JPS60153936A (en) Reactor with heat pipe
KR20130023134A (en) Exchanger-reactor for the production of hydrogen with an integrated steam generation bundle
JP2584550B2 (en) Heat exchanger
CN111732075B (en) Composite heat-insulating serial temperature-control shift converter device and shift process
US4243097A (en) Waste heat boiler
AU2021390018A1 (en) Ammonia burner for nitric acid production
CN208229872U (en) Asymmetric tube-sheet type beam tube reactor
CN208542167U (en) A kind of insulation water shifting heat combined reactor
CN215963489U (en) Water-cooling and air-cooling combined isothermal shift reactor
WO2018070394A1 (en) Furnace wall, gasification furnace equipment and gasification combined power generation equipment, and method for manufacturing furnace wall
CN216260660U (en) Fixed bed reactor
CN216764335U (en) Novel methanol hydrogen production device
CN215389173U (en) Reactor with steam superheater arranged between multi-section radial heat insulation sections
CN111204710B (en) Heat exchange type primary reformer
US11718535B1 (en) Ammonia synthesis converter and method for small production units