JP2963144B2 - Bearing abnormality detection device - Google Patents

Bearing abnormality detection device

Info

Publication number
JP2963144B2
JP2963144B2 JP2139128A JP13912890A JP2963144B2 JP 2963144 B2 JP2963144 B2 JP 2963144B2 JP 2139128 A JP2139128 A JP 2139128A JP 13912890 A JP13912890 A JP 13912890A JP 2963144 B2 JP2963144 B2 JP 2963144B2
Authority
JP
Japan
Prior art keywords
occurrence
cycle
bearing
threshold value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2139128A
Other languages
Japanese (ja)
Other versions
JPH0432737A (en
Inventor
重人 西本
紀明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, Kawasaki Steel Corp filed Critical Koyo Seiko Co Ltd
Priority to JP2139128A priority Critical patent/JP2963144B2/en
Publication of JPH0432737A publication Critical patent/JPH0432737A/en
Application granted granted Critical
Publication of JP2963144B2 publication Critical patent/JP2963144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

この発明はアコースティックエミッション(AE)を利
用した軸受の異常検出装置に関する。
The present invention relates to a bearing abnormality detection device using acoustic emission (AE).

【従来の技術】[Prior art]

従来、AEによる軸受の異常検出装置としては次のよう
なものがある(特開昭63−304128)。この軸受の異常検
出装置は、AEセンサからのAE信号としきい値を比較する
比較手段と、この比較手段からの出力に基づいて、しき
い値を超えたAE信号の発生周期を算出する周期算出手段
と、この周期算出手段の出力に基づいて、AE信号の発生
周期毎の発生数を集計する集計手段と、この集計手段で
集計された発生数が単一のしきい値を超えたか否かを判
別する判別手段とを備えて、AE信号の発生周期毎の発生
数を累積し、その累積値がしきい値を超えた場合に、軸
受の異常と判断して、軸受以外のAEが発生する環境や外
部ノイズが大きい環境の下でも軸受の異常を検出できる
ようにしている。
2. Description of the Related Art Conventionally, as an apparatus for detecting an abnormality of a bearing by AE, there is the following apparatus (JP-A-63-304128). This bearing abnormality detection device comprises a comparing means for comparing the AE signal from the AE sensor with a threshold value, and a cycle calculation for calculating an occurrence cycle of the AE signal exceeding the threshold value based on an output from the comparing means. Means, a counting means for counting the number of occurrences of each AE signal generation cycle based on the output of the cycle calculation means, and whether or not the number of occurrences counted by the counting means exceeds a single threshold value AE signal is generated for each generation cycle, and if the accumulated value exceeds the threshold, it is determined that the bearing is abnormal and AEs other than bearings are generated. The system is designed to detect bearing abnormalities even in environments with high noise or high external noise.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかしながら、上記従来の軸受の異常検出装置では、
AE信号の発生周期毎の発生数と単一のしきい値とを比較
して、異常の判別を行っているため、次の理由で検出精
度が低いという問題がある。例えば、軸受が1回転する
間に、内輪に異常がある場合は、しきい値を超えるAE信
号は1回しか発生しないが、外輪に異常がある場合は、
しきい値を超えるAE信号は約(転動体の個数/2)回だけ
発生する。したがって、内輪,外輪等の部位別にAE発生
数と比較すべきしきい値は異なるべきである。しかる
に、上記従来の軸受の異常検出装置は、総ての部位につ
いて、AE発生数と単一のしきい値とを比較しているた
め、異常の検出精度が低い。 そこで、この発明の目的は、部位別で異なる実際のAE
発生数を部位別の理論AE発生数で割ってAE発生確率を求
め、このAE発生確率と単一のしきい値とを比較すること
によって、精度高く軸受の異常を検出できる軸受の異常
検出装置を提供することにある。
However, in the conventional bearing abnormality detection device described above,
Since the abnormality is determined by comparing the number of occurrences of the AE signal in each generation cycle with a single threshold value, there is a problem that the detection accuracy is low for the following reasons. For example, if there is an abnormality in the inner ring during one rotation of the bearing, an AE signal exceeding the threshold is generated only once, but if there is an abnormality in the outer ring,
The AE signal exceeding the threshold is generated only about (number of rolling elements / 2) times. Therefore, the threshold value to be compared with the number of AE occurrences should be different for each part such as the inner ring and the outer ring. However, the above-described conventional bearing abnormality detection device compares the number of AE occurrences with a single threshold value for all parts, and therefore has a low accuracy of abnormality detection. Therefore, the object of the present invention is to provide an actual AE
An abnormality detection device for bearings that can detect bearing errors with high accuracy by dividing the number of occurrences by the theoretical number of occurrences of AE for each part to calculate the AE occurrence probability and comparing this AE occurrence probability with a single threshold value Is to provide.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するため、この発明の軸受の異常検出
装置は、軸受からのアコースティックエミッションを検
出してAE信号を出力するAEセンサと、上記AEセンサから
のAE信号としきい値とを比較する比較手段と、上記比較
手段から、上記AE信号が上記しきい値を超えたことを表
わす信号を受けて、上記しきい値を超えるAE信号の発生
周期を算出する周期算出手段と、上記周期算出手段で算
出された発生周期毎の発生数を集計する集計手段と、上
記集計手段で集計された各発生周期毎の発生数をその各
発生周期に対応する部位別の理論発生数で除算して、部
位別のAE発生確率を算出するAE発生確率算出手段と、上
記AE発生確率算出手段から出力されたAE発生確率がしき
い値を超えたか否かを判別して軸受の異常を判別する判
別手段とを備えたことを特徴としている。
In order to achieve the above object, a bearing abnormality detection device according to the present invention includes an AE sensor that detects acoustic emission from a bearing and outputs an AE signal, and compares the AE signal from the AE sensor with a threshold value. Means for receiving a signal indicating that the AE signal has exceeded the threshold value from the comparing means, and calculating a generation cycle of an AE signal exceeding the threshold value; and the cycle calculating means. Tallying means for tallying the number of occurrences for each occurrence cycle calculated in the above, and dividing the number of occurrences for each occurrence cycle counted by the tallying means by the theoretical occurrence number for each part corresponding to each occurrence cycle, AE occurrence probability calculation means for calculating the AE occurrence probability for each part, and determination means for determining whether or not the AE occurrence probability output from the AE occurrence probability calculation means has exceeded a threshold value to determine whether the bearing is abnormal. And that It is set to.

【作用】[Action]

軸受などからのAEはAEセンサによって検出され、AE信
号が出力される。このAE信号は比較手段でしきい値と比
較され、上記AE信号が上記しきい値を超えたときにそれ
を表わす信号が出力される。この比較手段の信号を受け
て周期算出手段はAE信号の周期を算出する。上記集計手
段は周期算出手段で算出された発生周期毎のAE信号の発
生周期毎の発生数を集計する。上記AE発生確率算出手段
は、集計手段で集計された各発生周期毎の発生数をその
発生周期に対応する部位別の理論発生数で除算して、部
位別のAE発生確率を算出する。上記判別手段は、AE発生
確率算出手段から出力されたAE発生確率と単一のしきい
値と比較して、発生周期におけるAE発生確率がしきい値
を超えたときに、軸受の異常と判別する。 このように、AE発生確率をしきい値と比較するので、
部位毎にしきい値を異ならせる必要がなく、単一のしき
い値でもって精度よく軸受の診断をできる。 上記AE発生確率がしきい値を超える発生周期によっ
て、内輪,転動体,外輪のいずれに損傷があるかが判断
できる。
AE from a bearing or the like is detected by an AE sensor, and an AE signal is output. The AE signal is compared with a threshold value by the comparing means, and when the AE signal exceeds the threshold value, a signal indicating the threshold value is output. Upon receiving the signal from the comparing means, the cycle calculating means calculates the cycle of the AE signal. The counting means counts the number of occurrences of the AE signal for each occurrence cycle calculated by the cycle calculation means. The AE occurrence probability calculating means calculates the AE occurrence probability for each part by dividing the number of occurrences for each occurrence cycle counted by the counting means by the theoretical occurrence number for each part corresponding to the occurrence cycle. The determining means compares the AE occurrence probability output from the AE occurrence probability calculating means with a single threshold value, and determines that the bearing is abnormal when the AE occurrence probability in the occurrence cycle exceeds the threshold value. I do. Thus, since the AE occurrence probability is compared with the threshold,
There is no need to make the threshold different for each part, and the bearing can be diagnosed accurately with a single threshold. The occurrence cycle in which the AE occurrence probability exceeds the threshold value can determine which of the inner ring, the rolling element, and the outer ring is damaged.

【実施例】【Example】

以下、この発明を図示の実施例により詳細に説明す
る。 第1図において、1は軸受などのAEを検出するAEセン
サである。このAEセンサ1から出力されるAEの大きさを
表わすAE信号はプリアンプ2で増幅された後、バンドパ
スフィルター3で例えば100KHzから500KHzの帯域のAE信
号が通過させられ、ノイズが除去される。上記バンドパ
スフィルター3でノイズが除去されたAE信号はメインア
ンプ4でさらに増幅され、包絡線検波回路5に入力さ
れ、包絡線検波される。上記AE信号は例えば第2図
(a)のような波形を有し、第2図(b)のようなスペ
クトルを示している。包絡線検波回路5で包絡線検波さ
れた後の波形は第2図(c)のようになる。包絡線検波
された後のAE信号は比較器6においてしきい値と比較さ
れ、AE信号がしきい値を超えたときに第2図(d)に示
すようなパルスをコンピュータ7に出力する。また、コ
ンピュータ7には回転センサ8より単位時間あたりの軸
受の回転数が入力される。 上記コンピュータ7においては第3図に示すようなフ
ローチャートによって処理が行なわれる。 まず、第3図のステップS1で初期設定がなされ、ステ
ップS2に進んで、予め定められた規定時間が経過したか
否かが判断される。ここで、規定時間が経過していない
と判断された時はステップS3に進み、比較器6からのパ
ルスを受けたか否かによって、AEが発生したか否かが判
別され、AEが発生していないと判別したときはステップ
S2に戻り、AEが発生したと判別したときはステップS4に
進み、このAEを検出した時刻A(I)をメモリに記憶
し、ステップS2に戻る。このAEの発生した時刻A(I)
は第5図に示している。上記ステップS2,S3,S4を繰り返
した後、ステップS2で規定時間が経過したと判断する
と、ステップS5に進んで、第4,5図に示すように、ステ
ップS4で記憶したAEの発生時刻A(1),A(2),…,A
(4)間の時間を表わす発生周期B(1),B(2),
…,B(6)が計算される。 この発生周期B(I)は第4図に示すサブルーチンに
よって算出される。まず、ステップS21でI=1,N=1,K
=1として初期設定がなされる。次いで、ステップS22
に進んで、発生周期B(1)が{A(2)−A(1)}
として算出され、次いで、ステップS23に進み、Nが
{発生数−I}になったか否かが判別される。いま、第
5図に示すように、発生数が4で、I=1だから、Nが
3であるか否か判別される。いま、Nが1であるから、
ステップS24に進み、K=2,N=2として、ステップS22
に進んで、発生周期B(2)={A(3)−A(1)}
を求め、さらに、ステップS23,S24,S22を経て、発生周
期B(3)={A(4)−A(1)}を求める。次い
で、ステップS23でN=3となっているので、ステップS
25に進んで、I={発生数−1}になったか否か、すな
わちI=3で発生周期B(6)を既に求めたか否かが判
別される。いま、I=1であるので、ステップS26に進
んで、I=2,N=1として、ステップS22に戻り、発生周
期B(4)を求め、さらに、ステップS23,S24,S22を経
て発生周期B(5)を求める。さらに、ステップS23,S2
5,S26,S22を経て、発生周期B(6)を求め、ステップS
23,S25を経て、第5図で示す発生周期の算出を終了す
る。そしてステップS6に戻る。 ステップS6では、回転センサ8から受けた規定時間経
過中の軸受の単位時間当たりの回転数を基準回転数に換
算して、基準回転数における周期にステップS5で算出し
た周期を補正する。すなわち、ステップS5で算出した周
期な対して、回転センサ8で検出した軸受の単位時間当
たりの回転数を掛け、基準回転数で割る処理を行なう。
次いで、ステップS7に進んで、各AE信号を発生周期毎に
集計を行なう。すなわち、第2図(e)に示すように、
AEの発生周期毎の発生数を算出する。次いで、ステップ
S8に進んで、周期別(部位別)のAE発生数を周期別(部
位別)の理論AE発生数で割って、AE発生確率を算出す
る。ここで、理論AE発生数とは、内輪,外輪,転動体の
各部位について、1個所に損傷が有るとして、軸受の1
回転につき、各部位から発生するAE発生数である。次い
で、ステップS9に進んで、第6図に示すように、各発生
周期毎のAE発生確率が単一のしきい値を超えたか否かを
判別して、AE発生確率が上記しきい値を超えたときには
軸受の損傷と判定し、ステップS10に進んで軸受の異常
を表わす警報を出力する。このように、部位別で異なる
AE発生数を理論AE発生数で除算して求めたAE発生確率と
しきい値とを比較するので、各部位の損傷を単一のしき
い値で精度高く検出できる。 上記AE発生確率がしきい値を超えた発生周期に基づい
て軸受の損傷箇所を識別することができる。すなわち、
上記軸受が内輪を回転輪としたコロ軸受とすると内輪の
一定個所をコロが通過する周波数をFi、軸の回転周波数
をFr、外輪の所定個所を転動体が通過する周波数をF0
コロの回転周波数をFb、保持器の回転周波数をFcとした
とき、 内輪に異常がある場合は1/Fi,1/Fr 外輪に異常がある場合は1/F0 コロに異常がある場合は1/Fb,1/Fc の周期でもってAEが発生する。すなわち、内輪,外輪,
コロの各損傷に応じてAEの発生周期が異なる。したがっ
て、AE発生確率がしきい値を超えた発生周期によって内
輪と外輪とコロのいずれに剥離が生じたかを判別するこ
とができる。 ステップS9で、どの発生周期においてもAE発生確率が
しきい値を超えないと判断したときはステップS2に戻
る。 この実施例は、100KHz〜500KHzの帯域を持ったバンド
パスフィルタで雑音を除去した後、一定以上の振幅を持
ったAE信号を検出し、このAE信号の周期毎の発生数を算
出し、さらに、AE発生確率を求め、このAE発生確率が単
一のしきい値を超えた場合に軸受の異常と判断するの
で、軸受に発生した剥離などの異常を正確に検出でき、
また、軸受の剥離部位を特定できる。 また、軸受の回転数が変化した場合にAEの発生周期に
影響を及ぼすが、回転センサからの回転数を検出して発
生周期の補正を行なっているので、軸受の回転数の変動
の影響を受けずに、軸受の損傷個所を正確に特定するこ
とができる。 また、特定の周期を持って発生するAE信号のAE発生確
率でもって軸受の異常を判別するので、圧延機のメタル
イン時などのように軸受以外のAEが発生する環境で、軸
受に発生した剥離などの異常を正確に検出でき、また、
軸受の剥離部位を特定できる。 上記実施例では、AEの振幅と比較するしきい値は一定
値としたが、外部の雑音の大きさなどに応じてしきい値
を変動させてもよい。また、上記実施例では規定時間終
了後、AEの発生周期を補正しているが、AEの発生の都
度、AEの発生周期を補正してもよい。さらに、回転数が
一定の場合や回転数変化が予測される場合は、回転セン
サ8を用いないで、コンピュータ7に回転数や予測回転
数を入力して、AEの発生周期を補正してもよい。回転数
が一定であり、上記軸受の損傷部位の判定が不要の場合
はAEの発生周期の補正をしないことも可能である。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. In FIG. 1, reference numeral 1 denotes an AE sensor for detecting an AE of a bearing or the like. The AE signal representing the magnitude of the AE output from the AE sensor 1 is amplified by the preamplifier 2, and then the AE signal in a band of, for example, 100 KHz to 500 KHz is passed through the bandpass filter 3 to remove noise. The AE signal from which the noise has been removed by the band-pass filter 3 is further amplified by the main amplifier 4, input to the envelope detection circuit 5, and subjected to envelope detection. The AE signal has, for example, a waveform as shown in FIG. 2 (a) and shows a spectrum as shown in FIG. 2 (b). The waveform after the envelope detection by the envelope detection circuit 5 is as shown in FIG. 2 (c). The AE signal after the envelope detection is compared with a threshold value in the comparator 6, and when the AE signal exceeds the threshold value, a pulse as shown in FIG. The rotation number of the bearing per unit time is input to the computer 7 from the rotation sensor 8. In the computer 7, processing is performed according to a flowchart shown in FIG. First, initial settings are made in step S1 of FIG. 3, and the process proceeds to step S2, where it is determined whether a predetermined time has elapsed. Here, when it is determined that the specified time has not elapsed, the process proceeds to step S3, and it is determined whether or not an AE has occurred, based on whether or not a pulse has been received from the comparator 6, and the AE has occurred. Step if not determined
Returning to S2, when it is determined that an AE has occurred, the process proceeds to step S4, the time A (I) at which this AE was detected is stored in the memory, and the process returns to step S2. Time A (I) at which this AE occurred
Is shown in FIG. After repeating the above steps S2, S3 and S4, if it is determined in step S2 that the specified time has elapsed, the process proceeds to step S5, where the AE occurrence time A stored in step S4 is stored as shown in FIGS. (1), A (2),…, A
(4) generation periods B (1), B (2),
.., B (6) are calculated. This generation cycle B (I) is calculated by a subroutine shown in FIG. First, in step S21, I = 1, N = 1, K
= 1 is set initially. Next, step S22
And the generation cycle B (1) is {A (2) −A (1)}.
Then, the process proceeds to step S23, where it is determined whether or not N has become {the number of occurrences-I}. Now, as shown in FIG. 5, since the number of occurrences is 4 and I = 1, it is determined whether N is 3 or not. Now, because N is 1,
Proceeding to step S24, assuming that K = 2 and N = 2, step S22
And the generation cycle B (2) = {A (3) -A (1)}.
, And through steps S23, S24 and S22, a generation cycle B (3) = {A (4) -A (1)} is calculated. Next, since N = 3 in step S23, step S23 is executed.
Proceeding to 25, it is determined whether or not I = {the number of occurrences-1}, that is, whether or not the occurrence cycle B (6) has already been obtained when I = 3. Now, since I = 1, the process proceeds to step S26, where I = 2, N = 1, the process returns to step S22, the generation cycle B (4) is obtained, and the generation cycle B (4) is further processed through steps S23, S24, and S22. B (5) is obtained. Further, steps S23 and S2
After 5, S26 and S22, the generation cycle B (6) is obtained, and step S
After 23 and S25, the calculation of the generation cycle shown in FIG. 5 is completed. Then, the process returns to step S6. In step S6, the number of rotations per unit time of the bearing during the lapse of the specified time received from the rotation sensor 8 is converted into a reference rotation number, and the cycle calculated in step S5 is corrected to the cycle at the reference rotation number. That is, a process of multiplying the period calculated in step S5 by the number of rotations of the bearing per unit time detected by the rotation sensor 8 and dividing by the reference rotation number is performed.
Next, the process proceeds to step S7, where the AE signals are totaled for each generation cycle. That is, as shown in FIG.
The number of occurrences of each AE occurrence cycle is calculated. Then step
Proceeding to S8, an AE occurrence probability is calculated by dividing the number of AEs generated per period (by site) by the number of theoretical AEs generated per period (by site). Here, the theoretical number of occurrences of AE means that one part of the inner ring, the outer ring, and the rolling element is assumed to be damaged,
The number of AEs generated from each part per rotation. Next, proceeding to step S9, as shown in FIG. 6, it is determined whether or not the AE occurrence probability for each occurrence period exceeds a single threshold value, and the AE occurrence probability If it exceeds, it is determined that the bearing is damaged, and the process proceeds to step S10 to output an alarm indicating a bearing abnormality. In this way, it differs by site
Since the AE occurrence probability obtained by dividing the AE occurrence number by the theoretical AE occurrence number is compared with a threshold value, damage to each part can be detected with a single threshold value with high accuracy. Damaged parts of the bearing can be identified based on the occurrence cycle in which the AE occurrence probability exceeds the threshold. That is,
If the above bearing is a roller bearing with the inner ring as a rotating ring, the frequency at which the roller passes through a certain portion of the inner ring is Fi, the rotational frequency of the shaft is Fr, the frequency at which the rolling element passes through a predetermined portion of the outer ring is F 0
The rotation frequency of the roller Fb, when the rotational frequency of the cage was Fc, when the case if there is an abnormality in the inner ring there is an abnormality in the 1 / Fi, 1 / Fr outer ring there is abnormality in 1 / F 0 Coro An AE occurs with a period of 1 / Fb, 1 / Fc. That is, inner ring, outer ring,
The occurrence cycle of AE differs depending on each damage of the roller. Therefore, it is possible to determine which of the inner ring, the outer ring, and the roller has peeled based on the occurrence cycle in which the AE occurrence probability exceeds the threshold value. If it is determined in step S9 that the AE occurrence probability does not exceed the threshold value in any occurrence period, the process returns to step S2. In this embodiment, after removing noise with a band-pass filter having a band of 100 KHz to 500 KHz, an AE signal having a certain amplitude or more is detected, and the number of occurrences of this AE signal in each cycle is calculated. When the AE occurrence probability exceeds a single threshold, it is determined that the bearing is abnormal, so it is possible to accurately detect abnormalities such as peeling occurring in the bearing,
In addition, it is possible to specify a separated portion of the bearing. Also, when the bearing rotation speed changes, it affects the AE generation cycle.However, since the rotation cycle is detected by the rotation sensor and the generation cycle is corrected, the effect of fluctuations in the bearing rotation rate is affected. It is possible to pinpoint a damaged portion of the bearing without receiving it. In addition, since the bearing abnormality is determined based on the AE occurrence probability of the AE signal that occurs with a specific period, the occurrence of AE in the bearing in an environment where AE other than the bearing occurs, such as at the time of metal in a rolling mill, etc. Abnormalities such as peeling can be accurately detected.
It is possible to specify a peeled portion of the bearing. In the above embodiment, the threshold value to be compared with the amplitude of the AE is a constant value, but the threshold value may be changed according to the magnitude of external noise or the like. In the above-described embodiment, the AE generation cycle is corrected after the end of the specified time. However, the AE generation cycle may be corrected each time an AE occurs. Further, when the rotation speed is constant or when a change in the rotation speed is predicted, the rotation speed or the predicted rotation speed is input to the computer 7 without using the rotation sensor 8 to correct the AE generation cycle. Good. If the rotational speed is constant and it is not necessary to determine the damaged part of the bearing, it is possible to not correct the AE generation cycle.

【発明の効果】【The invention's effect】

以上より明らかなように、この発明の軸受の異常検出
装置は、AEセンサからのAE信号としきい値を比較する比
較手段と、しきい値を超えたAE信号の発生周期を算出す
る周期算出手段と、AE信号の発生周期毎の発生数を集計
する集計手段と、集計手段で集計された発生部位毎のAE
発生数を理論AE発生数で除算するAE発生確率算出手段
と、AE発生確率がしきい値を超えたか否かを判別する判
別手段を備えて、発生周期毎のAE発生確率と単一のしき
い値とを比較して、軸受の異常を判別するので、軸受の
異常を単一のしきい値でもつて精度よく、かつ発生個所
を特定して検出することができる。
As apparent from the above description, the bearing abnormality detection device of the present invention includes a comparison unit that compares an AE signal from an AE sensor with a threshold value, and a period calculation unit that calculates a generation period of an AE signal exceeding the threshold value. Counting means for counting the number of occurrences for each generation cycle of the AE signal; and AEs for each occurrence site counted by the counting means.
AE occurrence probability calculation means for dividing the number of occurrences by the theoretical number of AE occurrences, and determination means for determining whether the AE occurrence probability exceeds a threshold value. Since the bearing abnormality is discriminated by comparing the threshold value with the threshold value, the occurrence of the bearing abnormality can be identified and detected with a single threshold value with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の軸受の異常検出装置のブロック図、
第2図(a),(b),(c),(d),(e)はこの
実施例の各部分における波形を示す図、第3図は上記実
施例のフローチャート、第4図はAE発生周期を算出する
サブルーチンを示すフローチャート、第5図は発生時刻
と発生周期との関係を示す図、第6図は発生周期とAE発
生確率としきい値との関係を示す図である。 1……AEセンサ、3……バンドパスフィルター、5……
包絡線検波回路、6……比較器、7……コンピュータ、
8……回転センサ。
FIG. 1 is a block diagram of a bearing abnormality detecting device according to the present invention,
2 (a), (b), (c), (d), and (e) show waveforms in respective parts of this embodiment, FIG. 3 is a flowchart of the above embodiment, and FIG. FIG. 5 is a flowchart showing a subroutine for calculating the occurrence period, FIG. 5 is a diagram showing the relationship between the occurrence time and the occurrence period, and FIG. 6 is a diagram showing the relationship between the occurrence period, the AE occurrence probability, and the threshold value. 1 ... AE sensor, 3 ... Band pass filter, 5 ...
Envelope detection circuit 6 Comparator 7 Computer
8. Rotation sensor.

フロントページの続き (72)発明者 井上 紀明 岡山県倉敷市水島川崎通1丁目(番地の 表示なし) 川崎製鉄株式会社水島製鉄 所内 (56)参考文献 特開 昭63−304132(JP,A) 特開 昭63−304128(JP,A) 特開 平3−232230(JP,A) 特開 平4−36633(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01M 13/04 Continuation of the front page (72) Inventor Noriaki Inoue 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama (No address is displayed) Kawasaki Steel Corporation Mizushima Steel Works (56) References JP-A-63-304132 (JP, A) JP-A-63-304128 (JP, A) JP-A-3-232230 (JP, A) JP-A-4-36633 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01M 13 / 04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】軸受からのアコースティックエミッション
を検出してAE信号を出力するAEセンサと、 上記AEセンサからのAE信号としきい値とを比較する比較
手段と、 上記比較手段から、上記AE信号が上記しきい値を超えた
ことを表わす信号を受けて、上記しきい値を超えるAE信
号の発生周期を算出する周期算出手段と、 上記周期算出手段で算出された発生周期毎の発生数を集
計する集計手段と、 上記集計手段で集計された各発生周期毎の発生数をその
各発生周期に対応する部位別の理論発生数で除算して、
部位別のAE発生確率を算出するAE発生確率算出手段と、 上記AE発生確率算出手段から出力されたAE発生確率がし
きい値を超えたか否かを判別して軸受の異常を判別する
判別手段とを備えたことを特徴とする軸受の異常検出装
置。
An AE sensor for detecting an acoustic emission from a bearing and outputting an AE signal; a comparing means for comparing an AE signal from the AE sensor with a threshold value; Receiving a signal indicating that the threshold value has been exceeded, a cycle calculating means for calculating the occurrence cycle of the AE signal exceeding the threshold value, and counting the number of occurrences for each occurrence cycle calculated by the cycle calculation means Tallying means, and dividing the number of occurrences for each occurrence cycle totaled by the tallying means by the theoretical number of occurrences for each part corresponding to each occurrence cycle,
AE occurrence probability calculating means for calculating an AE occurrence probability for each part; determining means for determining whether or not the AE occurrence probability output from the AE occurrence probability calculating means has exceeded a threshold value to determine whether the bearing is abnormal And a bearing abnormality detecting device.
JP2139128A 1990-05-29 1990-05-29 Bearing abnormality detection device Expired - Fee Related JP2963144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139128A JP2963144B2 (en) 1990-05-29 1990-05-29 Bearing abnormality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139128A JP2963144B2 (en) 1990-05-29 1990-05-29 Bearing abnormality detection device

Publications (2)

Publication Number Publication Date
JPH0432737A JPH0432737A (en) 1992-02-04
JP2963144B2 true JP2963144B2 (en) 1999-10-12

Family

ID=15238175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139128A Expired - Fee Related JP2963144B2 (en) 1990-05-29 1990-05-29 Bearing abnormality detection device

Country Status (1)

Country Link
JP (1) JP2963144B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69837847T2 (en) * 1998-03-16 2008-02-07 Central Japan Railway Co., Nagoya DEVICE FOR TESTING MAIN MOTOR BEARINGS IN RAIL VEHICLES
JP5321646B2 (en) * 2011-06-13 2013-10-23 パナソニック株式会社 Abnormality inspection method and abnormality inspection device
CN108956145A (en) * 2018-07-17 2018-12-07 中国科学院沈阳自动化研究所 Based on the lossless sparse Fault Diagnosis of Roller Bearings from coding of constraint noise reduction
DE112020003178T5 (en) * 2019-07-02 2022-04-07 National University Corporation Kanazawa University Abnormality detection device for extrusion molding machine

Also Published As

Publication number Publication date
JPH0432737A (en) 1992-02-04

Similar Documents

Publication Publication Date Title
EP0297729B1 (en) Apparatus for detecting a failure in bearings
US4165458A (en) Signal decision system
JPS599842B2 (en) Damage detection device for rotating bodies
JP2963144B2 (en) Bearing abnormality detection device
JPH09229762A (en) Method and apparatus for monitoring of abnormality of instrument
JPH065195B2 (en) Bearing abnormality detection device
JP3390087B2 (en) Bearing diagnosis system
JP2963146B2 (en) Bearing life prediction device
JPH0658298B2 (en) Bearing abnormality diagnosis device
JP3170006B2 (en) Bearing abnormality detection device
JPS6120734B2 (en)
JP2957371B2 (en) Rotary body abnormality diagnosis device
JP3090994B2 (en) Abnormal detection device for rotating parts
JPS63304132A (en) Detecting method for abnormality of bearing
JPH0249384Y2 (en)
JP3064196B2 (en) Impact detection apparatus and method
JP3205109B2 (en) Abnormal diagnosis device for rotating body
JPH0599790A (en) Device for detecting abnormality of rotary part
JP3415296B2 (en) Diagnosis method for bearing abnormalities
JPH0749265A (en) Vibration monitor
JPS63304131A (en) Detecting device for abnormality of rolling bearing for rolling mill
JP2888899B2 (en) AE generation location device for bearing of crank device
JPS605893B2 (en) Bearing abnormality monitoring device
JP3243032B2 (en) Abnormal diagnosis device for rotating body
JPS5940267B2 (en) Damage detection device for rotating bodies

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees