JP2960712B1 - Propulsion method - Google Patents

Propulsion method

Info

Publication number
JP2960712B1
JP2960712B1 JP12226698A JP12226698A JP2960712B1 JP 2960712 B1 JP2960712 B1 JP 2960712B1 JP 12226698 A JP12226698 A JP 12226698A JP 12226698 A JP12226698 A JP 12226698A JP 2960712 B1 JP2960712 B1 JP 2960712B1
Authority
JP
Japan
Prior art keywords
propulsion
pipe
tail void
perforated
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12226698A
Other languages
Japanese (ja)
Other versions
JPH11315692A (en
Inventor
▲廣▼明 藤井
Original Assignee
株式会社東洋テクノス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東洋テクノス filed Critical 株式会社東洋テクノス
Priority to JP12226698A priority Critical patent/JP2960712B1/en
Application granted granted Critical
Publication of JP2960712B1 publication Critical patent/JP2960712B1/en
Publication of JPH11315692A publication Critical patent/JPH11315692A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

【要約】 【課題】 推進工法において、テールボイド内に滑材を
注入する多孔管の推進管に対する組み込み間隔を経済的
な最適間隔に設定し、推進時の摩擦抵抗の低減効果を維
持できる超長距離推進工法を提供。 【解決手段】 オーバーカット機能を有する掘進機2と
これに続く推進管3、多孔管4を地中に推進させ、掘進
機2による余掘りによって推進管3の周囲にテールボイ
ド6を形成し、多孔管4の滑剤注入孔からテールボイド
滑剤を各注入孔からテールボイド6に加圧注入するよう
にした推進工法において、土質の性状と推進管の推進時
に生じる抵抗値の関係を割り出し、この抵抗値から土質
の性状ごとに、推進管3に対する多孔管4の組み込み間
隔を設定し、推進工法の施工にあたり、施工する地盤全
長の土質性状の分布を予め把握し、把握した各土質の性
状ごとに推進管3に対する多孔管4の組み込み間隔を計
算し、多孔管4の組み込み数を必要最小限にし、施工の
経済性を向上させる。
Abstract: PROBLEM TO BE SOLVED: In a propulsion construction method, an installation interval of a perforated pipe for injecting a lubricant into a tail void into a propulsion pipe is set to an economically optimum interval, and an ultra-long distance capable of maintaining an effect of reducing frictional resistance during propulsion. Provides a propulsion method. SOLUTION: An excavator 2 having an overcut function, a propulsion pipe 3 and a perforated pipe 4 following the excavator are propelled into the ground, and a tail void 6 is formed around the propulsion pipe 3 by excavation by the excavator 2, and In the propulsion method in which the tail void lubricant is injected from each lubricant injection hole into the tail void 6 from the lubricant injection hole of the pipe 4, the relationship between the properties of the soil and the resistance generated during the propulsion of the propulsion pipe is determined. The installation interval of the perforated pipe 4 to the propulsion pipe 3 is set for each property of the propulsion pipe 3, and the distribution of the soil properties over the entire length of the ground to be constructed is grasped in advance in the construction of the propulsion method. The installation interval of the perforated pipe 4 is calculated to minimize the number of perforated pipes 4 to be installed to a necessary minimum, thereby improving the economy of construction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、推進工法、特
に、地中に管路を構築するセミシールド工法において、
推進時に生じる摩擦抵抗の低減を図り、低コストで超長
距離推進を可能にする推進工法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a propulsion method, and more particularly, to a semi-shield method for constructing a pipeline in the ground.
The present invention relates to a propulsion method that enables ultra-long distance propulsion at low cost by reducing frictional resistance generated during propulsion.

【0002】[0002]

【従来の技術】地中に下水施設や各種地下埋設物を収納
する管路を構築する推進工法として、セミシールド工法
が採用されている。
2. Description of the Related Art A semi-shield method has been adopted as a propulsion method for constructing a pipeline for storing sewage facilities and various underground objects underground.

【0003】セミシールド工法は、発進立坑内にジャッ
キと反力支持盤を設置し、掘進作動するセミシールド掘
進機とヒューム管である推進管をジャッキで押圧するこ
とにより地中に進入させ、掘進機による掘削及び推進管
の継ぎ足しと押し込みを繰り返し、到達立坑に掘進機を
取り出すことにより、地中に管路を構築するものであ
る。
[0003] In the semi-shield method, a jack and a reaction force support plate are installed in a starting shaft, and a semi-shield machine and a propulsion pipe, which is a fume tube, are pushed into the ground by a jack and excavated. The excavation by the machine and the extension and pushing of the propulsion pipe are repeated, and the excavator is taken out to the reaching shaft, thereby constructing a pipeline in the ground.

【0004】ところで、セミシールド工法において、例
えば、1スパンが1000m級の超長距離推進の実現の
ためには、推進管と地山との間に生じる摩擦抵抗の低減
が最も重要である。図7の直線は、推進長の範囲が略均
一な土質における推進の進行と摩擦抵抗の関係を示し、
推進長さの進行に比例して摩擦抵抗も増大し、推進長が
長くなると大きな推進力が必要になることがわかる。
[0004] In the semi-shield method, for example, in order to realize ultra-long-distance propulsion with a span of 1000 m class, it is most important to reduce frictional resistance generated between the propulsion pipe and the ground. The straight line in FIG. 7 shows the relationship between the progress of propulsion and the frictional resistance in soil with a substantially uniform range of propulsion length,
It can be seen that the frictional resistance increases in proportion to the progress of the propulsion length, and that a longer propulsion length requires a larger propulsion force.

【0005】従来のセミシールド工法における推進管と
地山との間の摩擦抵抗の低減方法は、シールド掘進機と
これに続く推進管を地中に推進するとき、掘進機によっ
て50mm程度を余掘りして推進管の外周にオーバカット
部分であるテールボイドを掘削すると共に、掘進部分に
おいて、テールボイドの外周部分にマッドフイルム層を
形成し、上記推進管の途中にコンクリート管、鋼管から
なる多孔管を組み込み、多孔管に設けてある注入孔から
供給したテールボイド加圧剤Aをテールボイドに注入
し、潤滑性のあるテールボイド加圧剤でテールボイドを
確保して推進時の推進管と地山の摩擦抵抗の低減を図る
ようにしている。
The conventional method of reducing the frictional resistance between the propulsion pipe and the ground in the semi-shield construction method is to excavate about 50 mm by the excavator when propelling the shield excavator and the subsequent propulsion pipe into the ground. In addition to excavating the tail void which is an overcut portion on the outer periphery of the propulsion pipe, forming a mud film layer on the outer periphery of the tail void in the excavation part, incorporating a concrete pipe and a perforated pipe made of steel pipe in the middle of the propulsion pipe. The tail void pressurizing agent A supplied from the injection hole provided in the perforated pipe is injected into the tail void, and the tail void is secured by the lubricating tail void pressurizing agent to reduce the frictional resistance between the propulsion pipe and the ground during propulsion. I try to plan.

【0006】上記テールボイドに対するテールボイド加
圧剤の注入において、摩擦抵抗の低減をより効果的に得
るには、推進管の途中に組み込む多孔管の配置を狭く設
定し、テールボイドに対するテールボイド加圧剤の注入
量を多くすることが考えられる。
[0006] In the injection of the tail void pressurizing agent into the tail void, in order to more effectively reduce the frictional resistance, the arrangement of the perforated pipe incorporated in the middle of the propulsion pipe is set narrow, and the tail void pressing agent is injected into the tail void. It is conceivable to increase the amount.

【0007】ここで、テールボイド加圧剤によるテール
ボイドの確保のためには、図5に示すように、テールボ
イド6の外周に位置し、地山掘削面のすべてに形成され
る周知の泥膜又はマッドフイルム層Bの生成及び維持が
不可欠である。この泥膜又はマッドフイルム層Bは、圧
力のかかったテールボイド加圧剤Aを地山の土中へ逃が
さない役目をする。上記泥膜又はマッドフイルム層Bは
シールド掘進機による掘進時に、掘進部分に供給する泥
膜形成部材と掘削土との混合によって形成され、また、
泥膜又はマッドフイルム層Bは、テールボイド加圧剤が
地山と接触する部分に形成される。
Here, in order to secure the tail void by the tail void pressurizing agent, as shown in FIG. 5, a well-known mud film or mud is formed on the entire periphery of the tail void 6 and formed on the ground excavation surface. Generation and maintenance of the film layer B is essential. The mud film or mud film layer B serves to prevent the tail void pressurizing agent A under pressure from escaping into the soil of the ground. The above-mentioned mud film or mud film layer B is formed by mixing the mud film forming member and the excavated soil to be supplied to the excavated portion when excavating by the shield excavator,
The mud film or mud film layer B is formed at a portion where the tail void pressurizing agent contacts the ground.

【0008】[0008]

【発明が解決しようとする課題】ところで、テールボイ
ドの確保において、土質の性状と泥膜又はマッドフイル
ム層(以下マッドフイルム層Bという)の生成には密接
な関係があり、例えば、土質が砂礫層や無水層の場合、
マッドフイルム層Bの生成が効率が悪く、生成できても
時間がかかり、このため、テールボイド加圧剤Aが地山
の土中に向けて浸透することになり、テールボイド6の
確保は非常に困難である。
Incidentally, in securing the tail void, there is a close relationship between the nature of the soil and the formation of a mud film or a mud film layer (hereinafter referred to as a mud film layer B). Or anhydrous layer,
The generation of the mud film layer B is inefficient, and it takes a long time to generate the mud film layer B. For this reason, the tail void pressurizing agent A permeates into the soil of the ground, and it is very difficult to secure the tail void 6. It is.

【0009】これに対して、土質がシルト層や粘土層の
場合は、マッドフイルム層Bの生成は効率が良く、テー
ルボイド加圧剤Aの地山への浸透が少ないため、テール
ボイド6の確保は良好である。しかし、このような土質
の性状の変化に関係なく、従来の多孔管の配置方法は、
一定又は適当な間隔となっていたので、職人の感に頼っ
たり過度の使用計画を立てるなど、不確定要素が極めて
高く、このため、推進管の外周面と地山の間で推進長に
比例して発生するとされてきた、摩擦抵抗力を大幅に低
減させるべき本来の目的は、その効果が十分に得られな
いとされてきたのが現状である。
On the other hand, when the soil is a silt layer or a clay layer, the formation of the mud film layer B is efficient, and the penetration of the tail void pressurizing agent A into the ground is small. Good. However, irrespective of such changes in soil properties, the conventional method of arranging perforated pipes is as follows.
Since the intervals were constant or appropriate, uncertainties were extremely high, such as relying on the feelings of craftsmen or planning excessive use.Therefore, the proportion between the outer peripheral surface of the propulsion pipe and the ground was proportional to the propulsion length. At present, it has been said that the original purpose to greatly reduce the frictional resistance, which has been considered to be generated, is that the effect cannot be sufficiently obtained.

【0010】また、テールボイド加圧剤Aにより生成さ
れるマッドフイルム層Bは、地山への浸透や経時的な劣
化により、破壊が生じて長時間の維持が困難となり、テ
ールボイド加圧剤Aが地山へ浸透してしまい、長距離の
場合におけるテールボイド6の確保が困難となり、摩擦
抵抗力が増大して推進が不能となり、長距離推進ができ
なくなる。
Further, the mud film layer B generated by the tail void pressurizing agent A breaks down due to permeation into the ground or deteriorates with time, making it difficult to maintain the mud film layer B for a long time. It penetrates into the ground, making it difficult to secure the tail void 6 in the case of a long distance, increasing the frictional resistance, making propulsion impossible, and making long distance propulsion impossible.

【0011】さらに、上記テールボイド6に対するテー
ルボイド加圧剤Aの注入において、摩擦抵抗の低減をよ
り効果的に得るために、推進管の途中に組み込む多孔管
の配置間隔を、例えば、5mや10mのように狭く設定
し、テールボイドに対するテールボイド加圧剤Aの注入
量を多くすることが考えられるが、推進管の外周全体に
テールボイド加圧剤Aを行き渡らせることによって、摩
擦抵抗の低減効果は得られても、施工コストが極めて高
くつくことになる。
Further, in the injection of the tail void pressurizing agent A into the tail void 6, in order to more effectively reduce the frictional resistance, the interval between the perforated pipes to be incorporated in the middle of the propulsion pipe is set to, for example, 5 m or 10 m. It is conceivable to increase the injection amount of the tail void pressurizing agent A into the tail void by setting the width as narrow as possible, but by spreading the tail void pressurizing agent A over the entire outer periphery of the propulsion pipe, the effect of reducing the frictional resistance can be obtained. However, the construction cost is extremely high.

【0012】ちなみに、多孔管の組み込みコストは管径
別で一個あたり約50〜200万円と高価なため、これ
を多数個使用することは高コストになり、経済性を著し
く損なうことになる。
By the way, the cost of assembling a perforated pipe is high, about 500,000 to 2,000,000 yen per pipe, depending on the diameter of the pipe. Therefore, the use of a large number of these pipes increases the cost and significantly impairs the economic efficiency.

【0013】そこで、この発明の課題は、マッドフイル
ム層の生成が、地盤土質の性状に対して異なる形成度を
示す点に着目し、推進工法の施工にあたり、施工する地
盤全長の土質性状の分布を予め把握し、かつ、土質の性
状と推進管の推進時に生じる抵抗値の関係を割り出し、
これに基づいて使用する多孔管の配置間隔を最適の間隔
に決定し、かつ、マッドフイルム層の生成維持が確実に
行え、これにより、推進管の途中に組み込む多孔管の間
隔を必要最小限にとどめながら摩擦抵抗の低減を効果的
に得ることができ、超長距離推進を低コストで実施でき
る推進工法を提供することにある。
Therefore, an object of the present invention is to focus on the point that the formation of the mud film layer shows a different degree of formation with respect to the properties of the soil soil, and in the construction of the propulsion method, the distribution of the soil properties over the entire length of the ground to be constructed. In advance, and determine the relationship between the properties of the soil and the resistance generated when the propulsion pipe is propelled,
Based on this, the arrangement interval of the perforated pipes to be used is determined to be the optimum interval, and the generation and maintenance of the mud film layer can be reliably performed, thereby minimizing the interval between the perforated pipes incorporated in the propulsion pipe. It is an object of the present invention to provide a propulsion method capable of effectively reducing frictional resistance while maintaining the same and performing ultra-long distance propulsion at low cost.

【0014】[0014]

【課題を解決するための手段】上記のような課題を解決
するため、請求項1の発明は、オーバーカット機能を有
する掘進機とこれに続く推進管と多孔管を地中に推進さ
せ、掘進機による余掘りによって推進管の周囲にテール
ボイドを形成し、地中に推進させる多孔管の周方向に複
数の滑剤注入孔を並べて設け、テールボイド滑剤を各注
入孔からテールボイドに加圧注入するようにした推進工
法において、土質の性状と推進管の推進時に生じる抵抗
値の関係を割り出し、この抵抗値から土質の性状ごと
に、推進管に対する多孔管の組み込み間隔を設定し、推
進工法の施工にあたり、施工する地盤全長の土質性状の
分布を予め把握し、把握した各土質の性状ごとに推進管
に対する多孔管の組み込み間隔を計算し、該計算値から
地盤全長での推進管に対する多孔管の組み込み間隔の平
均値を出し、推進管に対する多孔管の組み込みをこの平
均値の間隔に設定する構成を採用したものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an invention according to claim 1 is to excavate an excavator having an overcut function, and a propulsion pipe and a perforated pipe following the excavator, to excavate the excavator. A tail void is formed around the propulsion pipe by excavation with a machine, a plurality of lubricant injection holes are arranged side by side in the circumferential direction of the perforated pipe to be propelled underground, and the tail void lubricant is injected from each injection hole into the tail void by pressure. In the propulsion method, the relationship between the properties of the soil and the resistance generated during the propulsion of the propulsion pipe was determined, and from this resistance value, the spacing between the perforated pipes and the propulsion pipe was set for each property of the soil. The distribution of the soil properties over the entire length of the ground to be constructed is grasped in advance, the installation interval of the perforated pipe to the propulsion pipe is calculated for each grasped property of the soil, and the propulsion pipe over the entire length of the ground is calculated from the calculated value. Against is obtained by averaging values of the embedded interval of the porous tube, it employs a configuration that sets the incorporation of porous pipe for propulsion tube spacing of the mean values.

【0015】請求項2の発明は、請求項1の発明におい
て、掘進機による余掘りによって推進管の周囲にテール
ボイドを形成し、このテールボイドの外周部に、掘進部
分で生成するマッドフイルム層と多孔管の滑剤注入孔か
らテールボイドに圧入したテールボイド滑剤で生成する
マッドフイルム層からなる二重構造のマッドフイルム層
を形成する構成を採用したものである。
According to a second aspect of the present invention, in the first aspect of the present invention, a tail void is formed around the propulsion pipe by over-digging by the excavator, and a mud film layer generated in the excavation portion and a porous film are formed around the tail void. This embodiment adopts a configuration in which a mud film layer having a double structure composed of a mud film layer formed by a tail void lubricant pressed into a tail void from a lubricant injection hole of a pipe is formed.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態を図
示例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1はセミシールド工法を示し、発進立坑
1から地中に向けて、オーバーカット機能を有する掘進
機2と、この掘進機2のケーシング2aにおける後部に
連ねた推進管3と、推進管3に所定の間隔で組み込む多
孔管4とを、ジャッキ5での押し込みと、掘進機2のカ
ッター2bによる掘進作用によって地中に進入させ、掘
進機2はオーバーカット機能による余掘りによって、5
0mm程度のテールボイド6を形成すると共に、地上の滑
剤供給装置7から滑剤供給管8に滑剤A1 が送り込ま
れ、多孔管4の各滑剤注入孔9から滑剤A1 をテールボ
イド6内に同時注入し、テールボイド6を確保して推進
の抵抗発生を低減する。
FIG. 1 shows a semi-shielding method, in which an excavator 2 having an overcut function, a propulsion pipe 3 connected to a rear part of a casing 2a of the excavator 2, and a propulsion are introduced from a starting shaft 1 into the ground. The perforated pipe 4 to be incorporated into the pipe 3 at a predetermined interval is penetrated into the ground by pushing with the jack 5 and excavating by the cutter 2 b of the excavator 2.
A tail void 6 of about 0 mm is formed, and a lubricant A1 is fed from a lubricant supply device 7 on the ground to a lubricant supply pipe 8, and the lubricant A1 is simultaneously injected into the tail void 6 from each lubricant injection hole 9 of the perforated pipe 4. 6 to reduce the resistance of propulsion.

【0018】図2と図3は、推進管3の間に接続状態で
組み込む多孔管4の断面構造を示し、周壁に所定の間隔
で滑剤注入孔9が内外に貫通するよう設けられ、多孔管
4の内周に配置した分配管10が各滑剤注入孔9に接続
され、この分配管10に滑剤供給管8が電磁弁11を介
して接続され、電磁弁11を開弁することにより、地上
の滑剤供給装置7から供給された滑剤A1 を各滑剤注入
孔9からテールボイド6内に同時注入するようになって
いる。
FIGS. 2 and 3 show the cross-sectional structure of the perforated pipe 4 to be incorporated between the propulsion pipes 3 in a connected state. A lubricant injection hole 9 is provided on the peripheral wall at predetermined intervals so as to penetrate inside and outside. 4 is connected to each lubricant injection hole 9, and a lubricant supply pipe 8 is connected to the distribution pipe 10 via an electromagnetic valve 11. The lubricant A1 supplied from the lubricant supply device 7 is simultaneously injected into the tail void 6 from each lubricant injection hole 9.

【0019】ここで、滑剤A1 は、主成分がポリアクリ
ル酸ソーダと、球状吸水性膨張剤であり、これは白色粉
末状の食品添加物と淡黄色球体の衛生用品で、水を加え
てこれをPH7の透明な球状含有粘性物にして流動性の
ある状態で使用する。
Here, the lubricant A1 is mainly composed of sodium polyacrylate and a spherical water-absorbing swelling agent, which is a white powdery food additive and a light yellow sphere sanitary article. Is used as a fluid having a transparent spherical viscous material of PH7.

【0020】この滑剤A1は、人体、動植物、地球への
汚染など全くなく、土粒子間に目詰効果を発揮し、テー
ルボイド6の外周面にマッドフイルム層の形成が瞬時に
でき、液圧を保持する機能がある。
This lubricant A1 exerts a clogging effect between soil particles without any pollution to the human body, animals and plants, and the earth, instantaneously forms a mud film layer on the outer peripheral surface of the tail void 6, and reduces the hydraulic pressure. There is a function to keep.

【0021】上記滑剤A1 を使用することにより、図4
で示したように、シールド掘進機による掘進時に、掘進
部分に供給する泥膜形成部材と掘削土との混合によって
形成されるマッドフイルム層Bに対し、テールボイド6
に圧入した滑剤A1 は、このマッドフイルム層Bの内側
に新たなマッドフイルム層B1 を生成することになり、
従って、マッドフイルム層は二層となり、外側のマッド
フイルム層Bが経時的に劣化しても、内側のマッドフイ
ルム層B1 がテールボイド6内に圧入された滑剤A1 が
地山に浸透しないよう保持を行い、推進時における全長
にわたって滑剤A1 の液圧を長期に保持し、推進抵抗力
の長期にわたる低減により、例えば、1000m級の超
長距離推進を可能にする。
By using the above-mentioned lubricant A1, FIG.
As shown in the figure, at the time of excavation by the shield excavator, the mud film layer B formed by mixing the mud film forming member supplied to the excavated portion with the excavated soil has a tail void 6.
The lubricant A1 press-fitted into the mud film B forms a new mud film layer B1 inside the mud film layer B.
Accordingly, the mud film layer has two layers, and even if the outer mud film layer B deteriorates with time, the inner mud film layer B1 keeps the lubricant A1 pressed into the tail void 6 from penetrating into the ground. In this case, the hydraulic pressure of the lubricant A1 is maintained for a long time over the entire length of the propulsion, and the long-term reduction of the propulsion resistance enables, for example, 1000 m-class ultra-long-distance propulsion.

【0022】この発明は、上記のようなセミシールド工
法の施工において、推進管3の間に接続状態で組み込む
多孔管4の配置間隔を、テールボイド6の長期間安定保
持をするのに最も適した間隔にするため、土質の性状と
推進管の推進時に生じる抵抗値の関係を割り出し、この
抵抗値から土質の性状ごとに、推進管3に対する多孔管
4の組み込み間隔を設定し、施工する地盤全長の土質性
状の分布を予め把握し、把握した各土質の性状ごとに推
進管3に対する多孔管4の組み込み間隔を計算し、該計
算値から地盤全長での推進管に対する多孔管4の組み込
み間隔の平均値を出し、推進管3に対する多孔管4の組
み込みをこの平均値の間隔に設定すると共に、二層のマ
ッドフイルム層を形成するものである。
According to the present invention, in the construction of the semi-shielding method as described above, the arrangement interval of the perforated pipes 4 incorporated in a connected state between the propulsion pipes 3 is most suitable for keeping the tail voids 6 stable for a long period of time. In order to set the interval, the relationship between the properties of the soil and the resistance value generated during the propulsion of the propulsion pipe is determined, and from this resistance value, the installation interval of the perforated pipe 4 with respect to the propulsion pipe 3 is set for each soil property, and the total length of the ground to be constructed Of the soil properties of the propulsion pipe 3 with respect to the propulsion pipe 3 is calculated for each of the grasped soil properties, and the calculated value is used to determine the installation interval of the perforated pipe 4 with respect to the propulsion pipe over the entire length of the ground. An average value is obtained, the incorporation of the perforated pipe 4 into the propulsion pipe 3 is set at the interval of the average value, and two mud film layers are formed.

【0023】本発明者は、鋭意研究を重ねるなかで、上
記テールボイド6の液圧保持を担うマッドフイルムBの
形成度は、推進管3の通過付近における地下水圧や土質
の性状と密接な関係があり、それぞれ土質条件等により
異なる形成度を示すことを突き止めた。
The inventor of the present invention has conducted intensive studies and found that the degree of formation of the mud film B responsible for maintaining the hydraulic pressure of the tail void 6 has a close relationship with the groundwater pressure and soil properties near the passage of the propulsion pipe 3. It was found that each of them had a different degree of formation depending on soil conditions and the like.

【0024】土質の粒度分布等の性状(土質番号〜
)と推進工法におけるマッドフイルム層の形成度の関
係を表1に示す。
Properties of soil particle size distribution (soil number to
) And the degree of formation of the mud film layer in the propulsion method are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】ここで、例えば、図6は、表1における土
質番号の土質での、推進工法における推進管3の外周
面抵抗力と多孔管4の組み込み間隔の関係を示してい
る。この土質番号の土質は、地下水が存在し、粒度分
布がバランスよく構成(例えば、シルト分30%、粘土
分30%、砂分30%)されているので、マッドフイル
ム層の形成は極めて良好となり、多孔管4を50mの間
隔に配置したとき、最も効率よく推進管3の全周面にテ
ールボイド滑剤A1 をまんべんなく供給できることが判
明し、長期間圧力を保持することが可能となると同時
に、低推進力を十分発揮することができた。多孔管4を
45mの間隔に配置しても同じ結果となり、55mを越
えると、テールボイドの保持に影響が見られるので、経
済的な多孔管4の最適間隔は50mに決定した。
Here, for example, FIG. 6 shows the relationship between the outer peripheral surface resistance of the propulsion pipe 3 and the installation interval of the perforated pipe 4 in the propulsion method in the soil of the soil number shown in Table 1. Since the soil of this soil number has groundwater and a well-balanced particle size distribution (for example, silt content 30%, clay content 30%, sand content 30%), the formation of the mud film layer becomes extremely favorable. When the perforated pipes 4 are arranged at intervals of 50 m, it has been found that the tail void lubricant A1 can be supplied evenly to the entire peripheral surface of the propulsion pipe 3 most efficiently. I was able to fully demonstrate my strength. The same result is obtained even when the perforated pipes 4 are arranged at intervals of 45 m. When the perforated pipes 4 exceed 55 m, the retention of the tail voids is affected. Therefore, the economical optimal interval of the perforated pipes 4 is determined to be 50 m.

【0027】他の土質でも同様の方法で、表1に示す最
適間隔を決定した。
The optimum intervals shown in Table 1 were determined for other soils in the same manner.

【0028】表2は、表1における各土質番号〜の
土質において、土質の性状と外周面抵抗力の関係から得
た、推進管3に対する多孔管4の組み込みの最適間隔を
示している。
Table 2 shows the optimum intervals for assembling the perforated pipes 4 into the propulsion pipes 3 based on the relationship between the properties of the soil and the resistance of the outer peripheral surface in the soils of each soil number from Table 1 onwards.

【0029】[0029]

【表2】 [Table 2]

【0030】この発明は、推進工法の施工にあたり、施
工箇所の地下水や土質の性状を事前に調査し、土質の性
状と推進管3の推進時に生じる抵抗値の関係から、土質
の性状ごとに推進管3に対する多孔管4の組み込み間隔
を設定し、施工する地盤全長の土質性状の分布を予め把
握し、把握した各土質の性状ごとに推進管3に対する多
孔管4の組み込み間隔を計算し、該計算値から地盤全長
での推進管3に対する多孔管4の組み込み間隔の平均値
を出し、推進管3に対する多孔管の組み込みをこの平均
値の間隔に設定するものである。
According to the present invention, in the construction of the propulsion method, groundwater and soil properties at the construction site are investigated in advance, and the propulsion is performed for each soil property based on the relationship between the soil properties and the resistance value generated when the propulsion pipe 3 is propelled. The installation interval of the perforated pipe 4 with respect to the pipe 3 is set, the distribution of the soil properties over the entire length of the ground to be constructed is grasped in advance, and the installation interval of the perforated pipe 4 with respect to the propulsion pipe 3 is calculated for each grasped soil property. From the calculated values, the average value of the installation interval of the perforated pipe 4 to the propulsion pipe 3 over the entire length of the ground is determined, and the installation of the perforated pipe to the propulsion pipe 3 is set to the interval of this average value.

【0031】これにより、図7に示したように、推進工
法の施工における地盤全長での全抵抗値に対して、テー
ルボイド6の確保と圧力保持による抵抗削減が平均化し
て行えることになり、推進長の進行に対して摩擦抵抗の
発生は略一定化し、超長距離推進の実現を可能にすると
共に、多孔管4の組み込み間隔を最低限の最適間隔に設
定することにより、多孔管4の数を必要最小限に抑えて
摩擦抵抗力の削減が図れ、経済性の大幅な向上が図れ
る。
As a result, as shown in FIG. 7, the securing of the tail void 6 and the reduction of the resistance by maintaining the pressure can be averaged with respect to the total resistance value over the entire length of the ground in the construction of the propulsion method. The generation of frictional resistance is substantially constant with the progress of the long distance, enabling the realization of ultra-long-distance propulsion, and by setting the interval of assembling the perforated tubes 4 to the minimum optimum interval, the number of perforated tubes 4 can be reduced. Is reduced to the minimum necessary to reduce the frictional resistance, and the economic efficiency can be greatly improved.

【0032】[0032]

【発明の効果】以上のように、請求項1の発明による
と、オーバーカット機能を有する掘進機を用いた推進工
法において、施工部分の土質の性状と推進管の推進時に
生じる抵抗値の関係を割り出し、この抵抗値から土質の
性状ごとに、推進管に対する多孔管の組み込み間隔を設
定し、推進工法の施工にあたり、施工する地盤全長の土
質性状の分布を予め把握し、把握した各土質の性状ごと
に推進管に対する多孔管の組み込み間隔を計算し、該計
算値から地盤全長での推進管に対する多孔管の組み込み
間隔の平均値を出し、推進管に対する多孔管の組み込み
をこの平均値の間隔に設定するようにしたので、推進工
法の施工における地盤全長での全抵抗値に対して、テー
ルボイドの確保と圧力保持による抵抗削減が平均化して
行えることになり、多孔管の組み込み間隔を最低限の最
適間隔に設定することにより、経済性の大幅な向上が図
れ、しかもテールボイド滑剤による推進時の摩擦低減効
果を維持でき、超長距離推進を可能にすることができ
る。
As described above, according to the first aspect of the present invention, in the propulsion method using an excavator having an overcut function, the relationship between the properties of the soil at the construction portion and the resistance value generated during the propulsion of the propulsion pipe is determined. From this resistance value, set the installation interval of the perforated pipe to the propulsion pipe for each soil property based on this resistance value, and in advance of the construction method of the propulsion method, grasp the distribution of soil properties over the entire length of the ground to be constructed, and grasp the properties of each soil property grasped The installation interval of the perforated pipe to the propulsion pipe is calculated every time, and the average value of the installation interval of the perforated pipe to the propulsion pipe over the entire length of the ground is calculated from the calculated value. Because it was set, the securing of the tail void and the reduction of resistance by pressure holding can be averaged with respect to the total resistance value over the entire length of the ground in the construction of the propulsion method, By setting the minimum interval between bored pipes, the economical efficiency can be greatly improved, and the tail void lubricant can maintain the effect of reducing friction during propulsion, enabling ultra-long-distance propulsion. it can.

【0033】また、請求項2の発明によると、掘進機に
よる余掘りによって推進管の周囲にテールボイドを形成
し、このテールボイドの外周部に、掘進部分で生成する
マッドフイルム層と、多孔管の滑剤注入孔からテールボ
イドに圧入したテールボイド滑剤で生成するマッドフイ
ルム層からなる二重構造のマッドフイルム層を形成する
ようにしたので、推進時の全長にわたり、推進管の周囲
にテールボイド滑剤の確保が長期にわたり可能となり、
推進時の抵抗削減により、超長距離推進が実現可能にな
る。
According to the second aspect of the present invention, a tail void is formed around the propulsion pipe by the excavation by the excavator, and a mud film layer generated at the excavation portion and a lubricant for the perforated pipe are formed around the tail void. Since a mud film layer with a double structure consisting of a mud film layer generated by the tail void lubricant pressed into the tail void from the injection hole is formed, the tail void lubricant is secured around the propulsion pipe for a long time over the entire length during propulsion. Becomes possible,
Ultra-long-distance propulsion becomes feasible by reducing drag during propulsion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る推進工法の施工状態を示す縦断
面図
FIG. 1 is a longitudinal sectional view showing a construction state of a propulsion method according to the present invention.

【図2】同上に用いる多孔管の縦断面図FIG. 2 is a longitudinal sectional view of a perforated tube used in the above.

【図3】多孔管の斜視図FIG. 3 is a perspective view of a perforated tube.

【図4】テールボイドのマッドフイルム層の形成を示す
説明図
FIG. 4 is an explanatory view showing the formation of a mud film layer of a tail void.

【図5】従来の推進工法におけるテールボイドのマッド
フイルム層の形成を示す説明図
FIG. 5 is an explanatory view showing formation of a mud film layer of a tail void in a conventional propulsion method.

【図6】多孔管の組み込み間隔と推進管外周の摩擦抵抗
の関係を示す説明図
FIG. 6 is an explanatory diagram showing the relationship between the interval between the perforated tubes and the frictional resistance of the outer periphery of the propulsion tube.

【図7】従来の推進工法における摩擦抵抗の発生とこの
発明の摩擦抵抗の発生を示す説明図
FIG. 7 is an explanatory view showing generation of frictional resistance in a conventional propulsion method and generation of frictional resistance according to the present invention.

【符号の説明】[Explanation of symbols]

2 掘進機 3 推進管 4 多孔管 6 テールボイド A1 テールボイド滑剤 B、B1 マッドフイルム層 2 Excavator 3 Propulsion pipe 4 Perforated pipe 6 Tail void A1 Tail void lubricant B, B1 Mud film layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 オーバーカット機能を有する掘進機とこ
れに続く推進管と多孔管を地中に推進させ、掘進機によ
る余掘りによって推進管の周囲にテールボイドを形成
し、地中に推進させる多孔管の周方向に複数の滑剤注入
孔を並べて設け、テールボイド滑剤を各注入孔からテー
ルボイドに加圧注入するようにした推進工法において、
土質の性状と推進管の推進時に生じる抵抗値の関係を割
り出し、この抵抗値から土質の性状ごとに、推進管に対
する多孔管の組み込み間隔を設定し、推進工法の施工に
あたり、施工する地盤全長の土質性状の分布を予め把握
し、把握した各土質の性状ごとに推進管に対する多孔管
の組み込み間隔を計算し、該計算値から地盤全長での推
進管に対する多孔管の組み込み間隔の平均値を出し、推
進管に対する多孔管の組み込みをこの平均値の間隔に設
定することを特徴とする推進工法。
1. An excavator having an overcut function, and a propulsion pipe and a perforated pipe following the excavator are propelled into the ground, and a tail void is formed around the propulsion pipe by extra excavation by the excavator, and the perforated water is propelled into the ground. A plurality of lubricant injection holes are arranged side by side in the circumferential direction of the pipe, and in the propulsion construction method in which the tail void lubricant is injected under pressure from each injection hole into the tail void,
The relationship between the properties of the soil and the resistance generated during the propulsion of the propulsion pipe is determined.From this resistance, the spacing between the perforated pipes and the propulsion pipe is set for each property of the soil. The distribution of soil properties is grasped in advance, the installation interval of the perforated pipe to the propulsion pipe is calculated for each grasped soil property, and the average value of the installation interval of the perforated pipe to the propulsion pipe over the entire length of the ground is calculated from the calculated value. A propulsion method, wherein the incorporation of a perforated pipe into the propulsion pipe is set at the interval of this average value.
【請求項2】 掘進機による余掘りによって推進管の周
囲にテールボイドを形成し、このテールボイドの外周部
に、掘進部分で生成するマッドフイルム層と多孔管の滑
剤注入孔からテールボイドに圧入したテールボイド滑剤
で生成するマッドフイルム層からなる二重構造のマッド
フイルム層を形成することを特徴とする請求項1に記載
の推進工法。
2. A tail void is formed around the propulsion pipe by an excavation by an excavator, and a mud film layer formed in the excavation portion and a tail void lubricant press-fit into the tail void from a lubricant injection hole of the perforated pipe are formed on the outer periphery of the tail void. 2. The propulsion method according to claim 1, wherein a mud film layer having a double structure including a mud film layer generated in the step (a) is formed.
JP12226698A 1998-05-01 1998-05-01 Propulsion method Expired - Fee Related JP2960712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12226698A JP2960712B1 (en) 1998-05-01 1998-05-01 Propulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12226698A JP2960712B1 (en) 1998-05-01 1998-05-01 Propulsion method

Publications (2)

Publication Number Publication Date
JP2960712B1 true JP2960712B1 (en) 1999-10-12
JPH11315692A JPH11315692A (en) 1999-11-16

Family

ID=14831713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12226698A Expired - Fee Related JP2960712B1 (en) 1998-05-01 1998-05-01 Propulsion method

Country Status (1)

Country Link
JP (1) JP2960712B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535652B2 (en) * 2001-09-10 2010-09-01 株式会社ハンシン建設 Propulsion device with low thrust system

Also Published As

Publication number Publication date
JPH11315692A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
JP2842855B2 (en) Long-distance propulsion method and equipment in semi-shield method
CN102691296A (en) Pipe pile foundation for static-pressure grouting on pile side and rotary jet grouting at pile bottom and construction method thereof
US5626437A (en) Method for in-situ bioremediation of contaminated ground water
CN101838984A (en) Afforestation ecological fabric reinforcing method and structure
CN106703011A (en) Construction method of occlusive piles of water-containing pebble bed and saturated sandstone stratum
JP2006188940A (en) Earthquake resistant structure
JP2960712B1 (en) Propulsion method
CN109505633B (en) Lining back guide pipe grouting water plugging device for muddy stratum and construction method
KR20200001852U (en) Improved, reinforced pile, pier, footing, caisson, foundation and its supporting building, facility, bridge, structure
JP3439341B2 (en) Propulsion method
CN109914390A (en) It is a kind of to construct the slip casting structure and construction method of cold seam for biting connecions campshed
KR101546723B1 (en) Stabilizing structure of slope area and construction method of stabilizing slope area using the same
KR20070112322A (en) Traction type obstacles removing system for embedded sewage line
CN210797598U (en) Deep basal pit stagnant water structure
CN114016553B (en) Soft soil embedding device and method for geomembrane
JP3241616B2 (en) Pressure detector for void pressurized material injected into the excavation around the propulsion pipe
JP2004190313A (en) Winged steel pipe pile
US4615645A (en) Pipeline trenching
JP7474585B2 (en) Retractable drainage pipe, ground drainage structure, and method of inserting the retractable drainage pipe
CN109989758B (en) Thin earth covering, back soil preventing and resistance reducing measures for rectangular tunnel
RU92872U1 (en) PILES SECTION
JP2601401B2 (en) Side hole drilling method
CN86207943U (en) Amphibious ditching and tube laying machine
Gupta et al. Challenges in Design and Construction of Punatsangchhu-I Dam with Deep Foundation and Adverse Geology
JPH09256353A (en) Ground liquefaction prevention method and water cylinder and burying method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees