JP2959439B2 - Method of forming multilayer high-temperature superconducting integrated circuit - Google Patents

Method of forming multilayer high-temperature superconducting integrated circuit

Info

Publication number
JP2959439B2
JP2959439B2 JP7177367A JP17736795A JP2959439B2 JP 2959439 B2 JP2959439 B2 JP 2959439B2 JP 7177367 A JP7177367 A JP 7177367A JP 17736795 A JP17736795 A JP 17736795A JP 2959439 B2 JP2959439 B2 JP 2959439B2
Authority
JP
Japan
Prior art keywords
temperature superconducting
film
superconducting film
uppermost
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7177367A
Other languages
Japanese (ja)
Other versions
JPH0927644A (en
Inventor
睦夫 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7177367A priority Critical patent/JP2959439B2/en
Publication of JPH0927644A publication Critical patent/JPH0927644A/en
Application granted granted Critical
Publication of JP2959439B2 publication Critical patent/JP2959439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多層高温超伝導集積
回路の形成方法に係り、特に3以上の高温超伝導膜を用
いた高温超伝導集積回路の形成方法に関する。
The present invention relates relates to a method for forming a multilayer high-temperature superconducting integrated circuit, about the particular method of forming the high temperature superconducting integrated circuit using three or more high temperature superconducting film.

【0002】[0002]

【従来の技術】従来より、多層の高温超伝導膜と絶縁膜
を積層した多層高温超伝導集積回路が知られている(例
えば、アプライド・フィジックス・レターズ、第59
巻、第3051頁(1991))。図3は高温超伝導膜
3層、絶縁膜2層からなる高温超伝導集積回路の従来の
形成方法を説明する断面図である。
2. Description of the Related Art Hitherto, a multilayer high-temperature superconducting integrated circuit in which a multi-layer high-temperature superconducting film and an insulating film are laminated has been known (for example, Applied Physics Letters, No. 59).
Vol., P. 3051 (1991)). FIG. 3 is a cross-sectional view illustrating a conventional method for forming a high-temperature superconducting integrated circuit including three layers of a high-temperature superconducting film and two layers of an insulating film.

【0003】この従来の形成方法では、まず、図3
(a)に示すように、基板10上に第1の高温超伝導膜
11をエピタキシャル成長した後、高温超伝導膜11の
加工を行う。高温超伝導膜や絶縁膜のエピタキシャル成
長は、レーザ蒸着法によって行う。加工はフォトレジス
トでパターンを形成後、イオンビームエッチングを用い
て行う。加工後はアセトンを用いてフォトレジストを剥
離する。エピタキシャル成長、加工の方法は以下のプロ
セスにおいても同様である。
In this conventional forming method, first, FIG.
As shown in FIG. 1A, after the first high-temperature superconducting film 11 is epitaxially grown on the substrate 10, the high-temperature superconducting film 11 is processed. The epitaxial growth of the high-temperature superconducting film or the insulating film is performed by a laser deposition method. Processing is performed using ion beam etching after forming a pattern with a photoresist. After processing, the photoresist is stripped using acetone. The method of epitaxial growth and processing is the same in the following processes.

【0004】続いて、図3(b)に示すように、加工さ
れた第1の高温超伝導膜11上に第1の絶縁膜12を成
長させ、コンタクトホールを作るための加工を行う。続
いて、図3(c)に示すように、第1の絶縁膜12上に
第2の高温超伝導膜13及び第2の絶縁膜14を連続エ
ピタキシャル成長した後加工する。この工程により、第
1の高温超伝導膜11と第2の高温超伝導膜13は結線
される。
Subsequently, as shown in FIG. 3B, a first insulating film 12 is grown on the processed first high-temperature superconducting film 11, and processing for forming a contact hole is performed. Subsequently, as shown in FIG. 3C, a second high-temperature superconducting film 13 and a second insulating film 14 are continuously epitaxially grown on the first insulating film 12 and then processed. By this step, the first high-temperature superconducting film 11 and the second high-temperature superconducting film 13 are connected.

【0005】第2の高温超伝導膜13と第2の絶縁膜1
4は別々にエピタキシャル成長してもよいが、図3
(c)に示すように、パターンが同一の場合は連続して
エピタキシャル成長することができる。最後に、図3
(d)に示すように、第3の高温超伝導膜15をエピタ
キシャル成長した後加工を行う。第2の高温超伝導膜1
3と第3の高温超伝導膜15は、第2の高温超伝導膜1
3のエッジ部分13aで結線される。
[0005] The second high-temperature superconducting film 13 and the second insulating film 1
4 may be grown separately by epitaxial growth.
As shown in (c), when the patterns are the same, epitaxial growth can be performed continuously. Finally, FIG.
As shown in (d), processing is performed after the third high-temperature superconducting film 15 is epitaxially grown. Second high-temperature superconducting film 1
3 and the third high-temperature superconducting film 15
3 are connected at the edge portion 13a.

【0006】[0006]

【発明が解決しようとする課題】高温超伝導集積回路に
用いる高温超伝導膜及び絶縁膜は、格子整合のとれた基
板上にエピタキシャル成長する必要がある。エピタキシ
ャル成長される薄膜の膜質は、基板表面の状態に著しく
依存する。このため、基板表面の状態が良好でないと、
高温超伝導膜の超伝導特性や絶縁膜の絶縁特性が低下
し、回路動作上致命的な欠陥が発生する。図3に示され
るような多層構造の集積回路の場合、上層部の膜は下層
部の高温超伝導膜若しくは絶縁膜上にエピタキシャル成
長される。高温超伝導体は、少なくとも4元系の酸化物
であり、酸素の離脱等によって表面が影響を受け易い。
また、水分等の影響を受け易く、加工工程における表面
ダメージのためにエピタキシャル性が劣化し易い。
The high-temperature superconducting film and the insulating film used in the high-temperature superconducting integrated circuit must be epitaxially grown on a lattice-matched substrate. The quality of a thin film epitaxially grown remarkably depends on the state of the substrate surface. For this reason, if the state of the substrate surface is not good,
The superconducting characteristics of the high-temperature superconducting film and the insulating characteristics of the insulating film are degraded, causing a fatal defect in circuit operation. In the case of an integrated circuit having a multilayer structure as shown in FIG. 3, an upper layer film is epitaxially grown on a lower high-temperature superconducting film or an insulating film. The high-temperature superconductor is at least a quaternary oxide, and its surface is easily affected by elimination of oxygen or the like.
In addition, it is easily affected by moisture and the like, and the epitaxial property is easily deteriorated due to surface damage in the processing step.

【0007】エピタキシャル性が劣化した膜は、膜の結
晶構造そのものが乱れているため、表面だけが劣化した
膜上へのエピタキシャル成長に比べて、このようなエピ
タキシャル性が劣化した膜上へのエピタキシャル成長に
おける結晶性の乱れは更に大きくなる。従って、エピタ
キシャル性の乱れの効果は、層数が増えるごとに積み重
なっていく。
[0007] Since the crystal structure itself of the film having a deteriorated epitaxial property is disturbed, the epitaxial growth on the film having the deteriorated epitaxial property is more difficult than the epitaxial growth on the film having only the deteriorated surface. The disorder of crystallinity is further increased. Therefore, the effect of the disorder of the epitaxial property is accumulated as the number of layers increases.

【0008】図3に示した従来の形成方法では、第1の
高温超伝導膜11と第2の高温超伝導膜13を結線する
こと等のために、ほぼ一層成膜する毎に加工のプロセス
を行っている。このため、各層の表面は劣化し、上層に
いくほどエピタキシャル性の乱れの影響が大きくなり、
高温超伝導膜の超伝導特性や絶縁膜の絶縁特性の低下の
程度が大きくなる。従って、図3に示した従来の形成方
法では、特性の優れた多層高温超伝導集積回路を形成す
ることは困難である。
[0010] In the conventional forming method shown in FIG. 3, a processing process is performed every time a substantially single layer is formed in order to connect the first high-temperature superconducting film 11 and the second high-temperature superconducting film 13. It is carried out. For this reason, the surface of each layer deteriorates, and the influence of the disorder of the epitaxial property increases toward the upper layer,
The degree of deterioration of the superconducting characteristics of the high-temperature superconducting film and the insulating characteristics of the insulating film increases. Therefore, it is difficult to form a multilayer high-temperature superconducting integrated circuit having excellent characteristics by the conventional forming method shown in FIG.

【0009】 本発明は以上の点に鑑みなされたもの
で、上層まで優れたエピタキシャル性を保ち、超伝導特
性に優れた高温超伝導膜と絶縁性に優れた絶縁膜を有す
る3層以上の高温超伝導膜と2層以上の絶縁膜からなる
構造を少なくとも含む多層高温超伝導集積回路の形成
法を提供することを目的とする。
The present invention has been made in view of the above points, and has three or more layers of a high-temperature superconducting film having excellent superconductivity and an insulating film having excellent insulating properties while maintaining excellent epitaxial properties up to the upper layer. Method of forming multilayer high-temperature superconducting integrated circuit including at least structure consisting of superconducting film and two or more insulating films
Law aims to provide a Hisage.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するため、2層以上の高温超伝導膜と2層以上の絶縁
膜を交互に基板上に同一真空中で連続エピタキシャル成
長する第1の工程と、連続エピタキシャル成長した膜に
所定の加工を施す第2の工程と、第2の工程により加工
された膜上に最上層の高温超伝導膜をエピタキシャル成
長する第3の工程とを少なくとも含み、最上層の高温超
伝導膜を用いる最上層の高温超伝導膜と下層の高温超伝
導膜との間の結線及び前記下層の高温超伝導膜同士の結
線のためのコンタクトホールを第2の工程により形成す
るようにしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a first method in which two or more high-temperature superconducting films and two or more insulating films are successively epitaxially grown on a substrate in the same vacuum. And a second step of performing a predetermined process on the film epitaxially grown, and a third step of epitaxially growing the uppermost high-temperature superconducting film on the film processed by the second step, A contact hole for the connection between the uppermost high-temperature superconducting film and the lower high-temperature superconducting film using the uppermost high-temperature superconducting film and the connection between the lower high-temperature superconducting films is formed by the second step. It is to be formed.

【0011】 また、本発明は、上記の目的を達成する
ため、2層以上の高温超伝導膜と1層以上の絶縁膜を交
互に基板上に同一真空中で連続エピタキシャル成長する
第1の工程と、連続エピタキシャル成長した膜に所定の
加工を施す第2の工程と、第2の工程により加工された
膜上に最上層の高温超伝導膜の直下の絶縁膜をエピタキ
シャル成長する第3の工程と、最上層の高温超伝導膜の
直下の絶縁膜に所望の加工を施す第4の工程と、第4の
工程を経た膜上に最上層の高温超伝導膜をエピタキシャ
ル成長する第5の工程とを少なくとも含み、最上層の高
温超伝導膜を用いる最上層の高温超伝導膜と下層の高温
超伝導膜との間の結線及び下層の高温超伝導膜同士の結
線のためのコンタクトホールを第2及び第4の工程によ
り形成するようにしたものである。
In order to achieve the above object, the present invention provides a first step in which two or more high-temperature superconducting films and one or more insulating films are alternately epitaxially grown on a substrate in the same vacuum. A second step of subjecting the film formed by the continuous epitaxial growth to predetermined processing, a third step of epitaxially growing an insulating film immediately below the uppermost high-temperature superconducting film on the film processed by the second step, At least a fourth step of subjecting the insulating film immediately below the upper high-temperature superconducting film to a desired processing, and a fifth step of epitaxially growing the uppermost high-temperature superconducting film on the film having undergone the fourth step Contact holes for connection between the uppermost high-temperature superconducting film and the lower high-temperature superconducting film using the uppermost high-temperature superconducting film and for connecting the lower high-temperature superconducting films to each other; In the process of It is a thing.

【0012】[0012]

【0013】本発明では、最上層の高温超伝導膜を除い
て、他の高温超伝導膜、絶縁膜を基板上に同一真空中で
連続エピタキシャル成長する。同一真空中で連続エピタ
キシャル成長を行うと、各層表面の結晶構造が保たれた
まま次の層のエピタキシャル成長が行われるため、エピ
タキシャル性に優れた膜が形成され、高温超伝導膜の超
伝導特性や絶縁膜の絶縁特性の劣化の度合いが小さい。
In the present invention, except for the uppermost high-temperature superconducting film, another high-temperature superconducting film and an insulating film are continuously epitaxially grown on the substrate in the same vacuum. When continuous epitaxial growth is performed in the same vacuum, the next layer is epitaxially grown while maintaining the crystal structure of each layer surface, so that a film having excellent epitaxial properties is formed, and the superconducting properties and insulation of the high-temperature superconducting film are obtained. The degree of deterioration of the insulating properties of the film is small.

【0014】この多層エピタキシャル膜に対して複数回
の加工を施した後に、最上層の高温超伝導膜をエピタキ
シャル成長する。この最上層の高温超伝導膜の下地とな
るのは複数回の加工を施した後の膜であるため、表面の
結晶性は多少劣化しているが、この膜は連続エピタキシ
ャル成長した膜であるため、膜そのものの結晶性は良好
である。このため、従来の形成方法では問題であったよ
うなエピタキシャル性の乱れの相乗効果が起こらず、最
上層の高温超伝導膜の超伝導特性も比較的良好に保たれ
る。
After processing the multilayer epitaxial film a plurality of times, the uppermost high-temperature superconducting film is epitaxially grown. Since the upper layer of the high-temperature superconducting film is a film that has been subjected to a plurality of processes, the crystallinity of the surface is slightly degraded, but this film is a film that has been continuously epitaxially grown. The crystallinity of the film itself is good. For this reason, the synergistic effect of the disorder of the epitaxial property, which is a problem in the conventional formation method, does not occur, and the superconducting property of the uppermost high-temperature superconducting film can be kept relatively good.

【0015】本発明の下層の高温超伝導膜同士を直接結
線することはできなくなるが、本発明では、第2の工程
によりコンタクトホールを形成することで、最上層の高
温超伝導膜と下層の高温超伝導膜との間の結線を行うこ
とにより、最上層の高温超伝導膜を介して前記下層の高
温超伝導膜同士を結線することができる。
Although the lower high-temperature superconducting film of the present invention cannot be directly connected to each other, in the present invention, the contact hole is formed in the second step so that the uppermost high-temperature superconducting film and the lower high-temperature superconducting film are not connected. By performing the connection between the high-temperature superconducting films, the lower high-temperature superconducting films can be connected to each other via the uppermost high-temperature superconducting film.

【0016】ここで、請求項1記載の発明では、下層の
高温超伝導膜と最上層の高温超伝導膜がリーク電流なし
に交差する構造が実現できない。そこで、請求項4記載
の発明では、同一真空中で連続エピタキシャル成長する
膜を最上層の高温超伝導膜とその直下の絶縁膜を除く膜
とすることにより、絶縁膜でより下層の高温超伝導膜の
パターンエッジを含む部分を被覆し、その上に配置され
る最上層の高温超伝導膜と前記下層の高温超伝導膜との
間の絶縁を保つことを可能にできる。
According to the first aspect of the present invention, a structure in which the lower high-temperature superconducting film and the uppermost high-temperature superconducting film intersect without leak current cannot be realized. Therefore, in the invention according to claim 4, the film that is continuously epitaxially grown in the same vacuum is a film excluding the uppermost high-temperature superconducting film and the insulating film immediately thereunder, thereby forming a lower-layer high-temperature superconducting film as the insulating film. And covering the portion including the pattern edge of the above, and maintaining insulation between the uppermost high-temperature superconducting film and the lower high-temperature superconducting film disposed thereon.

【0017】なお、上記の最上層の高温超伝導膜と下層
の高温超伝導膜との間の結線をコンタクトホールのみ、
あるいは傾斜面を有するエッジのみ、あるいはこれら両
方を組合せて行うことができる。
The connection between the uppermost high-temperature superconducting film and the lower-layer high-temperature superconducting film is made by contact holes only.
Alternatively, it can be performed only with an edge having an inclined surface, or a combination of both.

【0018】[0018]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。図1は本発明の第1の実施の形
態を説明する、エッジ接合を有する高温超伝導集積回路
の断面工程図を示す。図1と共に本発明の第1の実施の
形態の説明するに、まず、同図(a)に示すように、チ
タン酸ストロンチウム(SrTiO3、以下「STO」
と記す)からなる基板20上にイットリウム・バリウム
・銅酸化物
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional process diagram of a high-temperature superconducting integrated circuit having an edge junction for explaining a first embodiment of the present invention. To explain the first embodiment of the present invention together with FIG. 1, first, as shown in FIG. 1A, strontium titanate (SrTiO 3 , hereinafter “STO”)
Yttrium / barium / copper oxide on a substrate 20 composed of

【0019】[0019]

【外1】 からなる第1の高温超伝導膜21を厚さ200nmで、
STOからなる第1の絶縁膜22を厚さ200nmで、
YBCOからなる第2の高温超伝導膜23厚さ200n
mで、STOからなる第2の絶縁膜24を厚さ200n
mでそれぞれレーザ蒸着法を用いて順次に積層成膜す
る。
[Outside 1] A first high-temperature superconducting film 21 made of
The first insulating film 22 made of STO is formed to a thickness of 200 nm,
The thickness of the second high-temperature superconducting film made of YBCO 23 is 200 n.
m, the thickness of the second insulating film 24 made of STO is 200 n
The layers are sequentially deposited by using the laser deposition method at m.

【0020】これらの膜21〜24の成膜は、同一真空
中で真空を破ることなく連続して行われる。この成膜時
の基板温度は700℃、酸素圧力は27Paである。こ
の同一真空中、連続成膜により上層まで結晶性の良い良
好な特性を有する膜が成長できる。
The films 21 to 24 are formed continuously in the same vacuum without breaking the vacuum. The substrate temperature during this film formation is 700 ° C. and the oxygen pressure is 27 Pa. In this same vacuum, a film having good crystallinity and good characteristics can be grown up to the upper layer by continuous film formation.

【0021】続いて、これらの膜上にポジ型フォトレジ
ストを用いてパターニングを行った後、イオンビームエ
ッチング装置を用いた加工を行い、第1の高温超伝導膜
21、第1の絶縁膜22、第2の高温超伝導膜23、第
2の絶縁膜24を連続加工し、更にこのイオンビームエ
ッチング終了後、アセトンを用いてフォトレジストを剥
離すると共に酸素アッシングし、図1(b)に示すよう
に溝25を形成する。
Subsequently, after patterning is performed on these films using a positive photoresist, processing using an ion beam etching apparatus is performed to form a first high-temperature superconducting film 21 and a first insulating film 22. Then, the second high-temperature superconducting film 23 and the second insulating film 24 are continuously processed, and after the completion of the ion beam etching, the photoresist is removed using acetone and oxygen ashing is performed, as shown in FIG. Groove 25 is formed as described above.

【0022】続いて、フォトレジストを用いたパターニ
ング後、イオンビームエッチングによる第2の絶縁膜1
4の加工を行い、加工後はアセトン、酸素アッシングに
よりフォトレジストを剥離することで図1(c)に示す
ように、傾斜部26を第2の絶縁膜14に形成する。
Subsequently, after patterning using a photoresist, the second insulating film 1 is formed by ion beam etching.
4 is performed, and after the processing, the photoresist is removed by acetone and oxygen ashing to form the inclined portion 26 in the second insulating film 14 as shown in FIG. 1C.

【0023】次に、フォトレジストを用いたパターニン
グ後、イオンビームエッチングにより第2の絶縁膜2
4、第2の高温超伝導膜23を連続加工し、図1(d)
に示すように、エッジ接合に用いる第2の高温超伝導膜
23のエッジ27を露出する。このとき、図1(c)の
工程で第2の絶縁膜24が加工された部分がフォトレジ
ストで覆われていなければ、図1(d)に示すようにそ
の部分の第2の高温超伝導膜23、第1の絶縁膜22が
連続加工され第1の高温超伝導膜21に対する第1のコ
ンタクトホール28ができる。一方、フォトレジストで
覆われた図1(c)で第2の絶縁膜24が加工された部
分は、第2の高温超伝導膜23に対する第2のコンタク
トホール29ができる。その後フォトレジストが剥離さ
れる。
Next, after patterning using a photoresist, the second insulating film 2 is formed by ion beam etching.
4. Continuous processing of the second high-temperature superconducting film 23, and FIG.
As shown in FIG. 7, the edge 27 of the second high-temperature superconducting film 23 used for edge bonding is exposed. At this time, if the portion where the second insulating film 24 has been processed in the step of FIG. 1C is not covered with the photoresist, as shown in FIG. The film 23 and the first insulating film 22 are continuously processed to form a first contact hole 28 for the first high-temperature superconducting film 21. On the other hand, in the portion where the second insulating film 24 has been processed in FIG. 1C covered with the photoresist, a second contact hole 29 for the second high-temperature superconducting film 23 is formed. Thereafter, the photoresist is stripped.

【0024】続いて、エッジ接合のトンネルバリア30
となる常伝導体のプラセオジウム・バリウム・銅酸化物
Subsequently, the tunnel barrier 30 of the edge junction is used.
Praseodymium / barium / copper oxide

【0025】[0025]

【外2】 を20nmの膜厚で、更に最上層の第3の高温超伝導膜
31としてYBCOを400nmの膜厚で、それぞれ基
板温度700℃、酸素圧力27Paの条件でレーザ蒸着
法により成膜する。
[Outside 2] Is formed to a thickness of 20 nm, and YBCO is formed as a third high-temperature superconducting film 31 of the uppermost layer by a laser evaporation method under the conditions of a substrate temperature of 700 ° C. and an oxygen pressure of 27 Pa, respectively.

【0026】その後、フォトレジストによるパターニン
グ、イオンビームエッチングによる加工、アセトンによ
るフォトレジスト剥離を行い、図1(e)に示される構
造を完成する。
Thereafter, patterning with a photoresist, processing by ion beam etching, and stripping of the photoresist with acetone are performed to complete the structure shown in FIG.

【0027】図1(a)に示された高温超伝導膜2層、
絶縁膜2層の合わせて4層のエピタキシャル膜は同一真
空中で連続して成膜されるため、最後に成膜される第2
の絶縁膜24まで良好なエピタキシャル性が保持され
る。形成方法の最後には、図1(e)に示されたよう
に、加工の施されたこの連続エピタキシャル膜上に最上
層の高温超伝導膜となる第3の高温超伝導膜31がエピ
タキシャル成長されるが、下地の連続エピタキシャル膜
表面の加工に起因する結晶性の乱れのために第3の高温
超伝導膜31のエピタキシャル性は多少劣化する。
The two layers of the high-temperature superconducting film shown in FIG.
Since the four epitaxial films including the two insulating films are continuously formed in the same vacuum, the second epitaxial film is formed last.
The good epitaxial property is maintained up to the insulating film 24. At the end of the forming method, as shown in FIG. 1E, a third high-temperature superconducting film 31 to be the uppermost high-temperature superconducting film is epitaxially grown on the processed continuous epitaxial film. However, the epitaxial property of the third high-temperature superconducting film 31 is slightly deteriorated due to disorder of crystallinity caused by processing of the surface of the underlying continuous epitaxial film.

【0028】しかし、この劣化の度合いは図3と共に説
明した従来の多層超伝導集積回路の形成方法のように、
一層毎に加工を施してからエピタキシャル成長する場合
に比べてはるかに小さい。このため、第3の高温超伝導
膜31の超伝導特性は比較的良好であり、高温超伝導集
積回路の構成要素としての条件を十分に満たしている。
However, the degree of this deterioration is determined by the conventional method of forming a multilayer superconducting integrated circuit described with reference to FIG.
It is much smaller than when epitaxial growth is performed after processing each layer. For this reason, the superconductivity of the third high-temperature superconducting film 31 is relatively good, and sufficiently satisfies the conditions as a component of the high-temperature superconducting integrated circuit.

【0029】図1(e)に示したように、第3の高温超
伝導膜31と第1の高温超伝導膜21は第1のコンタク
トホール28において、また、第3の高温超伝導膜31
と第2の高温超伝導膜23は第2のコンタクトホール2
9及びエッジ接合27においてそれぞれ結線されてい
る。また、第1の高温超伝導膜21と第2の高温超伝導
膜23は、例えば第1、第2のコンタクトホール28、
29において第3の高温超伝導膜31と結線することに
よって、第3の高温超伝導膜31を経由して結線されて
いる。
As shown in FIG. 1E, the third high-temperature superconducting film 31 and the first high-temperature superconducting film 21 are provided in the first contact hole 28 and in the third high-temperature superconducting film 31.
And the second high-temperature superconducting film 23 are formed in the second contact hole 2.
9 and the edge joint 27. In addition, the first high-temperature superconducting film 21 and the second high-temperature superconducting film 23 are formed, for example, with first and second contact holes 28,
At 29, the connection is made via the third high-temperature superconducting film 31 by being connected to the third high-temperature superconducting film 31.

【0030】更に、分離された第1の高温超伝導膜21
若しくは第2の高温超伝導膜23同士をコンタクトホー
ルを用いて第3の高温超伝導膜31を経由して結線する
こともできる。このように、図1に示された実施の形態
による形成方法を用いた場合、同一層内の高温超伝導膜
間及び異なる層間の高温超伝導膜間の結線を最上層の高
温超伝導膜を用いて行うことができる。
Further, the separated first high-temperature superconducting film 21
Alternatively, the second high-temperature superconducting films 23 can be connected to each other via the third high-temperature superconducting film 31 using contact holes. As described above, when the formation method according to the embodiment shown in FIG. 1 is used, the connection between the high-temperature superconducting films in the same layer and the connection between the high-temperature superconducting films in different layers is performed by forming the uppermost high-temperature superconducting film. It can be performed using:

【0031】以上説明したように、この実施の形態で
は、最上層まで超伝導特性の優れた高温超伝導膜と絶縁
性に優れた絶縁膜が得られる。また、同一層内又は異な
る層間の高温超伝導膜が互いに結線された多層高温超伝
導集積回路を形成することができる。
As described above, in this embodiment, a high-temperature superconducting film having excellent superconducting properties and an insulating film having excellent insulating properties can be obtained up to the uppermost layer. Further, a multilayer high-temperature superconducting integrated circuit in which high-temperature superconducting films in the same layer or between different layers are connected to each other can be formed.

【0032】なお、この発明の実施の形態では、連続エ
ピタキシャル膜の加工は図1(b)、(c)及び(d)
の順番で行ったが、同図(c)、(d)及び(b)の順
番で行うこともできる。また、高温超伝導膜3層、絶縁
膜2層の場合につき説明を行ったが、更に層数が増加し
た場合も同様に最上層の高温超伝導膜を除いた膜を基板
上に同一真空中で連続エピタキシャル成長することによ
り、上記の実施の形態と同一の効果が得られる。
In the embodiment of the present invention, the processing of the continuous epitaxial film is performed as shown in FIGS. 1 (b), 1 (c) and 1 (d).
Are performed in the order of (c), (c), (d) and (b) in FIG. Also, the case of three high-temperature superconducting films and two insulating films has been described, but when the number of layers further increases, the film excluding the uppermost high-temperature superconducting film is similarly placed on the substrate in the same vacuum. The same effect as in the above-described embodiment can be obtained by continuous epitaxial growth.

【0033】次に、本発明の第2の実施の形態につい
て、図2の高温超伝導集積回路の断面工程図と共に説明
する。まず、図2(a)に示すように、STOからなる
基板20上にYBCOからなる第1の高温超伝導膜21
を200nmの膜厚で、続いてSTOからなる第1の絶
縁膜22を200nmの膜厚で、続いてYBCOからな
る第2の高温超伝導膜23を200nmの膜厚でそれぞ
れレーザ蒸着法を用いて成膜する。これらの膜21〜2
3の成膜は、同一真空中で真空を破ることなく連続して
行われる。成膜時の基板温度は700℃、酸素圧力は2
7Paである。この同一真空中、連続成膜により上層ま
で結晶性の良い良好な特性を有する膜が成長できる。
Next, a second embodiment of the present invention will be described with reference to a sectional process diagram of the high-temperature superconducting integrated circuit shown in FIG. First, as shown in FIG. 2A, a first high-temperature superconducting film 21 made of YBCO is formed on a substrate 20 made of STO.
With a thickness of 200 nm, the first insulating film 22 made of STO with a thickness of 200 nm, and the second high-temperature superconducting film 23 made of YBCO with a thickness of 200 nm, respectively, using a laser deposition method. To form a film. These films 21 and 2
The film formation of No. 3 is performed continuously in the same vacuum without breaking the vacuum. The substrate temperature during film formation was 700 ° C. and the oxygen pressure was 2
7 Pa. In this same vacuum, a film having good crystallinity and good characteristics can be grown up to the upper layer by continuous film formation.

【0034】これらの膜上にポジ型フォトレジストを用
いてパターニングを行った後、イオンビームエッチング
装置を用いた加工を行い、第1の高温超伝導膜21、第
1の絶縁膜22及び第2の高温超伝導膜23を連続加工
する。イオンビームエッチング終了後、アセトンを用い
てフォトレジストを剥離すると共に酸素アッシングを行
い、図2(b)に示すように、垂直方向に溝33を形成
する。
After patterning using a positive photoresist on these films, processing using an ion beam etching apparatus is performed, and the first high-temperature superconducting film 21, the first insulating film 22, and the second Is continuously processed. After the ion beam etching is completed, the photoresist is stripped using acetone and oxygen ashing is performed to form a groove 33 in the vertical direction as shown in FIG.

【0035】続いて、再びフォトレジストを用いてパタ
ーニングを行った後、イオンビームエッチングにより、
第2の高温超伝導膜23の加工を行う。加工後はアセト
ン、酸素アッシングによりフォトレジストを剥離するこ
とにより、図2(c)に示すように、台形状に加工され
た第2の高温超伝導膜23を残す。
Subsequently, after patterning is again performed using a photoresist, ion beam etching is performed.
The second high-temperature superconducting film 23 is processed. After the processing, the photoresist is removed by acetone and oxygen ashing, so that the trapezoidally processed second high-temperature superconducting film 23 is left as shown in FIG.

【0036】続いて、再びフォトレジストを用いてパタ
ーニングを行った後、イオンビームエッチングにより、
第1の絶縁膜22を加工する。その後フォトレジストを
剥離することにより、図2(d)に示すように、第1の
絶縁膜22に第1の高温超伝導膜21を露出させるコン
タクトホール34を形成する。
Subsequently, after patterning is again performed using a photoresist, ion beam etching is performed.
The first insulating film 22 is processed. Thereafter, by peeling the photoresist, a contact hole 34 exposing the first high-temperature superconducting film 21 is formed in the first insulating film 22 as shown in FIG.

【0037】次に、最上層の高温超伝導膜直化の絶縁膜
である第2の絶縁膜35としてSTOを基板温度700
℃、酸素圧力27Paの条件でレーザ蒸着法により膜厚
200nmで成膜し、パターニング、加工、フォトレジ
スト剥離の工程を行い、図2(e)に示す如き形状の絶
縁膜35を形成する。第2の絶縁膜35の一方には、第
2の高温超伝導膜23を露出させるコンタクトホール3
6が形成される。
Next, as the second insulating film 35, which is the uppermost insulating film for directly converting the high-temperature superconducting film, STO is applied at a substrate temperature of 700.
A film is formed to a thickness of 200 nm by a laser vapor deposition method at a temperature of 27 ° C. and an oxygen pressure of 27 Pa, and steps of patterning, processing, and photoresist peeling are performed to form an insulating film 35 having a shape as shown in FIG. The contact hole 3 exposing the second high-temperature superconducting film 23 is formed in one of the second insulating films 35.
6 are formed.

【0038】最後に、最上層の高温超伝導膜である第3
の高温超伝導膜37として、YBCOを基板温度700
℃、酸素圧力27Paの条件でレーザ蒸着法により膜厚
400nmで成膜し、パターニング、加工、フォトレジ
スト剥離の工程を行い、図2(f)に示す如き形状の構
造を完成する。
Finally, the third layer, which is the uppermost high-temperature superconducting film,
YBCO at a substrate temperature of 700
A film having a thickness of 400 nm is formed by a laser deposition method at a temperature of 27 ° C. and an oxygen pressure of 27 Pa, and steps of patterning, processing, and photoresist peeling are performed to complete a structure having a shape as shown in FIG.

【0039】図2(a)に示された高温超伝導膜2層、
絶縁膜1層の合わせて3層のエピタキシャル膜21〜2
3は同一真空中で連続して成膜されるため、最後に成膜
される第2の高温超伝導膜23まで良好なエピタキシャ
ル性が保持される。続いて、この例では、図1(e)、
(f)に示されるように、加工の施されたこの連続エピ
タキシャル膜上に最上層の高温超伝導膜直下の絶縁膜で
ある第2の絶縁膜35、更に加工を施した後に最上層の
高温超伝導膜となる第3の高温超伝導膜37がエピタキ
シャル成長される。
The two layers of the high-temperature superconducting film shown in FIG.
Three epitaxial films 21 to 2 in total including one insulating film
Since No. 3 is continuously formed in the same vacuum, good epitaxialness is maintained up to the second high-temperature superconducting film 23 formed last. Subsequently, in this example, FIG.
As shown in (f), on the processed continuous epitaxial film, the second insulating film 35, which is an insulating film immediately below the uppermost high-temperature superconducting film, A third high-temperature superconducting film 37 serving as a superconducting film is epitaxially grown.

【0040】このとき、下地の連続エピタキシャル膜表
面の加工に起因する結晶性の乱れのために第2の絶縁膜
35のエピタキシャル性は多少劣化する。また、前記連
続エピタキシャル膜表面の乱れ、第2の絶縁膜35のエ
ピタキシャル性の劣化、第2の絶縁膜35表面の結晶性
の乱れのために第3の高温超伝導膜37のエピタキシャ
ル性はもう少し劣化する。しかし、この劣化の度合い
は、図3と共に説明した従来の多層高温超伝導集積回路
の形成方法のように一層毎に加工を施してからエピタキ
シャル成長する場合に比べてはるかに小さい。このた
め、第2の絶縁膜35の絶縁性及び第3の高温超伝導膜
37の超伝導特性は比較的良好であり、高温超伝導集積
回路の構成要素としての条件を十分に満たしている。
At this time, the epitaxialness of the second insulating film 35 is slightly deteriorated due to disorder in crystallinity caused by processing the surface of the underlying continuous epitaxial film. In addition, due to the disorder of the surface of the continuous epitaxial film, the deterioration of the epitaxial property of the second insulating film 35, and the disorder of the crystallinity of the surface of the second insulating film 35, the epitaxial property of the third high-temperature superconducting film 37 is further reduced. to degrade. However, the degree of the deterioration is much smaller than the case where the layers are processed one by one and then epitaxially grown as in the conventional method for forming a multilayer high-temperature superconducting integrated circuit described with reference to FIG. Therefore, the insulating properties of the second insulating film 35 and the superconducting properties of the third high-temperature superconducting film 37 are relatively good, and sufficiently satisfy the conditions as components of the high-temperature superconducting integrated circuit.

【0041】図2(f)に示したように、第3の高温超
伝導膜37と第1の高温超伝導膜21は第1のコンタク
トホール34において、また、第3の高温超伝導膜37
と第2の高温超伝導膜23は第2のコンタクトホール3
6においてそれぞれ結線されている。また、第1の高温
超伝導膜21と第2の高温超伝導膜23はそれぞれ第
1、第2のコンタクトホール34、36において第3の
高温超伝導膜37と結線することによって、第3の高温
超伝導膜37を経由して結線されている。更に、分離さ
れた第1の高温超伝導膜21若しくは第2の高温超伝導
膜23同士をコンタクトホールを用いて第3の高温超伝
導膜37を経由して結線することもできる。
As shown in FIG. 2F, the third high-temperature superconducting film 37 and the first high-temperature superconducting film 21 are provided in the first contact hole 34 and in the third high-temperature superconducting film 37.
And the second high-temperature superconducting film 23 are formed in the second contact hole 3.
6 are connected. Further, the first high-temperature superconducting film 21 and the second high-temperature superconducting film 23 are connected to the third high-temperature superconducting film 37 at the first and second contact holes 34 and 36, respectively, thereby forming the third high-temperature superconducting film 37. They are connected via a high-temperature superconducting film 37. Further, the separated first high-temperature superconducting film 21 or second high-temperature superconducting film 23 can be connected to each other via a third high-temperature superconducting film 37 using a contact hole.

【0042】一方、配線交差部38にある第2の高温超
伝導膜23は、第2の絶縁膜35によって覆われてお
り、この上に第3の高温超伝導膜37からなる配線が形
成されることにより、第2の高温超伝導膜23と第3の
高温超伝導膜37の絶縁された交差が可能となる。この
ように、図2に示した実施の形態による形成方法を用い
た場合、同一層内の高温超伝導膜間及び異なる層間の高
温超伝導膜間の結線を最上層の高温超伝導膜を用いて行
うことができると共に、最上層の高温超伝導膜と下層の
高温超伝導膜との電流リークのない交差が可能となる。
On the other hand, the second high-temperature superconducting film 23 at the wiring intersection 38 is covered with a second insulating film 35, on which a wiring composed of a third high-temperature superconducting film 37 is formed. This allows the insulated intersection of the second high-temperature superconducting film 23 and the third high-temperature superconducting film 37. As described above, when the formation method according to the embodiment shown in FIG. 2 is used, the connection between the high-temperature superconducting films in the same layer and between the high-temperature superconducting films in different layers is performed using the uppermost high-temperature superconducting film. And the intersection of the uppermost high-temperature superconducting film and the lower-layer high-temperature superconducting film without current leakage becomes possible.

【0043】以上説明したように、この実施の形態を用
いることにより、最上層まで超伝導特性の優れた高温超
伝導膜と絶縁性に優れた絶縁膜を用いて、同一層内又は
異なる層間の高温超伝導膜が互いに結線され、かつ、最
上層の高温超伝導膜と下層の高温超伝導膜が絶縁された
状態で交差する多層高温超伝導集積回路を形成すること
ができる。
As described above, by using this embodiment, a high-temperature superconducting film having excellent superconducting properties and an insulating film having excellent insulating properties can be used in the same layer or between different layers by using the uppermost layer. A multi-layer high-temperature superconducting integrated circuit in which the high-temperature superconducting films are connected to each other and the uppermost high-temperature superconducting film and the lower high-temperature superconducting film intersect in an insulated state can be formed.

【0044】なお、本発明は上記の実施の形態に限定さ
れるものではなく、連続エピタキシャル膜の加工は図2
(b)、(c)及び(d)の順番で行ったが、同図の
(c)、(d)及び(b)の順番で行うこともできる。
また、第3の高温超伝導膜37と下層の高温超伝導膜と
の交差は、第2の高温超伝導膜23との間でのみ示した
が、同様の形成方法によって第1の高温超伝導膜21と
の間の電流リークのない交差も行うことができる。
It should be noted that the present invention is not limited to the above embodiment, and the processing of a continuous epitaxial film
Although the steps are performed in the order of (b), (c) and (d), the steps may be performed in the order of (c), (d) and (b) in FIG.
Although the intersection of the third high-temperature superconducting film 37 and the lower high-temperature superconducting film is shown only between the second high-temperature superconducting film 23, the first high-temperature superconducting film is formed by the same forming method. A current-free intersection with the film 21 can also be performed.

【0045】また、図2の形成方法により形成された実
施の形態では、高温超伝導膜3層、絶縁膜2層の場合に
つき説明したが、更に層数が増加した場合も、同様に最
上層の高温超伝導膜直下の絶縁膜と最上層の高温超伝導
膜を除いた膜を基板上に同一真空中で連続エピタキシャ
ル成長することにより、上記の実施の形態と同様の効果
が得られる。
In the embodiment formed by the forming method shown in FIG. 2, the case of three high-temperature superconducting films and two insulating films has been described. However, when the number of layers is further increased, the uppermost layer is similarly formed. The same effects as in the above embodiment can be obtained by continuously epitaxially growing a film excluding the insulating film immediately below the high-temperature superconducting film and the uppermost high-temperature superconducting film on the substrate in the same vacuum.

【0046】また、エピタキシャル膜に加工を施した場
合、表面の結晶性の乱れは絶縁膜より高温超伝導膜の方
が著しいため、連続エピタキシャル成長した第2の高温
超伝導膜23上に保護層として薄い(例えば100n
m)のSTO膜を同一真空中で成膜しておくことによ
り、第2の絶縁膜35、第3の高温超伝導膜37の結晶
性は更に向上する。
Further, when the epitaxial film is processed, since the disorder of the crystallinity on the surface is more remarkable in the high-temperature superconducting film than in the insulating film, a protective layer is formed on the second epitaxially grown high-temperature superconducting film 23. Thin (eg 100n
By forming the STO film of m) in the same vacuum, the crystallinity of the second insulating film 35 and the third high-temperature superconducting film 37 is further improved.

【0047】更に、図2に示した実施の形態において
も、コンタクトホール34、36と共に傾斜面をもった
エッジを形成して、最上層の高温超伝導膜37と下層の
高温超伝導膜23、21との結線を行うこともできる。
更にまた、本発明では、コンタクトホールに代えて傾斜
面をもったエッジのみで最上層の高温超伝導膜と下層の
高温超伝導膜との結線を行うこともできる。
Further, also in the embodiment shown in FIG. 2, an edge having an inclined surface is formed together with the contact holes 34 and 36 to form the uppermost high-temperature superconducting film 37 and the lower high-temperature superconducting film 23, 21 can also be connected.
Furthermore, in the present invention, the connection between the uppermost high-temperature superconducting film and the lower-layer high-temperature superconducting film can be performed only by the edge having the inclined surface instead of the contact hole.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
3層以上の高温超伝導膜と2層以上の絶縁膜を交互に積
層した構造を少なくとも含む多層高温超伝導集積回路に
おいて、最上層の高温超伝導膜の下地として連続エピタ
キシャル成長した膜を形成するようにしたため、従来の
形成方法では問題であったようなエピタキシャル性の乱
れの相乗効果が起こらず、最上層まで超伝導特性の優れ
た高温超伝導膜と絶縁性の優れた絶縁膜を形成すること
ができる。また、同一層内及び異なる層間の高温超伝導
膜間の結線を行うことができる。
As described above, according to the present invention,
In a multi-layer high-temperature superconducting integrated circuit including at least a structure in which three or more high-temperature superconducting films and two or more insulating films are alternately laminated, a continuous epitaxially grown film is formed as a base of the uppermost high-temperature superconducting film. Therefore, the synergistic effect of disorder of epitaxial properties, which was a problem in the conventional formation method, does not occur, and a high-temperature superconducting film having excellent superconducting properties and an insulating film having excellent insulating properties are formed up to the uppermost layer. Can be. Further, connection between high-temperature superconducting films in the same layer and between different layers can be performed.

【0049】また、本発明によれば、同一真空中で連続
エピタキシャル成長する膜を最上層の高温超伝導膜とそ
の直下の絶縁膜を除く膜とすることにより、絶縁膜でよ
り下層の高温超伝導膜のパターンエッジを含む部分を被
覆し、その上に配置される最上層の高温超伝導膜と前記
下層の高温超伝導膜との間の絶縁を保つようにしたた
め、最上層の高温超伝導膜と下層の高温超伝導膜とを絶
縁された状態で交差させることができる。
Further, according to the present invention, the film which is continuously epitaxially grown in the same vacuum is a film excluding the uppermost high-temperature superconducting film and the insulating film immediately thereunder, so that the lower layer of the high-temperature superconducting film is formed by the insulating film. Because the portion including the pattern edge of the film is covered and the insulation between the uppermost high-temperature superconducting film and the lower high-temperature superconducting film disposed thereon is maintained, the uppermost high-temperature superconducting film is formed. And the lower high-temperature superconducting film can intersect in an insulated state.

【0050】また、本発明によれば、最上層の高温超伝
導膜と下層の高温超伝導膜とを結線しているため、最上
層の高温超伝導膜を介して下層の高温超伝導膜同士の結
線を行うことができる。
Further, according to the present invention, since the uppermost high-temperature superconducting film is connected to the lower high-temperature superconducting film, the lower high-temperature superconducting films are connected to each other via the uppermost high-temperature superconducting film. Can be connected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明形成方法の第1の実施の形態の断面工程
図である。
FIG. 1 is a sectional process view of a first embodiment of a forming method of the present invention.

【図2】本発明形成方法の第2の実施の形態の断面工程
図である。
FIG. 2 is a sectional process view of a second embodiment of the forming method of the present invention.

【図3】従来の形成方法の一例の断面工程図である。FIG. 3 is a sectional process view of an example of a conventional forming method.

【符号の説明】[Explanation of symbols]

20 基板 21 第1の高温超伝導膜 22 第1の絶縁膜 23 第2の高温超伝導膜 24、35 第2の絶縁膜 27 エッジ接合 28、29、34、36 コンタクトホール 30 トンネルバリア 31、37 第の高温超伝導膜Reference Signs List 20 substrate 21 first high-temperature superconducting film 22 first insulating film 23 second high-temperature superconducting film 24, 35 second insulating film 27 edge junction 28, 29, 34, 36 contact hole 30 tunnel barrier 31, 37 Third high temperature superconducting film

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2層以上の高温超伝導膜と2層以上の絶
縁膜を交互に基板上に同一真空中で連続エピタキシャル
成長する第1の工程と、 前記連続エピタキシャル成長した膜に所定の加工を施す
第2の工程と、 前記第2の工程により加工された膜上に最上層の高温超
伝導膜をエピタキシャル成長する第3の工程とを少なく
とも含み、前記最上層の高温超伝導膜を用いる前記最上
層の高温超伝導膜と下層の高温超伝導膜との間の結線及
び前記下層の高温超伝導膜同士の結線のためのコンタク
トホールを、前記第2の工程により形成することを特徴
とする多層高温超伝導集積回路の形成方法。
1. A first step in which two or more high-temperature superconducting films and two or more insulating films are alternately epitaxially grown on a substrate in the same vacuum, and a predetermined processing is performed on the continuously epitaxially grown film. A second step; and a third step of epitaxially growing an uppermost high-temperature superconducting film on the film processed in the second step, wherein the uppermost layer uses the uppermost high-temperature superconducting film. Forming a contact hole for connection between the high-temperature superconducting film and the lower high-temperature superconducting film and for connecting the lower high-temperature superconducting film by the second step. A method for forming a superconducting integrated circuit.
【請求項2】 前記第2の工程は、前記最上層の高温超
伝導膜と下層の高温超伝導膜との結線のための傾斜面を
もったエッジを、前記コンタクトホールとは別の位置に
形成することを特徴とする請求項1記載の多層高温超伝
導集積回路の形成方法。
2. The method according to claim 1, wherein the step (b) includes placing an edge having an inclined surface for connection between the uppermost high-temperature superconducting film and a lower-layer high-temperature superconducting film at a position different from the contact hole. 2. The method for forming a multi-layer high-temperature superconducting integrated circuit according to claim 1, wherein the integrated circuit is formed.
【請求項3】 前記第2の工程は、前記最上層の高温超
伝導膜と下層の高温超伝導膜との結線のための傾斜面を
もったエッジのみを、前記コンタクトホールに代えて形
成することを特徴とする請求項1記載の多層高温超伝導
集積回路の形成方法。
3. The second step is to form only an edge having an inclined surface for connection between the uppermost high-temperature superconducting film and the lower-layer high-temperature superconducting film instead of the contact hole. The method for forming a multilayer high-temperature superconducting integrated circuit according to claim 1, wherein:
【請求項4】 2層以上の高温超伝導膜と1層以上の絶
縁膜を交互に基板上に同一真空中で連続エピタキシャル
成長する第1の工程と、 前記連続エピタキシャル成長した膜に所定の加工を施す
第2の工程と、 前記第2の工程により加工された膜上に最上層の高温超
伝導膜の直下の絶縁膜をエピタキシャル成長する第3の
工程と、 前記最上層の高温超伝導膜の直下の絶縁膜に所望の加工
を施す第4の工程と、前記第4の工程を経た膜上に前記
最上層の高温超伝導膜をエピタキシャル成長する第5の
工程と、 を少なくとも含み、前記最上層の高温超伝導膜を用いる
前記最上層の高温超伝導膜と下層の高温超伝導膜との間
の結線及び前記下層の高温超伝導膜同士の結線のための
コンタクトホールを、前記第2及び第4の工程により形
成することを特徴とする多層高温超伝導集積回路の形成
方法。
4. A first step in which two or more high-temperature superconducting films and one or more insulating films are alternately epitaxially grown on a substrate in the same vacuum, and a predetermined processing is performed on the continuously epitaxially grown film. A second step, a third step of epitaxially growing an insulating film immediately below the uppermost high-temperature superconducting film on the film processed in the second step, and a third step immediately below the uppermost high-temperature superconducting film. A fourth step of subjecting the insulating film to desired processing, and a fifth step of epitaxially growing the uppermost high-temperature superconducting film on the film after the fourth step. The second and fourth contact holes for connection between the uppermost high-temperature superconducting film and the lower high-temperature superconducting film using a superconducting film and for connection between the lower high-temperature superconducting films are formed by the second and fourth superconducting films. Forming by process Method for forming a multilayer high-temperature superconducting integrated circuit of symptoms.
【請求項5】 前記第2及び第4の工程は、前記最上層
の高温超伝導膜と下層の高温超伝導膜との結線のための
傾斜面をもったエッジを、前記コンタクトホールとは別
の位置に形成することを特徴とする請求項4記載の多層
高温超伝導集積回路の形成方法。
5. The method according to claim 1, wherein the second and fourth steps include forming an edge having an inclined surface for connection between the uppermost high-temperature superconducting film and the lower high-temperature superconducting film separately from the contact hole. 5. The method for forming a multilayer high-temperature superconducting integrated circuit according to claim 4, wherein:
【請求項6】 前記第2及び第4の工程は、前記最上層
の高温超伝導膜と下層の高温超伝導膜との結線のための
傾斜面をもったエッジのみを、前記コンタクトホールに
代えて形成することを特徴とする請求項4記載の多層高
温超伝導集積回路の形成方法。
6. The method according to claim 6, wherein the second step and the fourth step include replacing only the edge having an inclined surface for connection between the uppermost high-temperature superconducting film and the lower-layer high-temperature superconducting film with the contact hole. 5. The method for forming a multilayer high-temperature superconducting integrated circuit according to claim 4, wherein:
JP7177367A 1995-07-13 1995-07-13 Method of forming multilayer high-temperature superconducting integrated circuit Expired - Fee Related JP2959439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7177367A JP2959439B2 (en) 1995-07-13 1995-07-13 Method of forming multilayer high-temperature superconducting integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7177367A JP2959439B2 (en) 1995-07-13 1995-07-13 Method of forming multilayer high-temperature superconducting integrated circuit

Publications (2)

Publication Number Publication Date
JPH0927644A JPH0927644A (en) 1997-01-28
JP2959439B2 true JP2959439B2 (en) 1999-10-06

Family

ID=16029723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7177367A Expired - Fee Related JP2959439B2 (en) 1995-07-13 1995-07-13 Method of forming multilayer high-temperature superconducting integrated circuit

Country Status (1)

Country Link
JP (1) JP2959439B2 (en)

Also Published As

Publication number Publication date
JPH0927644A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
US4547231A (en) Method of manufacturing semiconductor device utilizing selective epitaxial growth under reduced pressure
US5422497A (en) Superconducting device having layered structure composed of oxide thin film and insulator thin film
JP2959439B2 (en) Method of forming multilayer high-temperature superconducting integrated circuit
EP0546904B1 (en) Method for manufacturing an artificial grain boundary type Josephson junction device
JPS6146081A (en) Manufacture of josephson junction element
EP0551033B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US5408108A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JP4380878B2 (en) Superconducting element and manufacturing method thereof
JP2616745B2 (en) Contact structure between superconducting layers and method of manufacturing the same
US5326747A (en) Process for patterning layered thin films including a superconductor
JP2616744B2 (en) Contact structure between superconducting layers and method of manufacturing the same
JP3202631B2 (en) Method for producing copper oxide superconducting thin film
KR100233845B1 (en) Twin-crystal-grain-boundary-junction superconducting field effect device and manufacturing method thereof
JPH05208899A (en) Oxide superconducting thin film containing regions having different properties and its production
JPS61239646A (en) Formation of multilayer interconnection
JP2819871B2 (en) Manufacturing method of superconducting device
JP2730360B2 (en) Fabrication method of tunnel type Josephson junction device
JP2976904B2 (en) Superconducting field effect element and method for producing the same
JPH05343757A (en) Method of finely processing high-temperature superconductive film
JPH0473976A (en) Manufacture of superconducting device
JPH05160446A (en) Superconducting wiring and manufacture thereof
JPH02239644A (en) Semiconductor device and manufacture thereof
JPH05251773A (en) Josephson element and manufacture thereof
JPH0513832A (en) Manufacture of superconducting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees