JP2958892B2 - Planar inductor - Google Patents

Planar inductor

Info

Publication number
JP2958892B2
JP2958892B2 JP63142043A JP14204388A JP2958892B2 JP 2958892 B2 JP2958892 B2 JP 2958892B2 JP 63142043 A JP63142043 A JP 63142043A JP 14204388 A JP14204388 A JP 14204388A JP 2958892 B2 JP2958892 B2 JP 2958892B2
Authority
JP
Japan
Prior art keywords
inductance
insulating layer
spiral
ferromagnetic
planar inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63142043A
Other languages
Japanese (ja)
Other versions
JPH01310518A (en
Inventor
迪雄 長谷川
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63142043A priority Critical patent/JP2958892B2/en
Priority to US07/250,401 priority patent/US4959631A/en
Priority to KR1019880012666A priority patent/KR910003292B1/en
Priority to DE3854177T priority patent/DE3854177T2/en
Priority to EP88309056A priority patent/EP0310396B1/en
Publication of JPH01310518A publication Critical patent/JPH01310518A/en
Application granted granted Critical
Publication of JP2958892B2 publication Critical patent/JP2958892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は平面インダクタに関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a planar inductor.

(従来の技術) 従来よりスパイラル状導体コイルの両面を絶縁層を介
して強磁性体層で挟んだ構造の平面インダクタが知られ
ている。第3図(A)及び(B)はスパイラル状2層導
体コイルを用いた従来の平面インダクタの一例である。
なお、同図(A)はこの平面インダクタの平面図であ
り、同図(B)は同図(A)のA−A′線に沿う断面図
である。
(Prior Art) Conventionally, a planar inductor having a structure in which both surfaces of a spiral conductor coil are sandwiched between ferromagnetic layers via an insulating layer is known. FIGS. 3A and 3B show an example of a conventional planar inductor using a spiral-shaped two-layer conductor coil.
FIG. 1A is a plan view of the planar inductor, and FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG. 1A.

第3図(A)及び(B)において、スパイラル状導体
コイル1は絶縁層3bの両面にスパイラルコイル2a、2bを
設け、これらスパイラルコイル2a及び2bをスルーホール
4で電気的にかつ各スパイラルコイル2a、2bに同方向の
電流が流れるように接続した構造を有している。ここ
で、第3図(A)中の実線及び破線はそれぞれ絶縁層3b
の表面側及び裏面側にあるスパイラルコイル2a、2bの中
心の軌跡を表わしている。このスパイラル状導体コイル
1の両面を絶縁層3a,3cを介して強磁性体層(強磁性薄
帯又は強磁性薄膜)5a,5bで挟むことにより平面インダ
クタが構成されている。以上の各部材からなる平面イン
ダクタの端子6a,6b間にインダクタンスが形成される。
3 (A) and 3 (B), the spiral conductor coil 1 is provided with spiral coils 2a and 2b on both sides of an insulating layer 3b, and these spiral coils 2a and 2b are electrically connected through through holes 4 and each spiral coil It has a structure in which currents in the same direction are connected to 2a and 2b. Here, the solid line and the broken line in FIG.
Of the spiral coils 2a and 2b on the front side and the back side. A planar inductor is formed by sandwiching both surfaces of the spiral conductor coil 1 between ferromagnetic layers (ferromagnetic ribbons or thin films) 5a and 5b via insulating layers 3a and 3c. An inductance is formed between the terminals 6a and 6b of the planar inductor made of the above members.

(発明が解決しようとする課題) 上述した構成の平面インダクタを用いて大きなインダ
クタンスを得るためには、これらの平面インダクタンス
を複数個積層して使用することが考えられる。
(Problems to be Solved by the Invention) In order to obtain a large inductance using the planar inductor having the above-described configuration, it is conceivable to use a plurality of these planar inductances in a stacked manner.

しかしながら、上述したようなスパイラル状導体コイ
ル1の両面を絶縁層3a,3cを介して強磁性体層5a,5bで挟
んで平面インダクタを構成し、このような平面インダク
タを複数個積層すると、全体の厚さが増すことになり、
単位体積当りのインダクタンス値が小さくなるため好ま
しくない。
However, when a planar inductor is formed by sandwiching both surfaces of the spiral conductor coil 1 described above between the ferromagnetic layers 5a and 5b via the insulating layers 3a and 3c, and a plurality of such planar inductors are laminated, Will increase in thickness,
It is not preferable because the inductance value per unit volume becomes small.

本発明は上記問題点を解決するためになされたもので
あり、全体の厚さが薄く、単位体積当りのインダクタン
ス値が大きい平面インダクタを提供することを目的とす
る。
The present invention has been made to solve the above problems, and has as its object to provide a planar inductor having a small overall thickness and a large inductance value per unit volume.

[発明の構成] (課題を解決するための手段) 本発明の平面インダクタは、複数層のスパイラル状導
体コイルを絶縁層を介して積層し、各スパイラル状導体
コイルを電気的に直列にかつ各スパイラル状導体コイル
に同方向の電流が流れるように接続した積層体と、その
両面にそれぞれ互いに離間して設けられた絶縁層と、こ
れらの絶縁層の外面にそれぞれ互いに離間して設けられ
た強磁性体層とを有し、上記強磁性体層が複数枚の強磁
性薄帯の積層体からなり、上記強磁性体層の厚さ(t)
と1辺の長さ(l)との比(t/l)が1×10-3以上であ
ることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In the planar inductor of the present invention, a plurality of spiral conductive coils are laminated via an insulating layer, and each spiral conductive coil is electrically connected in series with each other. A laminated body connected so that current flows in the spiral conductor coil in the same direction, insulating layers provided on both surfaces of the laminated body and separated from each other, and strong layers provided on the outer surfaces of these insulating layers and provided on the outer surfaces of the insulating layers, respectively. A magnetic layer, wherein the ferromagnetic layer is composed of a laminate of a plurality of ferromagnetic ribbons, and the thickness (t) of the ferromagnetic layer is
And the ratio (t / l) of the length to one side length (l) is 1 × 10 −3 or more.

本発明のDC−DCコンバータは、複数層のスパイラル状
導体コイルを絶縁層を介して積層し、各スパイラル状導
体コイルを電気的に直列にかつ各スパイラル状導体コイ
ルに同方向の電流が流れるように接続した積層体と、そ
の両面にそれぞれ互いに離間して設けられた絶縁層と、
これらの絶縁層の外面にそれぞれ互いに離間して設けら
れた強磁性体層とを有し、上記強磁性体層が複数枚の強
磁性薄帯の積層体からなり、上記強磁性体層の厚さ
(t)と1辺の長さ(l)との比(t/l)が1×10-3
上である平面インダクタを具備したことを特徴とするも
のである。
In the DC-DC converter of the present invention, a plurality of spiral conductive coils are stacked with an insulating layer interposed therebetween, and the spiral conductive coils are electrically connected in series and a current in the same direction flows through each spiral conductive coil. And a laminated body connected to each other, an insulating layer provided on both sides of the laminated body,
A ferromagnetic material layer provided on the outer surface of each of these insulating layers and spaced apart from each other, wherein the ferromagnetic material layer is composed of a laminate of a plurality of ferromagnetic ribbons; A flat inductor having a ratio (t / l) between the length (t) and the length (1) of one side is 1 × 10 −3 or more is provided.

上記のように本発明の平面インダクタにおいては、隣
接するスパイラル状導体コイルどうしの間には絶縁層の
みが存在し、強磁性体層は存在しない。
As described above, in the planar inductor of the present invention, only the insulating layer exists between the adjacent spiral conductor coils, and the ferromagnetic layer does not exist.

本発明の平面インダクタにおけるスパイラル状導体コ
イルとは、通常、例えば第3図に示されるように絶縁層
の表面及び裏面にスパイラルコイルを設けて各スパイラ
ルコイルをスルーホールで接続した構造のスパイラル状
2層導体コイルを指す。なお、端子の取出しに支障が生
じなければ、スパイラル状導体コイルとしてはスパイラ
ルコイルが1層だけのものでもよい。
The spiral-shaped conductor coil in the planar inductor of the present invention is usually a spiral-shaped conductor coil having a structure in which spiral coils are provided on the front and back surfaces of an insulating layer and each spiral coil is connected by through holes as shown in FIG. Refers to a layer conductor coil. If there is no problem in taking out the terminal, the spiral conductor coil may be one having only one spiral coil.

なお、強磁性体層の平均厚さは4〜20μmであること
が望ましい。また、強磁性体層に関しては、厚さ(t)
と一辺の長さ(l)との比(t/l)が1×10-3以上であ
ることが望ましい。
The average thickness of the ferromagnetic layer is desirably 4 to 20 μm. As for the ferromagnetic layer, the thickness (t)
It is desirable that the ratio (t / l) of the length to one side length (l) is 1 × 10 −3 or more.

(作用) 積層構造の平面インダクタを作製する場合、上述した
ようにスパイラル状導体コイルを絶縁層を介して強磁性
体層を挟んで平面インダクタを構成し、このような平面
インダクタを複数層積層した構造のもの(タイプI)
と、本発明のように複数層のスパイラル状導体コイルを
絶縁層を介して積層し、スパイラル状導体コイル及び絶
縁層の積層体の両面を絶縁層を介して強磁性体層で挟ん
だ構造のもの(タイプII)とが考えられる。上記タイプ
Iでは隣接するスパイラル状導体コイルどうしの間には
絶縁層、強磁性体層(2層)、絶縁層が存在する。一
方、タイプIIでは隣接するスパイラル状導体コイルどう
しの間には絶縁層だけしか存在しない。
(Operation) In the case of manufacturing a planar inductor having a laminated structure, a spiral inductor is formed by sandwiching a ferromagnetic layer with an insulating layer interposed therebetween as described above, and a plurality of such planar inductors are laminated. Of structure (Type I)
And a structure in which a plurality of spiral conductive coils are laminated via an insulating layer as in the present invention, and both sides of the spiral conductive coil and the laminated body of the insulating layer are sandwiched between ferromagnetic layers via an insulating layer. (Type II). In the above-mentioned type I, an insulating layer, a ferromagnetic layer (two layers), and an insulating layer exist between adjacent spiral conductor coils. On the other hand, in the type II, only the insulating layer exists between the adjacent spiral conductor coils.

本発明者らは、鋭意研究を重ねた結果、タイプIのよ
うに隣接するスパイラル状導体コイルどうしの間に強磁
性体層が存在しても、この強磁性体層は積層構造の平面
インダクタのインダクタンスを増大させるのにほとんど
寄与しないことを見出した。そして、タイプIIのように
隣接するスパイラル状導体コイルどうしの間に絶縁層だ
けが存在し強磁性体層がなくても、タイプIとほとんど
同じインダクタンス値が得られることを見出した。した
がって、本発明の平面インダクタ(タイプII)では隣接
するスパイラル状導体コイルどうしの間に強磁性体層が
存在しない分だけタイプIよりも全体の厚さが薄く、か
つ全体のインダクタンス値はタイプIとほとんど同じで
あるので、単位体積当りのインダクタンス値が大きくな
る。
The present inventors have conducted intensive studies and as a result, even if a ferromagnetic layer is present between adjacent spiral-shaped conductor coils as in Type I, this ferromagnetic layer is a layered planar inductor. It has been found that it hardly contributes to increasing the inductance. Then, they found that almost the same inductance value as that of type I can be obtained even if only the insulating layer exists between the adjacent spiral conductor coils and there is no ferromagnetic layer as in type II. Therefore, in the planar inductor (type II) of the present invention, the overall thickness is smaller than that of type I because the ferromagnetic layer does not exist between the adjacent spiral conductor coils, and the overall inductance value is of type I. And the inductance value per unit volume increases.

本発明においては、強磁性体層の平均厚さを4〜20μ
mとすることにより、単位体積当りのインダクタンス値
の低下を防止できる。すなわち、強磁性体層の厚さが4
μm未満であると、スパイラル状導体コイルに電流が流
れることによって生じる磁束がすべて通るのに必要な断
面積が得られないために漏れ磁束が多くなってインダク
タンスが著しく低下し、単位体積当りのインダクタンス
値L/Vが低下する。一方、強磁性体層の厚さが20μmを
超えると磁気回路における強磁性体層の断面積はスパイ
ラル状導体コイルに電流が流れることによって生じる磁
束のすべてを通すには十分大きくなり、磁気抵抗は減
り、洩れ磁束は少なくなってインダクタンスは大きくな
るが、平面インダクタの体積も増加するので、L/Vはか
えって低下する。
In the present invention, the average thickness of the ferromagnetic layer is 4 to 20 μm.
By setting m, a decrease in the inductance value per unit volume can be prevented. That is, when the thickness of the ferromagnetic layer is 4
If it is less than μm, the cross-sectional area necessary for passing all the magnetic flux generated by the current flowing through the spiral conductor coil cannot be obtained, so the leakage flux will increase and the inductance will decrease significantly, and the inductance per unit volume will decrease. The value L / V decreases. On the other hand, when the thickness of the ferromagnetic layer exceeds 20 μm, the cross-sectional area of the ferromagnetic layer in the magnetic circuit becomes large enough to pass all of the magnetic flux generated by the current flowing through the spiral-shaped conductor coil, and the magnetoresistance becomes large. Although the magnetic flux decreases and the leakage magnetic flux decreases, the inductance increases, but the volume of the planar inductor also increases, so that the L / V decreases rather.

本発明において、強磁性体層の厚さ(t)と一辺の長
さ(l)との比(t/l)は1×10-3以上であることが望
ましいとしたのは以下のような理由による。
In the present invention, the ratio (t / l) of the thickness (t) of the ferromagnetic layer to the length (1) of one side is desirably 1 × 10 −3 or more as follows. It depends on the reason.

一般に、本発明に係る平面インダクタがDC−DCコンバ
ータの出力側に使用される場合、直流が重畳された状態
となるため、このような分野に使用するときには平面イ
ンダクタには良好な直流重畳特性が要求される。この直
流重畳電流は少なくとも0.2A以上であると見込まれる。
In general, when the planar inductor according to the present invention is used on the output side of a DC-DC converter, a direct current is superimposed on the planar inductor. Required. This DC superimposed current is expected to be at least 0.2 A or more.

本発明に係る平面インダクタでは、磁束は両面の強磁
性体層の面内方向に流れるものと思われるが、その場合
強磁性体層の面内方向の反磁界係数が面内方向の磁気抵
抗に影響し、反磁界係数が大きいほど磁気抵抗は増加す
る。すなわち、磁気抵抗の増加は面内に磁気ギャップを
設けたことと同じ効果を示し、インダクタンスの直流重
畳特性を向上させる。なお、強磁性体層としては高透磁
率非晶質合金を用いることが望ましい。
In the planar inductor according to the present invention, it is considered that the magnetic flux flows in the in-plane direction of the ferromagnetic layers on both surfaces. In this case, the demagnetizing field coefficient of the in-plane direction of the ferromagnetic layer is increased by the in-plane magnetoresistance. Influence, and the magnetoresistance increases as the demagnetizing coefficient increases. That is, the increase in the magnetic resistance has the same effect as the provision of the magnetic gap in the plane, and improves the DC superposition characteristic of the inductance. It is desirable to use a high magnetic permeability amorphous alloy for the ferromagnetic layer.

例えば、正方形の平面インダクタにおいては、両面の
強磁性体層の面内方向の反磁界係数はその厚さと1辺の
長さとの比が大きいほど、すなわち厚さが厚く、1辺の
長さが短いほど反磁界係数は大きくなる。そして、強磁
性体層の厚さと1辺の長さとの比を10-3以上にとれば、
磁気抵抗は増加し、インダクタンスの直流重畳特性は向
上する。また、スパイラル状導体コイル又はその積層体
の形状が円形をなし、その両面を絶縁層を介して挟む強
磁性体層の形状が円形をなす場合には、強磁性体層の厚
さと直径との比を10-3以上にとれば、磁気抵抗は増加
し、インダクタンスの直流重畳特性は向上する。ここ
で、強磁性体層の厚さを厚くするためには、例えば複数
枚の強磁性薄帯の積層体を用いることが考えられる。な
お、このような作用は積層構造を採用しない第3図の平
面インダクタでも同様に得られる。
For example, in a square planar inductor, the demagnetizing factor in the in-plane direction of the ferromagnetic layers on both surfaces increases as the ratio of its thickness to the length of one side increases, that is, the thickness increases, and the length of one side increases. The shorter the value, the larger the demagnetizing coefficient. If the ratio of the thickness of the ferromagnetic layer to the length of one side is 10 -3 or more,
The magnetic resistance increases, and the DC superposition characteristic of the inductance improves. In the case where the shape of the spiral conductor coil or the laminate thereof is circular and the shape of the ferromagnetic layer sandwiching both sides with the insulating layer therebetween is circular, the thickness and diameter of the ferromagnetic layer are If the ratio is set to 10 -3 or more, the magnetic resistance increases, and the DC superposition characteristics of the inductance are improved. Here, in order to increase the thickness of the ferromagnetic layer, for example, it is conceivable to use a laminate of a plurality of ferromagnetic ribbons. Note that such an effect can be similarly obtained in the planar inductor of FIG. 3 which does not employ a laminated structure.

(実施例) 以下、本発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の実施例における平面インダクタの断
面図、第2図は比較例として作製された平面インダクタ
の断面図である。なお、いずれの場合も平面図は第3図
(A)と同様であるので省略する。第1図及び第2図に
おいて、スパイラル状導体コイル1は、25μmのポリイ
ミドフィルム(絶縁層3b)の両面に35μm厚のCu箔を両
張りして中央部のスルーホール4を通して接続した両面
FPC板を用い、両面のCu箔をエッチングして外形寸法20m
m×20mm、コイル線幅250μm、コイルピッチ500μm、
コイル巻線数40回(各面20回)のスパイラルコイル2a、
2bに加工したものである。
FIG. 1 is a sectional view of a planar inductor according to an embodiment of the present invention, and FIG. 2 is a sectional view of a planar inductor manufactured as a comparative example. In each case, the plan view is the same as that in FIG. In FIGS. 1 and 2, the spiral conductor coil 1 has a double-sided structure in which a 35 μm thick Cu foil is applied to both sides of a 25 μm polyimide film (insulating layer 3 b) and connected through a central through hole 4.
Using FPC board, etched both sides of Cu foil, outer dimensions 20m
m × 20mm, coil wire width 250μm, coil pitch 500μm,
Spiral coil 2a with 40 coil turns (20 turns on each side),
2b.

第1図(実施例)に示すように、こうした構造のスパ
イラル状導体コイル1を7μm厚のポリイミドフィルム
(絶縁層3d)を介して3層積層し、更にこの積層体の上
下両面に7μm厚のポリイミドフィルム(絶縁層3e,3
f)を介して単ロール法により作製した厚み18μm、幅2
5mmのCo系高透磁率非晶質合金リボンより切り出した1
辺の長さが25mmの正方形薄帯(強磁性体層5a,5b)で挟
んだ。そして、この積層構造の平面インダクタの側面を
瞬間接着剤で接着した。
As shown in FIG. 1 (Example), three spiral conductive coils 1 having such a structure are laminated via a 7 μm-thick polyimide film (insulating layer 3 d). Polyimide film (insulating layers 3e, 3
f) Thickness 18μm, width 2 manufactured by single roll method
1 cut from 5mm Co-based high permeability amorphous alloy ribbon
It was sandwiched between square ribbons (ferromagnetic layers 5a and 5b) each having a side length of 25 mm. Then, the side surfaces of the planar inductor having the laminated structure were bonded with an instant adhesive.

これと比較するために、第2図(比較例)に示すよう
に、上記と同一の25μmのポリイミドフィルム(絶縁層
3b)の両面に外形寸法20mm×20mm、コイル線幅250μ
m、コイルピッチ500μm、コイル巻線数40回(各面20
回)のスパイラルコイル2a、2bを設けたスパイラル状導
体コイル1の両面を、7μm厚のポリイミドフィルム
(絶縁層3a,3c)を介して上記と同一の厚み18μm、1
辺の長さが25mmの正方形薄帯(強磁性体層5a,5b)で挟
んで構成された平面インダクタを3層積層した。そし
て、この積層構造の平面インダクタの側面を瞬間接着剤
で接着した。
For comparison, as shown in FIG. 2 (comparative example), the same 25 μm polyimide film (insulating layer) as described above was used.
3b) Both sides have external dimensions 20mm x 20mm, coil wire width 250μ
m, coil pitch 500μm, number of coil turns 40 (20
Times), the both surfaces of the spiral-shaped conductor coil 1 provided with the spiral coils 2a and 2b are interposed via a 7-μm-thick polyimide film (insulating layers 3a and 3c) to the same thickness of 18 μm and 1 μm.
Three planar inductors sandwiched between square ribbons (ferromagnetic layers 5a and 5b) each having a side length of 25 mm were laminated. Then, the side surfaces of the planar inductor having the laminated structure were bonded with an instant adhesive.

なお、実施例、比較例のいずれの平面インダクタで
も、3個のスパイラル状導体コイル1はそれぞれに同相
の電流が流れるように相互に接続されている。
In each of the planar inductors of the embodiment and the comparative example, the three spiral conductor coils 1 are connected to each other so that an in-phase current flows in each of them.

上記各平面インダクタの厚さは、実施例のものが510
μm、比較例のものが605μmであった。
The thickness of each planar inductor is 510 in the embodiment.
μm and that of the comparative example was 605 μm.

これらの各平面インダクタについて、インダクタンス
Lの周波数特性を第4図に、単位体積当りのインダクタ
ンスL/Vの周波数特性を第5図にそれぞれ示す。
FIG. 4 shows the frequency characteristics of the inductance L and FIG. 5 shows the frequency characteristics of the inductance L / V per unit volume for each of these planar inductors.

第4図より、インダクタンスLに関しては、実施例と
比較例の平面インダクタでほぼ同じ値を示し、高周波側
においては厚さの薄い実施例の方がかえってインダクタ
ンスが大きくなっていることがわかる。
From FIG. 4, it can be seen that the inductance L shows substantially the same value in the planar inductors of the embodiment and the comparative example, and that the inductance of the thinner embodiment is larger on the high frequency side.

そして、第5図より、単位体積当りのインダクタンス
L/Vに関しては、厚さの薄い実施例の方が比較例よりも
2割程度大きな値を示すことがわかる。
And from Fig. 5, the inductance per unit volume
As for L / V, it can be seen that the example having a smaller thickness shows a value about 20% larger than that of the comparative example.

次に、基本的な構成は第1図と同様で、強磁性体層5
a,5bとして厚み18μm、1辺の長さが25mmの正方形状の
Co系高透磁率非晶質合金薄帯を1〜10枚の範囲で積層枚
数を変化させたものを用いた平面インダクタについて直
流重畳特性を調べた。これらの結果を第6図〜第8図に
示す。
Next, the basic configuration is the same as that of FIG.
a, 5b are 18μm thick and 25mm square
The DC superposition characteristics of a planar inductor using a Co-based high-permeability amorphous alloy ribbon whose number of layers was changed in the range of 1 to 10 sheets were examined. These results are shown in FIGS.

なお、第6図は直流重畳電流とインダクタンスとの関
係を非晶質合金薄帯の積層枚数をパラメータとして示す
特性図、第7図は直流重畳電流と(直流重畳電流を流し
たときのインダクタンス)/(直流重畳電流を流さない
ときのインダクタンス)の比との関係を非晶質合金薄帯
の積層枚数をパラメータとして示す特性図、第8図は非
晶質合金薄帯の積層体の(厚さ)/(一辺の長さ)の比
と(0.2Aの直流重畳電流を流したときのインダクタン
ス)/(直流重畳電流を流さないときのインダクタン
ス)の比との関係を示す特性図である。なお、インダク
タンス値はいずれも50kHzで測定した。
FIG. 6 is a characteristic diagram showing the relationship between the superimposed DC current and the inductance using the number of laminated amorphous alloy ribbons as a parameter, and FIG. 7 is a graph showing the relationship between the DC superimposed current and (inductance when the DC superimposed current flows). FIG. 8 is a characteristic diagram showing the relationship with the ratio of (/ inductance when no DC superimposed current flows) using the number of laminated layers of amorphous alloy ribbon as a parameter. FIG. 9 is a characteristic diagram showing a relationship between a ratio of (sa) / (length of one side) and a ratio of (inductance when a DC superimposed current of 0.2 A flows) / (inductance when a superimposed DC current is not applied). The inductance values were measured at 50 kHz.

第6図に示されるように、直流重畳電流を流さないと
きのインダクタンスL0は、積層枚数nを増やしても、n
=1のときの値のn倍よりもはるかに小さい値にしかな
らない。しかし、第6図及び第7図から、積層枚数nが
多くなるほど直流重畳電流の増加に伴うインダクタンス
の減少度合は小さくなり、直流重畳特性が改善されるこ
とがわかる。
As shown in FIG. 6, the inductance L 0 when no DC superimposed current flows is n n even when the number of stacked layers n is increased.
The value is much smaller than n times the value when = 1. However, it can be seen from FIGS. 6 and 7 that as the number n of stacked layers increases, the degree of decrease in inductance with an increase in DC superimposed current decreases, and DC superimposition characteristics are improved.

また、第8図から、(0.2Aの直流重畳電流を流したと
きのインダクタンス)/(直流重畳電流を流さないとき
のインダクタンス)の比L0.2/L0に関しては、非晶質合
金薄帯の積層体の(厚さ)/(一辺の長さ)の比t/lが1
0-3より小さいとL0.2/L0は0.3以下となり直流重畳特性
は悪いが、t/lが10-3以上ではL0.2/L0は0.3よりも大き
くなって充分に実用に耐え、更にt/lが3.5×10-3を超え
るとL0.2/L0は0.8以上となって直流重畳特性は大幅に
改善されることがわかる。
From FIG. 8, the ratio L 0.2 / L 0 of (inductance when a superimposed DC current of 0.2 A flows) / (inductance when a superimposed DC current is not applied) is represented by L 0.2 / L 0 of the amorphous alloy ribbon. The ratio (t / l) of (thickness) / (length of one side) of the laminate is 1
If it is less than 0 -3 , L 0.2 / L 0 is 0.3 or less, and the direct current superimposition characteristic is poor. However, if t / l is 10 -3 or more, L 0.2 / L 0 becomes larger than 0.3, and it is sufficiently practical. When t / l exceeds 3.5 × 10 −3 , L 0.2 / L 0 becomes 0.8 or more, and it can be seen that the DC superimposition characteristic is greatly improved.

[発明の効果] 以上詳述したように本発明によれば、単位体積当りの
インダクタンス値(L/V)が大きく、更には直流重畳特
性の改善された平面インダクタを提供することができ、
その工業的価値は大きい。
[Effects of the Invention] As described above in detail, according to the present invention, it is possible to provide a planar inductor having a large inductance value per unit volume (L / V) and further improved DC bias characteristics.
Its industrial value is great.

【図面の簡単な説明】 第1図は本発明の実施例における平面インダクタの断面
図、第2図は比較例として作製された平面インダクタの
断面図、第3図(A)は従来の平面インダクタの平面
図、同図(B)は従来の平面インダクタの断面図、第4
図は本発明の実施例及び比較例の平面インダクタのイン
ダクタンスLの周波数特性を示す特性図、第5図は本発
明の実施例及び比較例の平面インダクタの単位体積当り
のインダクタンスL/Vの周波数特性を示す特性図、第6
図は本発明の他の実施例における平面インダクタについ
て直流重畳電流とインダクタンスとの関係を非晶質合金
薄帯の積層枚数をパラメータとして示す特性図、第7図
は本発明の他の実施例における平面インダクタについて
直流重畳電流と(直流重畳電流を流したときのインダク
タンス)/(直流重畳電流を流さないときのインダクタ
ンス)の比との関係を非晶質合金薄帯の積層枚数をパラ
メータとして示す特性図、第8図は本発明の他の実施例
における平面インダクタについて非晶質合金薄帯の積層
体の(厚さ)/(一辺の長さ)の比と(0.2Aの直流重畳
電流を流したときのインダクタンス)/(直流重畳電流
を流さないときのインダクタンス)の比との関係を示す
特性図である。 1……スパイラル状導体コイル、2a,2b……スパイラル
コイル、3a,3b,3c,3d,3e……絶縁層、4……スルーホー
ル、5a,5b……強磁性体層、6a,6b……端子。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a planar inductor according to an embodiment of the present invention, FIG. 2 is a sectional view of a planar inductor manufactured as a comparative example, and FIG. (B) is a sectional view of a conventional planar inductor, and FIG.
FIG. 5 is a characteristic diagram showing the frequency characteristics of the inductance L of the planar inductors of the example and the comparative example of the present invention, and FIG. 5 is the frequency of the inductance L / V per unit volume of the planar inductor of the example and the comparative example of the present invention. Characteristic diagram showing characteristics, sixth
FIG. 7 is a characteristic diagram showing the relationship between the DC superimposed current and the inductance with respect to the planar inductor according to another embodiment of the present invention using the number of laminated amorphous alloy ribbons as a parameter, and FIG. Characteristics showing the relationship between the DC superimposed current and the ratio of (inductance when DC superimposed current flows) / (inductance when no DC superimposed current flows) for planar inductors using the number of laminated amorphous alloy ribbons as a parameter FIGS. 8A and 8B show a planar inductor according to another embodiment of the present invention, in which a ratio of (thickness) / (length of one side) of a laminate of amorphous alloy ribbons and a DC superimposed current of (0.2 A) are applied. FIG. 4 is a characteristic diagram showing a relationship between a ratio of (inductance at the time of performing DC current) / (inductance at the time of not passing a DC superimposed current). 1 ... spiral conductor coil, 2a, 2b ... spiral coil, 3a, 3b, 3c, 3d, 3e ... insulating layer, 4 ... through hole, 5a, 5b ... ferromagnetic layer, 6a, 6b ... ... terminals.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 17/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 17/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数層のスパイラル状導体コイルを絶縁層
を介して積層し、各スパイラル状導体コイルを電気的に
直列にかつ各スパイラル状導体コイルに同方向の電流が
流れるように接続した積層体と、その両面にそれぞれ互
いに離間して設けられた絶縁層と、これらの絶縁層の外
面にそれぞれ互いに離間して設けられた強磁性体層とを
有し、上記強磁性体層が複数枚の強磁性薄帯の積層体か
らなり、上記強磁性体層の厚さ(t)と1辺の長さ
(l)との比(t/l)が1×10-3以上であることを特徴
とする平面インダクタ。
1. A laminated structure in which a plurality of spiral conductive coils are laminated via an insulating layer, and each spiral conductive coil is electrically connected in series and connected to each spiral conductive coil so that current flows in the same direction. A plurality of ferromagnetic layers, each of which includes a body, an insulating layer provided on both surfaces of the insulating layer, and a ferromagnetic layer provided on the outer surface of the insulating layer. Wherein the ratio (t / l) of the thickness (t) of the ferromagnetic layer to the length (1) of one side is 1 × 10 −3 or more. Features planar inductors.
【請求項2】複数層のスパイラル状導体コイルを絶縁層
を介して積層し、各スパイラル状導体コイルを電気的に
直列にかつ各スパイラル状導体コイルに同方向の電流が
流れるように接続した積層体と、その両面にそれぞれ互
いに離間して設けられた絶縁層と、これらの絶縁層の外
面にそれぞれ互いに離間して設けられた強磁性体層とを
有し、上記強磁性体層が複数枚の強磁性薄帯の積層体か
らなり、上記強磁性体層の厚さ(t)と1辺の長さ
(l)との比(t/l)が1×10-3以上である平面インダ
クタを具備したことを特徴とするDC−DCコンバータ。
2. A laminated structure in which a plurality of spiral conductive coils are laminated via an insulating layer, and the spiral conductive coils are electrically connected in series so that a current in the same direction flows through each spiral conductive coil. A plurality of ferromagnetic layers, each of which includes a body, an insulating layer provided on both surfaces of the insulating layer, and a ferromagnetic layer provided on the outer surface of the insulating layer. Wherein the ratio (t / l) of the thickness (t) of the ferromagnetic layer to the length (1) of one side is 1 × 10 −3 or more. A DC-DC converter comprising:
JP63142043A 1987-09-29 1988-06-09 Planar inductor Expired - Lifetime JP2958892B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63142043A JP2958892B2 (en) 1988-06-09 1988-06-09 Planar inductor
US07/250,401 US4959631A (en) 1987-09-29 1988-09-28 Planar inductor
KR1019880012666A KR910003292B1 (en) 1987-09-29 1988-09-29 Planar inductor
DE3854177T DE3854177T2 (en) 1987-09-29 1988-09-29 Planar coil.
EP88309056A EP0310396B1 (en) 1987-09-29 1988-09-29 Planar inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142043A JP2958892B2 (en) 1988-06-09 1988-06-09 Planar inductor

Publications (2)

Publication Number Publication Date
JPH01310518A JPH01310518A (en) 1989-12-14
JP2958892B2 true JP2958892B2 (en) 1999-10-06

Family

ID=15306060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142043A Expired - Lifetime JP2958892B2 (en) 1987-09-29 1988-06-09 Planar inductor

Country Status (1)

Country Link
JP (1) JP2958892B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117878C2 (en) 1990-05-31 1996-09-26 Toshiba Kawasaki Kk Planar magnetic element
FR2755342A1 (en) * 1996-10-31 1998-04-30 Secre Composants METHOD FOR PRODUCING AN ELECTRICAL COMPONENT AND COMPONENT THUS OBTAINED
US6768409B2 (en) 2001-08-29 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magnetic device, method for manufacturing the same, and power supply module equipped with the same
JPWO2007080820A1 (en) * 2006-01-12 2009-06-11 株式会社東芝 Power receiving device and electronic device and non-contact charging device using the same
US11476566B2 (en) 2009-03-09 2022-10-18 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
KR101339486B1 (en) * 2012-03-29 2013-12-10 삼성전기주식회사 Thin film coil and electronic device having the same
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10063100B2 (en) 2015-08-07 2018-08-28 Nucurrent, Inc. Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US11205848B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
WO2017031348A1 (en) 2015-08-19 2017-02-23 Nucurrent, Inc. Multi-mode wireless antenna configurations
CN113937901A (en) 2016-08-26 2022-01-14 纽卡润特有限公司 Wireless connector system
US10432032B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Wireless system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10903688B2 (en) 2017-02-13 2021-01-26 Nucurrent, Inc. Wireless electrical energy transmission system with repeater
US11283295B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Device orientation independent wireless transmission system
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11881716B2 (en) 2020-12-22 2024-01-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US12003116B2 (en) 2022-03-01 2024-06-04 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices with cross talk and interference mitigation
US11831174B2 (en) 2022-03-01 2023-11-28 Nucurrent, Inc. Cross talk and interference mitigation in dual wireless power transmitter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978876A (en) * 1972-12-09 1974-07-30
JPS58133906U (en) * 1982-03-03 1983-09-09 富士通株式会社 winding body
JPS5967909U (en) * 1982-10-28 1984-05-08 日本電気ホームエレクトロニクス株式会社 coil device
JPH0746660B2 (en) * 1985-09-30 1995-05-17 株式会社東芝 Thin transformer

Also Published As

Publication number Publication date
JPH01310518A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
JP2958892B2 (en) Planar inductor
EP0310396B1 (en) Planar inductor
US6175293B1 (en) Planar inductor
JP3164000B2 (en) Multilayer inductor
JPH08203737A (en) Coil component
JPH05101938A (en) Laminate type coil and fabrication thereof
JPH0722243A (en) Inductor array
JP3141893B2 (en) Planar inductor
JPH07161517A (en) Multilayer coil and its manufacture
JPH06260869A (en) Noise filter
JP2958893B2 (en) Planar inductor
JPS6276509A (en) Thin type transformer
JP2735295B2 (en) Planar inductor
EP4033781A1 (en) Moving coil for flat panel speaker
JP2001126925A (en) Laminate inductor
JPH0653044A (en) Thin inductor or thin transformer and their manufacture
JP3490149B2 (en) Multilayer chip transformer
JPH0227533Y2 (en)
JP2944898B2 (en) Laminated chip transformer and method of manufacturing the same
JP2993998B2 (en) Planar inductor
JPH08273936A (en) Coil component and board with built-in coil
JPH03280504A (en) Plane inductor
JPS61199309A (en) Printed board type electromagnetic delay line
JPH0245903A (en) Inductor
JPH01157508A (en) Plane inductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

EXPY Cancellation because of completion of term