JP2958452B2 - Method for producing composite porous sensor - Google Patents

Method for producing composite porous sensor

Info

Publication number
JP2958452B2
JP2958452B2 JP10064271A JP6427198A JP2958452B2 JP 2958452 B2 JP2958452 B2 JP 2958452B2 JP 10064271 A JP10064271 A JP 10064271A JP 6427198 A JP6427198 A JP 6427198A JP 2958452 B2 JP2958452 B2 JP 2958452B2
Authority
JP
Japan
Prior art keywords
particles
gas sensor
sensor element
gas
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10064271A
Other languages
Japanese (ja)
Other versions
JPH11248663A (en
Inventor
泰正 高尾
正信 淡野
睦夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10064271A priority Critical patent/JP2958452B2/en
Publication of JPH11248663A publication Critical patent/JPH11248663A/en
Application granted granted Critical
Publication of JP2958452B2 publication Critical patent/JP2958452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な半導体ガスセ
ンサー素子、さらに詳しく言えば、半導体ガスセンサー
材料粒子の表面上に局所的に制御して、ガスセンサー材
料の機能を増幅する触媒機能を有する金属粒子を分散さ
せた複合粒子を、気孔率の高い多孔性の状態で堆積させ
た半導体ガスセンサー素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel semiconductor gas sensor element, and more particularly, to a catalytic function for amplifying the function of a gas sensor material by locally controlling the surface of semiconductor gas sensor material particles. The present invention relates to a semiconductor gas sensor element in which composite particles in which metal particles are dispersed are deposited in a porous state having a high porosity.

【0002】[0002]

【従来の技術】ガスセンサーは水素やエタノールなどの
可燃性ガスの漏洩検知に広く使用されるとともに、近年
では食品や環境関連分野での芳香成分や毒性ガスの検知
などにも利用されるようになっている。そのため対象ガ
スのより微量成分の検知や、ガス選択性の向上、検知ガ
ス種の拡大などが求められていた。
2. Description of the Related Art Gas sensors have been widely used for detecting leaks of flammable gases such as hydrogen and ethanol, and in recent years have been used for detecting aroma components and toxic gases in food and environment-related fields. Has become. Therefore, there has been a demand for detection of a trace component of the target gas, improvement of gas selectivity, expansion of detection gas types, and the like.

【0003】ガスセンサーはガスとの接触により電気抵
抗が急変するが、より微量のガスでも抵抗変化を生じさ
せるために、ガスセンサー材料とガスとの反応性を増幅
させるための触媒粒子(金属や酸化物など)を添加する
方法が有効である。現在までの触媒粒子の添加方法は金
属塩を用いた液相法(含浸法)が一般的で、その微細な
粒子径のために凝集しやすい触媒粒子を必ずしもガスセ
ンサー材料粒子の表面のみに分散できているわけではな
かった。簡便な方法で制御性よく触媒粒子をガスセンサ
ー材料粒子の表面に分散させるために、触媒粒子の添加
方法には改良の余地が指摘されていた(山添昇、玉置
純:“半導体ガスセンサにおける金属微粒子の役割”、
表面、vol.27、No.6、499−507(19
89))。
[0003] In a gas sensor, the electrical resistance changes suddenly due to contact with a gas. However, in order to cause a change in the resistance even with a smaller amount of gas, catalyst particles (metal or metal) for amplifying the reactivity between the gas sensor material and the gas are used. Is effective. Up to now, the method of adding catalyst particles is generally a liquid phase method (impregnation method) using a metal salt, and due to the fine particle diameter, easily agglomerated catalyst particles are necessarily dispersed only on the surface of the gas sensor material particles. It was not done. It was pointed out that there was room for improvement in the method of adding the catalyst particles in order to disperse the catalyst particles on the surface of the gas sensor material particles in a simple manner with good controllability (Noboru Yamazoe, Jun Tamaki: "Metal fine particles in semiconductor gas sensors" Role of, "
Surface, vol. 27, no. 6, 499-507 (19
89)).

【0004】またガスセンサーは内部電極型厚膜素子と
して用いられることが多く、素子全体が緻密になると対
象ガスの厚膜内部への拡散透過性が悪くなり、素子の応
答性が低下する。そのためガスセンサー素子の気孔率を
制御し、多孔性の素子構造とする必要性が指摘されてい
た(安藤正美、土田敬之、三浦則雄、山添昇:“二酸化
スズ膜を用いたセンサー素子の硫化水素検知特性に対す
る微細構造の影響”、日本化学会誌、No.4、348
−353(1996))。
A gas sensor is often used as an internal electrode type thick film element. If the whole element becomes dense, the diffusion permeability of a target gas into the inside of the thick film deteriorates, and the response of the element decreases. Therefore, it was pointed out that it was necessary to control the porosity of the gas sensor element to make it a porous element structure. Influence of Microstructure on Detection Characteristics ", Journal of the Chemical Society of Japan, No. 4, 348
-353 (1996)).

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来のガスセンサー素子が持つ欠点を克服し、ガスセン
サー材料とガスとの反応性を増幅させるための触媒粒子
を、センサー材料粒子の表面上に局所的に制御して分散
させるとともに、同時に気孔率の高い多孔性のセンサー
素子を与えることができる半導体−金属複合粒子ガスセ
ンサー素子の製造方法を提供するものであり、例えば、
SnO2 、ZnO、TiO2 などのガスセンサー材料と
Pd、Pt、Au、Ruなどの触媒粒子が複合された半
導体ガスセンサー素子として好適な、ガスセンサー粒子
の表面上に局所的に制御して、触媒粒子を分散させた複
合粒子から成る、多孔性のガスセンサー素子を提供する
ことを目的として開発されたものである。
SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned drawbacks of the conventional gas sensor element and replaces the catalyst particles for amplifying the reactivity between the gas sensor material and the gas with the sensor material particles. It is intended to provide a method for producing a semiconductor-metal composite particle gas sensor element capable of locally controlling and dispersing on a surface and simultaneously providing a porous sensor element having a high porosity.
A gas sensor material such as SnO 2 , ZnO, and TiO 2 and a catalyst particle such as Pd, Pt, Au, and Ru are suitably combined as a semiconductor gas sensor element, which is locally controlled on the surface of the gas sensor particles. The present invention has been developed for the purpose of providing a porous gas sensor element composed of composite particles in which catalyst particles are dispersed.

【0006】[0006]

【課題を解決するための手段】本発明者らは、ガスセン
サー粒子の表面上に局所的に制御して触媒粒子を分散さ
せた複合粒子から成る、多孔性のガスセンサー素子を開
発すべく鋭意研究を重ねた結果、ガスセンサー材料粒子
と触媒粒子に対し、一方に正の静電気を、他方に負の静
電気をそれぞれ荷電したのち、両者を混合することによ
り、ガスセンサー材料粒子の表面上に局所的に制御して
触媒粒子を分散できることを見出した。さらに得られた
ガスセンサー材料粒子と触媒粒子の複合粒子に対し、正
または負の静電気を荷電したのち、あらかじめ内部電極
を取り付けたセンサー基板を複合粒子と反対極性に荷電
または接地し、複合粒子を基板上に堆積することで、数
珠玉形成力(Pearl Chain Forming
Force)により気孔率の高い多孔性の状態で複合
粒子を堆積可能なことを見出した。本発明はかかる知見
に基づいて完成したものである。
Means for Solving the Problems The present inventors have been keen to develop a porous gas sensor element comprising composite particles in which catalyst particles are locally controlled on the surface of gas sensor particles. As a result of repeated research, the gas sensor material particles and the catalyst particles were charged with positive static electricity on one side and negative static electricity on the other, and then mixed together to form a localized charge on the surface of the gas sensor material particles. It has been found that the catalyst particles can be dispersed under controlled conditions. Further, after charging the obtained composite particles of the gas sensor material particles and the catalyst particles with positive or negative static electricity, the sensor substrate on which the internal electrodes are previously attached is charged or grounded to the opposite polarity to the composite particles, and the composite particles are discharged. By depositing on a substrate, a Pearl Chain Forming
Force) to deposit composite particles in a porous state with high porosity. The present invention has been completed based on such findings.

【0007】すなわち本発明は、第1にガスセンサー材
料粒子と触媒粒子に対し、一方に正の静電気を、他方に
負の静電気をそれぞれ荷電したのち、両者を静電気的に
結合すること、第2に得られたガスセンサー材料粒子と
触媒粒子の複合粒子を静電気的にセンサー基板上に堆積
することを特徴とするガスセンサー素子を提供するもの
である。
That is, the present invention firstly charges a gas sensor material particle and a catalyst particle with a positive static electricity on one side and a negative static electricity on the other, and then electrostatically couples both. And a composite particle of the gas sensor material particles and the catalyst particles obtained above is electrostatically deposited on a sensor substrate.

【0008】上記課題を解決するために、本発明では以
下のような構成が採用される。 (1)1μm以下の半導体ガスセンサー粒子の表面上に
制御して、センサー機能を増幅する能力を有する100
nm以下の金属粒子を分散させた半導体−金属複合粒子
を、気孔率の高い多孔性の状態で堆積させることを特徴
とする、半導体ガスセンサー素子の製造方法。 (2)上記半導体−金属複合粒子を静電凝集法で合成
し、当該半導体−金属複合粒子を静電沈着により粒子が
数珠玉状に連なった状態で堆積した多孔性の厚膜構造と
することを特徴とする前記(1)記載の半導体ガスセン
サー素子の製造方法。 (3)上記半導体がSnO2 、ZnO又はTiO2 であ
り、金属粒子がPd、Pt、Au又はRuである前記
(1)又は(2)記載の半導体ガスセンサー素子の製造
方法。
In order to solve the above problems, the present invention employs the following configuration. (1) 100 having the ability to control on the surface of semiconductor gas sensor particles of 1 μm or less to amplify the sensor function
A method for producing a semiconductor gas sensor element, comprising depositing semiconductor-metal composite particles in which metal particles having a diameter of not more than nm are dispersed in a porous state having a high porosity. (2) The above-mentioned semiconductor-metal composite particles are synthesized by an electrostatic aggregation method, and the semiconductor-metal composite particles are formed into a porous thick film structure in which the particles are deposited in a state of beads by electrostatic deposition. The method for manufacturing a semiconductor gas sensor element according to the above (1), which is characterized in that: (3) The method for producing a semiconductor gas sensor element according to (1) or (2), wherein the semiconductor is SnO 2 , ZnO or TiO 2 , and the metal particles are Pd, Pt, Au or Ru.

【0009】[0009]

【発明の実施の形態】次に、本発明についてさらに詳細
に説明する。本発明方法においては、まずガスセンサー
材料粒子と触媒粒子をCVD法などの方法により合成す
る。このさいのガスセンサー材料粒子については例えば
SnO2 、ZnO、TiO2 などの半導体粒子が、触媒
粒子についてはPd、Pt、Au、Ruなどの金属粒子
が例示されるが、特に制限はない。
Next, the present invention will be described in more detail. In the method of the present invention, first, gas sensor material particles and catalyst particles are synthesized by a method such as a CVD method. At this time, the gas sensor material particles include, for example, semiconductor particles such as SnO 2 , ZnO, and TiO 2 , and the catalyst particles include metal particles such as Pd, Pt, Au, and Ru, but are not particularly limited.

【0010】次に得られたガスセンサー材料粒子と触媒
粒子に任意の大きさおよび極性の静電気をそれぞれ荷電
し、両者を混合することで、反対極性に荷電された粒子
同士に働く静電凝集力により、ガスセンサー材料粒子の
表面に触媒粒子が付着した複合粒子が合成される。この
さいの粒子の荷電方法については、例えば双方向衝突荷
電法などが例示されるが、特に制限はない。
Next, the obtained gas sensor material particles and catalyst particles are charged with static electricity of an arbitrary size and polarity, respectively, and the two are mixed to form an electrostatic cohesive force acting on the oppositely charged particles. Thereby, composite particles having catalyst particles adhered to the surfaces of the gas sensor material particles are synthesized. The method of charging the particles at this time is exemplified by, for example, a two-way collision charging method, but is not particularly limited.

【0011】つづいて得られたガスセンサー材料粒子と
触媒粒子の複合粒子に対し、正または負の静電気を荷電
したのち、あらかじめ内部電極を取り付けたセンサー基
板を複合粒子と反対極性に荷電または接地し、複合粒子
を基板上に静電気的に堆積することで、荷電された粒子
が基板上に堆積するときに働く数珠玉形成力により、気
孔率の高い多孔性の状態で複合粒子が堆積されたガスセ
ンサー素子が得られる。このさいの複合粒子の荷電方法
については例えば双方向衝突荷電法などが、基板の荷電
方法については直流高圧電源を利用する方法などが例示
されるが、特に制限されるものではない。
Subsequently, positive or negative static electricity is charged to the obtained composite particles of the gas sensor material particles and the catalyst particles, and then the sensor substrate provided with the internal electrodes is charged or grounded to the opposite polarity to the composite particles. A gas sensor in which the composite particles are deposited in a porous state with a high porosity by the electrostatic deposition of the composite particles on the substrate, and the beads forming force acting when the charged particles deposit on the substrate An element is obtained. In this case, as a method of charging the composite particles, for example, a two-way collision charging method or the like is exemplified, and as a method of charging the substrate, a method using a DC high-voltage power supply is exemplified, but the method is not particularly limited.

【0012】次に、本発明を添付図面にしたがって説明
する。図1は本発明によってSnO2 ガスセンサー材料
粒子とPd触媒粒子の複合粒子から成るガスセンサー素
子を製造する場合の装置の1例、図2は図1の装置で得
られたガスセンサー素子の1例の説明図である。
Next, the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an example of an apparatus for producing a gas sensor element comprising composite particles of SnO 2 gas sensor material particles and Pd catalyst particles according to the present invention, and FIG. 2 shows one of the gas sensor elements obtained by the apparatus of FIG. It is explanatory drawing of an example.

【0013】図1の方法では、蒸気発生装置1でテトラ
メチルスズSn(CH3 4 を気化温度0℃に設定して
Sn(CH3 4 蒸気を発生させ、0.01〜0.5l
/minのArをキャリアガス2としてSn(CH3
4 蒸気を500〜800℃に温度を保った反応器5へ送
り、同時に反応ガス3として0.1〜0.5l/min
のO2 とシースガス4としてN2 を0〜5l/minで
供給して、反応器5中の化学反応でSnO2 ガスセンサ
ー材料粒子を合成する。
In the method of FIG. 1, the vapor generator 1 sets the vaporization temperature of tetramethyltin Sn (CH 3 ) 4 to 0 ° C. to generate Sn (CH 3 ) 4 vapor, which is 0.01 to 0.5 l.
/ Min Ar as carrier gas 2 and Sn (CH 3 )
4 steam feed to the reactor 5 kept at a temperature of 500~800 ℃, 0.1~0.5l / min as the reaction gas 3 at the same time
O 2 and N 2 as the sheath gas 4 are supplied at 0 to 5 l / min to synthesize SnO 2 gas sensor material particles by a chemical reaction in the reactor 5.

【0014】Pd触媒粒子はアルミナ管状炉などの反応
器5’中にPd原料粉体6を置き、粒径最適化のため反
応器5’を1500〜1700℃に加熱して蒸気を発生
させ、N2 1〜5l/minをキャリアガス2’、N2
(例えば、5l/min)をシ−スガス4’として供給
して、反応器5’中の蒸発−凝縮反応で合成する。
For the Pd catalyst particles, the Pd raw material powder 6 is placed in a reactor 5 ′ such as an alumina tubular furnace, and the reactor 5 ′ is heated to 1500 to 1700 ° C. to optimize the particle size to generate steam, N 2 1~5l / min carrier gas 2 ', N 2
(E.g., 5 l / min) is supplied as a sheath gas 4 'and is synthesized by an evaporation-condensation reaction in the reactor 5'.

【0015】次に熱拡散による壁面沈着防止のため、炉
内であらかじめ加熱したN2 をシース(Sheath)
状に供給し、得られたSnO2 ガスセンサー材料粒子を
荷電器(ボクサーチャージャー)7へ、Pd触媒粒子を
荷電器7’へそれぞれ輸送し、任意の大きさおよび極性
(例えばSnO2 に正、Pdに負など)の静電気を荷電
する。つづいて両者を混合することで、反対極性に荷電
された粒子同士に働く静電凝集力により、SnO2 ガス
センサー材料粒子の表面にPd触媒粒子が付着した複合
粒子が合成される。
Next, in order to prevent wall deposition due to thermal diffusion, N 2 preheated in a furnace is covered with a sheath (Shearth).
The resulting SnO 2 gas sensor material particles are transported to a charger (boxer charger) 7 and the Pd catalyst particles are transported to a charger 7 ′, and have any size and polarity (for example, positive or negative for SnO 2) . (Pd is negative). Subsequently, by mixing them, composite particles having Pd catalyst particles adhered to the surfaces of SnO 2 gas sensor material particles are synthesized by electrostatic cohesion acting on particles charged in opposite polarities.

【0016】次にSnO2 −Pd複合粒子に対し、例え
ば負の静電気を荷電したのち、あらかじめ内部電極を取
り付けたセンサー基板を例えば接地して、複合粒子を基
板上に静電気的に堆積することで、荷電された粒子が基
板上に堆積するときに働く数珠玉形成力により、気孔率
の高い多孔性の状態で複合粒子が堆積された図2に示す
ようなSnO2 −Pdガスセンサー素子が得られる。粒
子を輸送してきたガスなどはポンプ9で排気する。上記
方法により、例えば、50〜100nmのSnO2 核粒
子表面をナノメーターオーダーのPd粒子が均一に被覆
した複合粒子が得られることがわかった。また、ファラ
デーケージ電流計で粒子の帯電量を測定した結果、粒子
は荷電器によって単極性荷電の飽和帯電量まで荷電され
ていることが明らかとなった。一方、荷電を行わずにS
nO2 粒子とPd粒子を混合した場合には、両者が別々
に補集されて複合粒子化していない部分が存在すること
があった。また、上記半導体−金属複合粒子を静電沈着
により粒子が数珠玉状に連なった状態で堆積した多孔性
の厚膜構造とすることができることがわかった。この多
孔構造はアニール後も維持された。上記厚膜構造の半導
体−金属複合粒子は、不燃性ガスに対する優れたセンサ
ー機能を有することがわかった。
Next, after charging the SnO 2 -Pd composite particles with, for example, negative static electricity, the sensor substrate on which the internal electrodes are previously attached is grounded, for example, and the composite particles are electrostatically deposited on the substrate. The SnO 2 -Pd gas sensor element as shown in FIG. 2 in which the composite particles are deposited in a porous state having a high porosity is obtained by the beads forming force acting when the charged particles are deposited on the substrate. . The gas transporting the particles is exhausted by the pump 9. According to the above method, for example, it was found that composite particles in which the surface of SnO 2 core particles of 50 to 100 nm was uniformly coated with Pd particles of the order of nanometers were obtained. In addition, as a result of measuring the charge amount of the particles with a Faraday cage ammeter, it was found that the particles were charged by the charger to a saturated charge amount of unipolar charge. On the other hand, S
When the nO 2 particles and the Pd particles were mixed, there were cases where both were separately collected and there were portions that were not formed into composite particles. In addition, it was found that the semiconductor-metal composite particles can be formed into a porous thick film structure in which the particles are deposited in a state of a bead by electrostatic deposition. This porous structure was maintained after annealing. It was found that the semiconductor-metal composite particles having the thick film structure had an excellent sensor function for nonflammable gas.

【0017】[0017]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこの例によってなんら限定されるもの
ではない。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention.

【0018】実施例1 本実施例では、図1に示した装置及び方法によりSnO
2 ガスセンサー素子を作製した。 (1)方法 蒸気発生装置1でテトラメチルスズSn(CH3 4
気化温度0℃に設定してSn(CH3 4 蒸気を発生さ
せ、0.01〜0.5l/minのArをキャリアガス
2としてSn(CH3 4 蒸気を500〜800℃に温
度を保った反応器5へ送り、同時に反応ガス3として
0.1〜0.5l/minのO2 とシースガス4として
2 を0〜5l/minで供給して、反応器5中の化学
反応でSnO2 ガスセンサー材料粒子を合成した。
Embodiment 1 In this embodiment, SnO 2 is formed by the apparatus and method shown in FIG.
Two gas sensor elements were fabricated. (1) Method Tetramethyltin Sn (CH 3 ) 4 is set to a vaporization temperature of 0 ° C. by the steam generator 1 to generate Sn (CH 3 ) 4 vapor, and 0.01 to 0.5 l / min of Ar is generated. As a carrier gas 2, Sn (CH 3 ) 4 vapor is sent to a reactor 5 maintained at a temperature of 500 to 800 ° C., and at the same time, O 2 of 0.1 to 0.5 l / min as a reaction gas 3 and N 2 as a sheath gas 4 Was supplied at 0 to 5 l / min to synthesize SnO 2 gas sensor material particles by a chemical reaction in the reactor 5.

【0019】Pd触媒粒子は還元ガス中の蒸発−凝縮法
で合成した。反応器5’中にPd原料粉体6を置き、反
応器5’を1600℃に加熱して蒸気を発生させ、N2
1l/minをキャリアガス2’、N2 5l/minを
シ−スガス4’として供給して、反応器5’中の蒸発−
凝縮反応でPd触媒粒子を合成した。
The Pd catalyst particles were synthesized by an evaporation-condensation method in a reducing gas. The Pd raw material powder 6 is placed in the reactor 5 ′, and the reactor 5 ′ is heated to 1600 ° C. to generate steam, and N 2
1l / min carrier gas 2 ', the N 2 5l / min sheet - Sugasu 4' is supplied as the reactor 5 'evaporation during -
Pd catalyst particles were synthesized by a condensation reaction.

【0020】次に、得られたSnO2 ガスセンサー材料
粒子を荷電器7へ、Pd触媒粒子を荷電器7’へそれぞ
れ輸送し、SnO2 に正、Pdに負の静電気を荷電し
た。つづいて荷電粒子を混合し、反対極性に荷電された
粒子同士に働く静電凝集力を利用して、SnO2 ガスセ
ンサー材料粒子の表面にPd触媒粒子が付着したSnO
2 −Pd複合粒子を合成した。
Next, the obtained SnO 2 gas sensor material particles were transported to the charger 7, and the Pd catalyst particles were transported to the charger 7 ′, and the positive static electricity was charged to SnO 2 and the negative static electricity was charged to Pd. Subsequently, the charged particles are mixed, and the Pd catalyst particles adhere to the surfaces of the SnO 2 gas sensor material particles by utilizing the electrostatic cohesion acting on the particles charged in opposite polarities.
2- Pd composite particles were synthesized.

【0021】次に、SnO2 −Pd複合粒子に対し、負
の静電気を荷電したのち、当該複合粒子を、あらかじめ
Pd電極を取り付けた石英製センサー基板上に静電沈着
させ、荷電された粒子が基板上に数珠玉状に連なった状
態で堆積した、気孔率の高い多孔性の厚膜構造の図2に
示すSnO2 −Pdガスセンサー素子を得た。
Next, after charging the SnO 2 -Pd composite particles with negative static electricity, the composite particles are electrostatically deposited on a quartz sensor substrate to which a Pd electrode is previously attached, and the charged particles are charged. The SnO 2 -Pd gas sensor element shown in FIG. 2 having a high porosity and a porous thick film structure, which was deposited on the substrate in a beaded state, was obtained.

【0022】(2)結果 図3に本発明の方法で得られたSnO2 −Pd複合粒子
の電子顕微鏡写真を示す。この複合粒子は、100nm
以下のSnO2 ガスセンサー材料粒子の表面に、10n
m以下のPd触媒粒子が均一に付着した構造であった。
(2) Results FIG. 3 shows an electron micrograph of the SnO 2 -Pd composite particles obtained by the method of the present invention. This composite particle has a thickness of 100 nm.
On the surface of the following SnO 2 gas sensor material particles, 10 n
m or less Pd catalyst particles were uniformly attached.

【0023】実施例2 実施例1のSnO2 −Pd複合粒子を用いて、本発明の
方法で作製したガスセンサー素子表面の電子顕微鏡写真
を図4に示す。数珠玉形成作用により粒子が数珠玉上に
連なった状態で堆積した多孔性の厚膜構造となった。ま
た図5にはSnO2 −Pdガスセンサー素子表面のSn
成分とPd成分の組成分布を示す。Sn成分とPd成分
が同じ位置に分布しており、触媒粒子はガスセンサー材
料粒子の表面上に局所的に制御されて分散していた。
Example 2 FIG. 4 shows an electron micrograph of the surface of a gas sensor element produced by the method of the present invention using the SnO 2 -Pd composite particles of Example 1. The beads formed a porous thick film structure in a state where the particles continued to form on the beads by the beads forming action. FIG. 5 shows the SnO 2 -Pd gas sensor element surface Sn
3 shows the composition distribution of the component and the Pd component. The Sn component and the Pd component were distributed at the same position, and the catalyst particles were locally controlled and dispersed on the surfaces of the gas sensor material particles.

【0024】実施例3 実施例2のSnO2 −Pdガスセンサー素子を用いて、
いくつかの可燃性ガス(エタノールC2 5 OH、水素
2 、メタンCH4 )の検知に利用した結果を図6に示
す。各可燃性ガスのガス感度(Sensitivit
y)がガス濃度(Gas Concentratio
n)に比例しており、また特に低ガス濃度側は50pp
m以下のガス検知も可能で、SnO2 −Pdガスセンサ
ー素子は可燃性ガスに対する高いセンサー機能を示し
た。
Example 3 Using the SnO 2 -Pd gas sensor element of Example 2,
FIG. 6 shows the results of use for detecting some combustible gases (ethanol C 2 H 5 OH, hydrogen H 2 , methane CH 4 ). Sensitivity of each flammable gas
y) is the gas concentration (Gas Concentratio)
n), and especially 50 pp on the low gas concentration side.
m or less, and the SnO 2 -Pd gas sensor element exhibited a high sensor function for combustible gas.

【0025】[0025]

【発明の効果】本発明の方法により、50〜100nm
のSnO2 等の核粒子表面をナノメーターオーダーのP
d等の粒子が均一に被覆した複合粒子が得られる。本発
明によると、素子中でガスセンサー材料粒子の表面上に
局所的に制御して触媒粒子を分散することができ、さら
に粒子が数珠玉状に連なった状態で堆積した多孔性の厚
膜構造が得られる。すなわち本発明によると触媒粒子の
分散状態と厚膜構造を同時に制御した素子を容易に作製
することができ、この積層膜は、ガスセンサー素子とし
て好適である。
According to the method of the present invention, 50 to 100 nm
Surface of nuclear particles such as SnO 2
Composite particles uniformly covered with particles such as d can be obtained. According to the present invention, the catalyst particles can be locally controlled on the surface of the gas sensor material particles in the element to disperse the catalyst particles, and further, a porous thick film structure in which the particles are deposited in a bead-like state is obtained. can get. That is, according to the present invention, an element in which the dispersion state of the catalyst particles and the thick film structure are simultaneously controlled can be easily produced, and this laminated film is suitable as a gas sensor element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための装置の1例の説明図で
ある。
FIG. 1 is an explanatory diagram of an example of an apparatus for implementing the present invention.

【図2】本発明で得られたガスセンサー素子の1例の説
明図である。
FIG. 2 is an explanatory diagram of one example of a gas sensor element obtained by the present invention.

【図3】本発明により得られたSnO2 ガスセンサー材
料粒子とPd触媒粒子の複合粒子の1例の電子顕微鏡写
真である。
FIG. 3 is an electron micrograph of an example of composite particles of SnO 2 gas sensor material particles and Pd catalyst particles obtained according to the present invention.

【図4】本発明で作製したSnO2 −Pd複合粒子から
成るガスセンサー素子の表面の電子顕微鏡写真である。
FIG. 4 is an electron micrograph of the surface of a gas sensor element composed of SnO 2 -Pd composite particles produced according to the present invention.

【図5】本発明で作製したSnO2 −Pdガスセンサー
素子の表面のSn成分とPd成分の組成分布図(FPM
AによるSnO2 −Pd複合体組織の写真)である。
FIG. 5 is a composition distribution diagram (FPM) of a Sn component and a Pd component on the surface of a SnO 2 -Pd gas sensor element manufactured according to the present invention.
A is a photograph of the SnO 2 -Pd composite structure).

【図6】本発明で作製したSnO2 −Pdガスセンサー
素子の可燃性ガス(エタノールC2 5 OH、水素
2 、メタンCH4 )に対するガス感度図である。
FIG. 6 is a gas sensitivity diagram for a combustible gas (ethanol C 2 H 5 OH, hydrogen H 2 , methane CH 4 ) of the SnO 2 -Pd gas sensor element manufactured in the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガス検知の触媒を分散制御した半導体ガ
スセンサー素子であって、半導体と触媒の複合粒子を、
静電気的に基板上に堆積して、気孔率の高い多孔性の
膜構造としたことを特徴とする、半導体ガスセンサー素
子。
1. A semiconductor gas having a gas detection catalyst dispersed and controlled.
Sensor element, a composite particle of semiconductor and catalyst ,
Electrostatically deposited on the substrate , high porosity porous thickness
Semiconductor gas sensor element characterized by having a film structure
Child.
【請求項2】 請求項1記載の半導体ガスセンサー素子
を製造する方法であって、半導体と触媒の複合粒子を静
電凝集法で合成し、当該複合粒子を静電沈着により粒子
が数珠玉状に連なった状態で堆積した多孔性の厚膜構造
とすることを特徴とする半導体ガスセンサー素子の製造
方法。
2. The semiconductor gas sensor element according to claim 1,
A method of manufacturing a semiconductor composite particles of the catalyst synthesized in electrostatic coalescence method, those plurality if particles particles by electrostatic deposition and is deposited in a state of continuous in Job's tears shaped porous thick film structures method of manufacturing a semi-conductor gas sensor element you characterized in that a.
【請求項3】導体がSnO2 、金属粒子がPdで
る請求項2記載の半導体ガスセンサー素子の製造方法。
3. The method for producing a semiconductor gas sensor element of the semi-conductor SnO 2, claim 2, wherein metallic particles Ru Oh <br/> at P d.
JP10064271A 1998-02-26 1998-02-26 Method for producing composite porous sensor Expired - Lifetime JP2958452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10064271A JP2958452B2 (en) 1998-02-26 1998-02-26 Method for producing composite porous sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10064271A JP2958452B2 (en) 1998-02-26 1998-02-26 Method for producing composite porous sensor

Publications (2)

Publication Number Publication Date
JPH11248663A JPH11248663A (en) 1999-09-17
JP2958452B2 true JP2958452B2 (en) 1999-10-06

Family

ID=13253391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10064271A Expired - Lifetime JP2958452B2 (en) 1998-02-26 1998-02-26 Method for producing composite porous sensor

Country Status (1)

Country Link
JP (1) JP2958452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7287412B2 (en) * 2003-06-03 2007-10-30 Nano-Proprietary, Inc. Method and apparatus for sensing hydrogen gas

Also Published As

Publication number Publication date
JPH11248663A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
Biaggi-Labiosa et al. A novel methane sensor based on porous SnO2 nanorods: room temperature to high temperature detection
Forleo et al. Synthesis and gas sensing properties of ZnO quantum dots
JP2972874B1 (en) Multilayer gas sensor
Lin et al. Perovskite nanoparticle-sensitized Ga2O3 nanorod arrays for CO detection at high temperature
Zhang et al. Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection
Park et al. Synthesis and gas sensing properties of TiO2–ZnO core‐shell nanofibers
Marichy et al. Tin dioxide sensing layer grown on tubular nanostructures by a non‐aqueous atomic layer deposition process
Sayegh et al. Humidity-resistant gas sensors based on SnO2 nanowires coated with a porous alumina nanomembrane by molecular layer deposition
Shim et al. Nanogap-controlled Pd coating for hydrogen sensitive switches and hydrogen sensors
Kate et al. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite
Su et al. Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors
Kubo et al. Evaluation of the factors that influence the fabrication of porous thin films by deposition of aerosol nanoparticles
Sahner et al. Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films
Bonardo et al. recent development of WO3 for toxic gas sensors applications
Zhang et al. Electrophoretic assembly of B–Ti nanoenergetic coating for micro-ignitor application
Zhang et al. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas
Su et al. Tin dioxide functionalized single-walled carbon nanotube (SnO2/SWNT)-based ammonia gas sensors and their sensing mechanism
JP2958452B2 (en) Method for producing composite porous sensor
KR20050039016A (en) Hydrogen sensor using palladium coated carbon nanotube
US5342701A (en) Transition metal oxide films and gas sensors thereof
JP2720381B2 (en) Method for producing pyrolytic boron nitride molded article having arbitrary electric resistivity
Badie et al. Enhanced sensitivity towards hydrogen by a TiN interlayer in Pd-decorated SnO 2 nanowires
Salomonsson et al. Nanoparticles for long-term stable, more selective MISiCFET gas sensors
Charojrochkul et al. Flame assisted vapour deposition of cathode for solid oxide fuel cells. 1. Microstructure control from processing parameters
Aoki et al. Durability improvement of Pd core-Pt shell structured catalyst by porous SiO2 coating

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term