JP2955069B2 - Gas separator manufacturing method - Google Patents

Gas separator manufacturing method

Info

Publication number
JP2955069B2
JP2955069B2 JP3176921A JP17692191A JP2955069B2 JP 2955069 B2 JP2955069 B2 JP 2955069B2 JP 3176921 A JP3176921 A JP 3176921A JP 17692191 A JP17692191 A JP 17692191A JP 2955069 B2 JP2955069 B2 JP 2955069B2
Authority
JP
Japan
Prior art keywords
gas supply
supply plate
plate
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3176921A
Other languages
Japanese (ja)
Other versions
JPH0529001A (en
Inventor
国延 市川
香 和田
徳一 峰尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3176921A priority Critical patent/JP2955069B2/en
Publication of JPH0529001A publication Critical patent/JPH0529001A/en
Application granted granted Critical
Publication of JP2955069B2 publication Critical patent/JP2955069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池に用いられる
ガスセパレータの製造方法に関し、特に銅にて高剛性の
ガスセパレータを製造し得るようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a gas separator used in a fuel cell, and more particularly to a method of manufacturing a gas separator having high rigidity using copper.

【0002】[0002]

【従来の技術】燃料電池は、資源の枯渇問題を有する化
石燃料を使う必要がない上、騒音をほとんど発生せず、
エネルギの回収効率も他のエネルギ機関と較べて非常に
高くできる等の優れた特徴を持っているため、例えばビ
ルディング単位や工場単位の比較的小型の発電プラント
として利用されている。
2. Description of the Related Art Fuel cells do not need to use fossil fuels, which have a problem of resource depletion, and generate almost no noise.
Since it has excellent features such as an extremely high energy recovery efficiency as compared with other energy engines, it is used as a relatively small power plant, for example, in a building unit or a factory unit.

【0003】近年、この燃料電池を車載用の内燃機関に
代えて作動するモータの電源として利用し、このモータ
により車両等を駆動することが考えられている。この場
合に重要なことは、反応によって生成する物質をできる
だけ再利用することは当然のこととして、車載用である
ことからも明らかなように、余り大きな出力は必要でな
いものの、全ての付帯設備と共に可能な限り小型である
ことが望ましく、このような点から固体高分子電解質膜
燃料電池が注目されている。
In recent years, it has been considered that this fuel cell is used as a power source for a motor that operates instead of a vehicle-mounted internal combustion engine, and a vehicle or the like is driven by this motor. In this case, it is important to recycle as much as possible the substances generated by the reaction. It is desirable that the fuel cell be as small as possible. In view of this, a solid polymer electrolyte membrane fuel cell has been receiving attention.

【0004】この固体高分子電解質膜燃料電池(以下、
単に燃料電池と略称する)の主要部の概念を表す図1に
示すように、燃料電池11は固体高分子電解質膜12
と、この固体高分子電解質膜12の両側にホットプレス
等で接合される一対のガス反応層13,14と、これら
ガス反応層13,14を挾んで固体高分子電解質膜12
と対向し且つガス反応層13,14に対して一体的に接
合されたガス拡散層15,16とで主要部が構成されて
いる。
[0004] This solid polymer electrolyte membrane fuel cell (hereinafter referred to as “the fuel cell”)
As shown in FIG. 1 showing the concept of the main part of a fuel cell, the fuel cell 11 is a solid polymer electrolyte membrane 12.
A pair of gas reaction layers 13 and 14 joined to both sides of the solid polymer electrolyte membrane 12 by hot pressing or the like, and a solid polymer electrolyte membrane 12 sandwiching the gas reaction layers 13 and 14 therebetween.
And the gas diffusion layers 15 and 16 integrally joined to the gas reaction layers 13 and 14 to constitute a main part.

【0005】又、一方のガス拡散層15の表面には酸素
供給溝(酸化剤ガス供給通路)17を有する酸素ガス供
給板18(酸化剤ガス供給板)が接合され、同様に他方
のガス拡散層16の表面には水素供給溝(燃料ガス供給
通路)19を有する水素ガス供給板(燃料ガス供給板)
20が接合され、これらで酸素極と水素極とが構成され
ている。
An oxygen gas supply plate 18 (oxygen gas supply plate) having an oxygen supply groove (oxidant gas supply passage) 17 is joined to the surface of one gas diffusion layer 15, and the other gas diffusion layer is similarly connected. A hydrogen gas supply plate (fuel gas supply plate) having a hydrogen supply groove (fuel gas supply passage) 19 on the surface of the layer 16
20 are joined to form an oxygen electrode and a hydrogen electrode.

【0006】従って、酸素供給溝17に酸素を供給する
と共に水素供給溝19に水素を供給すると、これら酸素
及び水素は前記ガス拡散層15,16からガス反応層1
3,14側へ供給され、主としてこれらガス反応層13,
14と固体高分子電解質膜12との接触界面で電池反応
が起こり、水素イオン(4H+)は電解質膜12を通っ
て水素極から酸素極へ流れるが、電子(4e-)はモー
タ等の負荷21を通って水素極から酸素極へ流れ、負荷
21に対して電気エネルギが供給されるようになってい
る。
Accordingly, when oxygen is supplied to the oxygen supply groove 17 and hydrogen is supplied to the hydrogen supply groove 19, the oxygen and hydrogen are supplied from the gas diffusion layers 15 and 16 to the gas reaction layer 1.
3, 14 side, mainly these gas reaction layers 13,
A battery reaction occurs at the contact interface between the solid polymer electrolyte membrane 14 and the solid polymer electrolyte membrane 12, and hydrogen ions (4H + ) flow from the hydrogen electrode to the oxygen electrode through the electrolyte membrane 12, but electrons (4e ) flow to a load such as a motor. The fuel flows from the hydrogen electrode to the oxygen electrode through 21, and electric energy is supplied to the load 21.

【0007】このような燃料電池における従来のガスセ
パレータの分解構造を表す図2に示すように、従来のも
のは0.5mm前後の厚さの銅板に幅が0.5mm前後のスリ
ット状をなす酸素供給溝17を1mm程度の間隔で形成し
た酸素ガス供給板18と、0.5mm前後の厚さの銅板に
幅が0.5mm前後のスリット状をなす水素供給溝19を
1mm程度の間隔で形成した水素ガス供給板20と、これ
ら酸素ガス供給板18及び水素ガス供給板20を仕切る
と共に0.5mm前後の厚さの銅板で形成され且つ酸素供
給溝17に連通する酸素供給用マニホールド22と水素
供給溝19に連通する水素供給用マニホールド23とが
形成された仕切り板24とを一体的に接合したものであ
る。
As shown in FIG. 2, which shows the disassembly structure of a conventional gas separator in such a fuel cell, the conventional fuel cell has a copper plate having a thickness of about 0.5 mm and a slit shape having a width of about 0.5 mm. An oxygen gas supply plate 18 having oxygen supply grooves 17 formed at intervals of about 1 mm and a hydrogen supply groove 19 having a slit shape having a width of about 0.5 mm formed on a copper plate having a thickness of about 0.5 mm at an interval of about 1 mm. The formed hydrogen gas supply plate 20 and the oxygen supply manifold 22 formed of a copper plate having a thickness of about 0.5 mm and separating the oxygen gas supply plate 18 and the hydrogen gas supply plate 20 and communicating with the oxygen supply groove 17. In this structure, a hydrogen supply manifold 23 communicating with the hydrogen supply groove 19 and a partition plate 24 on which a hydrogen supply manifold 23 is formed are integrally joined.

【0008】前記酸素ガス供給板18及び水素ガス供給
板20には、酸素供給用マニホールド22及び水素供給
用マニホールド23にそれぞれ連通する酸素ガス給排口
25及び水素ガス給排口26が設けられている。又、酸
素供給溝17や水素供給溝19等はエッチングや打抜き
或いは放電加工の他、機械加工等の方法により形成され
る。
The oxygen gas supply plate 18 and the hydrogen gas supply plate 20 are provided with an oxygen gas supply / discharge port 25 and a hydrogen gas supply / discharge port 26 communicating with the oxygen supply manifold 22 and the hydrogen supply manifold 23, respectively. I have. Further, the oxygen supply groove 17 and the hydrogen supply groove 19 are formed by a method such as etching, punching or electric discharge machining, and machining.

【0009】このため、これら酸素ガス供給板18及び
水素ガス供給板20及び仕切り板22を確実に接合しな
いと、これらの隙間から酸素ガスや水素ガスが漏洩して
いまい、所定の能力を発揮させることができなくなる虞
が発生する。そこで、従来ではこれら酸素ガス供給板1
8と水素ガス供給板20と仕切り板22との接合手段と
して、拡散接合やろう付け等の方法を採用し、これらの
接合面に隙間が発生しないように配慮している。
For this reason, unless these oxygen gas supply plate 18, hydrogen gas supply plate 20 and partition plate 22 are securely joined together, oxygen gas and hydrogen gas leak from these gaps, and a predetermined capacity is exhibited. There is a possibility that the operation cannot be performed. Therefore, conventionally, these oxygen gas supply plates 1
A method such as diffusion bonding or brazing is adopted as a means for joining the hydrogen gas supply plate 8, the hydrogen gas supply plate 20, and the partition plate 22, and care is taken so that no gap is generated between these joint surfaces.

【0010】なお、図2に示したガスセパレータの構造
は、上述したイオン交換膜を使用する固体高分子電解質
膜燃料電池の他、硫酸型燃料電池やアルカリ型燃料電池
のガスセパレータも全く同様である。
The structure of the gas separator shown in FIG. 2 is completely the same as that of the solid polymer electrolyte membrane fuel cell using the ion exchange membrane described above, as well as the gas separators of a sulfuric acid fuel cell and an alkaline fuel cell. is there.

【0011】[0011]

【発明が解決しようとする課題】図2に示す燃料電池用
のガスセパレータを製造する場合、従来では拡散接合や
ろう付け等の方法を採用しているため、接合温度が80
0℃以上にも達することから、このガスセパレータを銅
板で形成した場合には、銅が焼き鈍し状態となって所定
の剛性を確保することが困難となる。このため、補強用
の部材を追加しなければならず、燃料電池自体の小型化
を阻害する要因となる。
When a gas separator for a fuel cell shown in FIG. 2 is manufactured, a bonding temperature of 80 is used because a method such as diffusion bonding or brazing is conventionally used.
Since the temperature reaches 0 ° C. or more, when this gas separator is formed of a copper plate, copper is in an annealed state, and it is difficult to secure a predetermined rigidity. For this reason, a reinforcing member must be added, which is a factor that hinders downsizing of the fuel cell itself.

【0012】そこで、接合に伴う加熱処理によってガス
セパレータの剛性低下という不具合を避けるため、真鍮
やステンレス鋼の他、アルミニウム等を用いてガスセパ
レータを形成することも行われている。しかし、ガスセ
パレータに要求される種々の物理的特性を考慮すると、
現在の技術では銅でガスセパレータを形成することが最
も望ましい。
Therefore, in order to avoid a problem that the rigidity of the gas separator is reduced by the heat treatment accompanying the joining, the gas separator is also formed using aluminum or the like in addition to brass or stainless steel. However, considering various physical characteristics required for the gas separator,
It is most desirable in current technology to form the gas separator from copper.

【0013】なお、拡散接合によりガスセパレータを製
造する場合には、熱間静水圧加圧装置等の高価な設備が
必要となり、製造コストの上昇を招く虞がある。
When a gas separator is manufactured by diffusion bonding, expensive equipment such as a hot isostatic pressing device is required, which may increase the manufacturing cost.

【0014】[0014]

【発明の目的】本発明は、燃料電池に用いられる高剛性
のガスセパレータを銅にて形成することが可能な製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a manufacturing method capable of forming a highly rigid gas separator used for a fuel cell from copper.

【0015】[0015]

【課題を解決するための手段】本発明による燃料電池用
ガスセパレータの製造方法は、燃料ガス供給通路が形成
された燃料ガス供給板と、酸化剤ガス供給通路が形成さ
れた酸化剤ガス供給板と、この酸化剤ガス供給板と前記
燃料ガス供給板とを仕切る仕切り板とを一体的に接合し
てなり、固体高分子型燃料電池のガス拡散電極の間に位
置して一方側の前記ガス拡散電極へ前記燃料ガスを供給
すると共に他方側の前記ガス拡散電極へ前記酸化剤ガス
を供給するための固体高分子型燃料電池用ガスセパレー
タの製造方法において、 銅製の燃料ガス供給板及び銅製
酸化剤ガス供給板及び銅製の仕切り板のそれぞれ接合
面に、錫と鉛との重量割合が4:1から3:2の低融点
ろう材の薄膜を形成した後、これらを相互に重ね合わ
せ、上記低融点ろう材の融点以上で350℃を超えない
ように加熱すると共に接合圧力を10g/cm 2 以下と
し、当該燃料ガス供給板と酸化剤ガス供給板と仕切り板
とを一体的に接合することを特徴とする。
A method of manufacturing a gas separator for a fuel cell according to the present invention comprises a fuel gas supply plate having a fuel gas supply passage formed therein, and an oxidant gas supply plate having an oxidant gas supply passage formed therein. And an oxidizing gas supply plate and a partition plate for partitioning the fuel gas supply plate are integrally joined, and the gas on one side is located between gas diffusion electrodes of a polymer electrolyte fuel cell. A gas separator for a polymer electrolyte fuel cell for supplying the fuel gas to the diffusion electrode and supplying the oxidant gas to the gas diffusion electrode on the other side ;
A method for manufacturing a copper fuel gas supply plate and a copper fuel gas supply plate;
A thin film of a low melting point brazing material having a weight ratio of tin to lead of 4: 1 to 3: 2 is formed on each of the joining surfaces of the oxidizing gas supply plate and the copper partition plate, and these are superimposed on each other.
Allowed, not exceeding 350 ° C. above the melting point of the low melting point brazing material
And the bonding pressure is 10 g / cm 2 or less.
The fuel gas supply plate, the oxidizing gas supply plate, and the partition plate are integrally joined.

【0016】ここで、低融点ろう材の薄膜の厚さが3マ
イクロメートルより薄い場合には、接合部分の一部に低
融点ろう材が介在しなくなる虞があり、逆に低融点ろう
材の薄膜の厚さが6マイクロメートルより厚い場合に
は、接合部分から低融点ろう材の一部がはみ出して通路
を塞いでしまう虞がある。このため、低融点ろう材の薄
膜の厚さは3マイクロメートルから6マイクロメートル
の範囲が好適である。
Here, when the thickness of the thin film of the low melting point brazing material is less than 3 micrometers, there is a possibility that the low melting point brazing material may not be interposed in a part of the joining portion. If the thickness of the thin film is greater than 6 micrometers, a portion of the low melting point brazing material may protrude from the joint and block the passage. Therefore, the thickness of the thin film of the low melting point brazing material is preferably in the range of 3 micrometers to 6 micrometers.

【0017】[0017]

【作用】燃料ガス供給板及び酸化剤ガス供給板及び仕切
り板のそれぞれ接合面に低融点ろう材の薄膜を形成した
後、これらを相互に重ね合わせて低融点ろう材の融点以
上に加熱すると、この低融点ろう材が溶融して燃料ガス
供給板及び酸化剤ガス供給板及び仕切り板の接合面が相
互に密着し合い、隙間なく接合する。
When a thin film of a low melting point brazing material is formed on each of the joining surfaces of a fuel gas supply plate, an oxidizing gas supply plate and a partition plate, these are superimposed on each other and heated to a temperature higher than the melting point of the low melting point brazing material. The low-melting-point brazing material melts, and the joining surfaces of the fuel gas supply plate, the oxidizing gas supply plate, and the partition plate adhere to each other, and are joined without any gap.

【0018】ここで、低融点ろう材は薄膜となっている
ため、それらの一部が燃料ガス供給通路や酸化剤ガス供
給通路にはみ出してしまい、これらを塞いでしまうよう
な虞はない。
Here, since the low melting point brazing material is in the form of a thin film, there is no danger that a part of the thin film will protrude into the fuel gas supply passage or the oxidizing gas supply passage and block them.

【0019】[0019]

【実施例】先に説明した図2に示す如き一辺が240mm
の正方形の燃料ガス供給板18と、酸化剤ガス供給板2
0と、仕切り板22とを用意し、これらの接合面27に
3マイクロメートルから6マイクロメートルの厚さの低
融点ろう材の薄膜、本実施例でははんだ層を形成する。
このはんだ層を構成するはんだとして、本実施例では錫
と鉛との重量割合が4対1のものを採用しており、真空
蒸着めっき法等によってこれらの接合面27に形成す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One side is 240 mm as shown in FIG.
Square fuel gas supply plate 18 and oxidant gas supply plate 2
0 and a partition plate 22 are prepared, and a thin film of a low melting point brazing material having a thickness of 3 μm to 6 μm, in this embodiment, a solder layer is formed on these joint surfaces 27.
In the present embodiment, the solder constituting the solder layer has a weight ratio of tin to lead of 4 to 1, and is formed on the joint surface 27 by a vacuum evaporation plating method or the like.

【0020】なお、はんだ層の厚さが6マイクロメート
ルを越えると、加熱時にはんだの一部が酸素供給溝17
や水素供給溝19等にはみ出してしまい、これらを塞い
でしまう虞があるため、はんだ層の厚さは6マイクロメ
ートル以下に設定することが望ましい。逆に、はんだ層
の厚さが3マイクロメートルに満たないと、加熱時に接
合面27の一部にはんだが存在しない領域が形成されて
しまい、この部分が隙間となって完全な接合を行うこと
が不可能となる虞があるため、はんだ層の厚さは3マイ
クロメートル以上に設定することが望ましい。
If the thickness of the solder layer exceeds 6 μm, a part of the solder will
Therefore, the thickness of the solder layer is desirably set to 6 μm or less, since the solder layer may protrude into the hydrogen supply groove 19 or the like and block these. Conversely, if the thickness of the solder layer is less than 3 micrometers, a region where solder does not exist is formed in a part of the bonding surface 27 at the time of heating, and this portion serves as a gap to perform perfect bonding. Therefore, the thickness of the solder layer is desirably set to 3 micrometers or more.

【0021】しかる後、これらを重ね合わせて加熱炉内
で一平方センチメートル当たり10グラムの加圧力で加
圧しつつ350℃の温度に15分間加熱してはんだ層を
溶融させた後、徐冷する。これにより、接合面27が相
互に密着し合い、燃料ガス供給板18と、酸化剤ガス供
給板20と、仕切り板22とが隙間なく接合する。
Thereafter, these are superposed and heated at a temperature of 350 ° C. for 15 minutes while applying a pressure of 10 grams per square centimeter in a heating furnace to melt the solder layer, and then gradually cooled. Thereby, the joining surfaces 27 are in close contact with each other, and the fuel gas supply plate 18, the oxidizing gas supply plate 20, and the partition plate 22 are joined without any gap.

【0022】この場合、ガスセパレータに対する加熱温
度が350℃程度で良いため、このガスセパレータを構
成する銅が焼き鈍し状態には到らず、初期剛性をそのま
ま確保することができ、特別な補強材を追加することな
く燃料電池を製造することができる。
In this case, since the heating temperature for the gas separator may be about 350 ° C., the copper constituting the gas separator does not reach an annealed state, the initial rigidity can be maintained as it is, and a special reinforcing material is used. A fuel cell can be manufactured without additional components.

【0023】このように、本実施例では低融点ろう材と
して錫と鉛との重量割合が4対1のはんだを採用した
が、この他に錫と鉛との重量割合が3対2のはんだ等を
採用することも可能である。この場合、錫の重量割合が
少ないほどはんだの融点は低くなるものの、燃料電池の
運転の繰り返しによる熱応力によって、ガスセパレータ
の接合部分が剥離してしまう虞があるため、むやみに融
点の低い低融点ろう材を使用することはできない。
As described above, in this embodiment, the solder having a weight ratio of tin to lead of 4: 1 was used as the low melting point brazing material. Etc. can also be adopted. In this case, although the melting point of the solder becomes lower as the weight ratio of tin becomes smaller, there is a possibility that the joint portion of the gas separator may be peeled off due to thermal stress due to repeated operation of the fuel cell. Melting point brazing materials cannot be used.

【0024】又、本実施例では燃料ガス供給板18と酸
化剤ガス供給板20と仕切り板22とを加熱接合する
際、これらを軽く加圧するようにしたが、低融点ろう材
の薄膜の厚さが厚いほど加圧力が少なくなるような傾向
を持たせつつ適当な圧力で加圧することが望ましい。更
に、本実施例では銅製のガスセパレータについて説明し
たが、真鍮やステンレス鋼の他、アルミニウム等を用い
てガスセパレータを形成することも当然可能である。
In the present embodiment, when the fuel gas supply plate 18, the oxidizing gas supply plate 20, and the partition plate 22 are joined by heating, they are lightly pressurized. It is desirable to pressurize at an appropriate pressure while giving the tendency that the pressure increases as the thickness increases. Further, in this embodiment, the gas separator made of copper has been described, but it is of course possible to form the gas separator using aluminum or the like in addition to brass or stainless steel.

【0025】なお、本発明によるガスセパレータは、固
体高分子電解質膜燃料電池の他、硫酸型燃料電池やアル
カリ型燃料電池等のガスセパレータとして利用すること
ができる。
The gas separator according to the present invention can be used as a gas separator for a sulfuric acid type fuel cell, an alkaline type fuel cell and the like, in addition to a solid polymer electrolyte membrane fuel cell.

【0026】[0026]

【発明の効果】本発明のガスセパレータの製造方法によ
ると、燃料ガス供給板及び酸化剤ガス供給板及び仕切り
板のそれぞれ接合面に低融点ろう材の薄膜を形成し、こ
れらを相互に重ね合わせて低融点ろう材の融点以上に加
熱接合するようにしたので、銅によりガスセパレータを
採用した場合でも、銅が焼き鈍し状態に到ることなく剛
性を保つことが可能である。この結果、補強材を使用す
ることなく燃料電池を著しくコンパクト化することがで
きる。
According to the method of manufacturing a gas separator of the present invention, a thin film of a low melting point brazing material is formed on each of the joining surfaces of a fuel gas supply plate, an oxidizing gas supply plate and a partition plate, and these are superimposed on each other. Thus, even when a gas separator is used with copper, it is possible to maintain the rigidity without the copper being in an annealed state. As a result, the fuel cell can be made extremely compact without using a reinforcing material.

【0027】又、高価な熱間静水圧加圧装置を使用する
必要がなくなり、ガスセパレータの製造コストを下げる
ことができる。
Further, it is not necessary to use an expensive hot isostatic pressurizing apparatus, and the production cost of the gas separator can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子電解質膜燃料電池の作動原理を表す
概念図である。
FIG. 1 is a conceptual diagram illustrating the operation principle of a solid polymer electrolyte membrane fuel cell.

【図2】従来のガスセパレータの部分の分解斜視図であ
る。
FIG. 2 is an exploded perspective view of a conventional gas separator.

【符号の説明】[Explanation of symbols]

17は酸素供給溝、18は燃料ガス供給板、19は水素
供給溝、20は酸化剤ガス供給板、22は酸素供給用マ
ニホールド、23は水素供給用マニホールド、24は仕
切り板、25は水素ガス給排口、26は酸素ガス給排口
である。
17 is an oxygen supply groove, 18 is a fuel gas supply plate, 19 is a hydrogen supply groove, 20 is an oxidizing gas supply plate, 22 is an oxygen supply manifold, 23 is a hydrogen supply manifold, 24 is a partition plate, and 25 is hydrogen gas. The supply / discharge port 26 is an oxygen gas supply / discharge port.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 8/00-8/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃料ガス供給通路が形成された燃料ガス
供給板と、酸化剤ガス供給通路が形成された酸化剤ガス
供給板と、この酸化剤ガス供給板と前記燃料ガス供給板
とを仕切る仕切り板とを一体的に接合してなり、固体高
分子型燃料電池のガス拡散電極の間に位置して一方側の
前記ガス拡散電極へ前記燃料ガスを供給すると共に他方
側の前記ガス拡散電極へ前記酸化剤ガスを供給するため
固体高分子型燃料電池用ガスセパレータの製造方法に
おいて、 銅製の 燃料ガス供給板及び銅製の酸化剤ガス供給板及び
銅製の仕切り板のそれぞれ接合面に、錫と鉛との重量割
合が4:1から3:2の低融点ろう材の薄膜を形成した
後、これらを相互に重ね合わせ、上記低融点ろう材の融
点以上で350℃を超えないように加熱すると共に接合
圧力を10g/cm 2 以下とし、当該燃料ガス供給板と
酸化剤ガス供給板と仕切り板とを一体的に接合すること
を特徴とする固体高分子型燃料電池用ガスセパレータの
製造方法。
1. A fuel gas supply plate having a fuel gas supply passage formed therein, an oxidant gas supply plate having an oxidant gas supply passage formed therein, and a partition between the oxidant gas supply plate and the fuel gas supply plate. a partition plate made by integrally joined, solid high
A polymer electrolyte fuel cell for supplying the fuel gas to the gas diffusion electrode on one side and supplying the oxidant gas to the gas diffusion electrode on the other side located between the gas diffusion electrodes of the molecular fuel cell; For manufacturing method of gas separator for fuel cell
A copper fuel gas supply plate and a copper oxidant gas supply plate;
The weight division of tin and lead is applied to each joint surface of the copper partition plate.
If the 4: 1 to 3: 2 after forming a thin film of low melting point brazing material, bonding with them superimposed on each other and heated so as not to exceed 350 ° C. above the melting point of the low melting point brazing material
A method for producing a gas separator for a polymer electrolyte fuel cell , wherein the pressure is set to 10 g / cm 2 or less and the fuel gas supply plate, the oxidant gas supply plate, and the partition plate are integrally joined.
【請求項2】 低融点ろう材の薄膜は、3マイクロメー
トルから6マイクロメートルの範囲の厚さを有すること
を特徴とする請求項1に記載したガスセパレータの製造
方法。
2. The method of claim 1, wherein the thin film of the low melting point brazing material has a thickness in a range of 3 micrometers to 6 micrometers.
JP3176921A 1991-07-17 1991-07-17 Gas separator manufacturing method Expired - Fee Related JP2955069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3176921A JP2955069B2 (en) 1991-07-17 1991-07-17 Gas separator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3176921A JP2955069B2 (en) 1991-07-17 1991-07-17 Gas separator manufacturing method

Publications (2)

Publication Number Publication Date
JPH0529001A JPH0529001A (en) 1993-02-05
JP2955069B2 true JP2955069B2 (en) 1999-10-04

Family

ID=16022095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3176921A Expired - Fee Related JP2955069B2 (en) 1991-07-17 1991-07-17 Gas separator manufacturing method

Country Status (1)

Country Link
JP (1) JP2955069B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100457A (en) 1998-09-25 2000-04-07 Matsushita Electric Ind Co Ltd Fuel cell
US6602631B1 (en) 1999-01-26 2003-08-05 Lynntech Power Systems, Ltd. Bonding electrochemical cell components
AUPQ078899A0 (en) * 1999-06-04 1999-06-24 Ceramic Fuel Cells Limited A fuel cell gas separator
EP1323201B1 (en) * 2000-09-15 2004-08-04 Lynntech, Inc. Bonding electrochemical cell components
JP4615143B2 (en) 2001-05-14 2011-01-19 東京瓦斯株式会社 Flat plate solid oxide fuel cell and alloy separator therefor
DK1394877T3 (en) 2002-07-31 2013-01-14 Sfc Energy Ag Plate elements for fuel cell stacks
US7736783B2 (en) 2002-12-04 2010-06-15 Lynntech, Inc. Very thin, light bipolar plates
JP4794126B2 (en) * 2003-12-19 2011-10-19 三恵技研工業株式会社 Fuel cell separator
JP4696545B2 (en) * 2004-12-08 2011-06-08 トヨタ自動車株式会社 Fuel cell

Also Published As

Publication number Publication date
JPH0529001A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
JP3489181B2 (en) Unit cell of fuel cell and method of manufacturing the same
EP1291944B1 (en) Fuel cell
JPH05109415A (en) Gas separator for fuel cell
JP3064023B2 (en) Gas separator for fuel cells
EP1293588A1 (en) Plasma cvd apparatus and method
US20110020725A1 (en) Manufacture of electrical energy generation equipment
JP3153817B2 (en) Solid polymer electrolyte membrane fuel cell
EP1953859B9 (en) Fuel cell
JP2002367665A (en) Fuel cell stack and its pressurized support method
JP2955069B2 (en) Gas separator manufacturing method
US3515593A (en) Fuel cell with electrically conductive bonding means
JP2002343342A (en) Secondary battery electrode and its manufacturing method
JP2002352817A (en) Polymer electrolyte fuel cell
JP3146758B2 (en) Solid polymer electrolyte fuel cell
JP2000323149A (en) Separator for fuel cell and manufacturing device thereof
JP2007179815A (en) Fuel cell module, fuel cell stack, and fabricating method of fuel cell module
JPH08185875A (en) Sealing method for solid high molecular fuel cell
JP2002208414A (en) Method of manufacturing solid polymer electrolyte fuel cell
JP3672274B2 (en) Flat solid electrolyte fuel cell
JP2000090956A (en) Solid polymeric fuel cell
JP2003346826A (en) Solid electrolyte fuel cell
JPH0151027B2 (en)
JPH08162146A (en) Solid electrolytic fuel cell
JP2860209B2 (en) Rib separator for fuel cell and method of manufacturing the same
JP2942545B1 (en) Fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees