JP2953019B2 - Power conditioner - Google Patents

Power conditioner

Info

Publication number
JP2953019B2
JP2953019B2 JP2268733A JP26873390A JP2953019B2 JP 2953019 B2 JP2953019 B2 JP 2953019B2 JP 2268733 A JP2268733 A JP 2268733A JP 26873390 A JP26873390 A JP 26873390A JP 2953019 B2 JP2953019 B2 JP 2953019B2
Authority
JP
Japan
Prior art keywords
phase
voltage
power
output
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2268733A
Other languages
Japanese (ja)
Other versions
JPH04145837A (en
Inventor
紀夫 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2268733A priority Critical patent/JP2953019B2/en
Publication of JPH04145837A publication Critical patent/JPH04145837A/en
Application granted granted Critical
Publication of JP2953019B2 publication Critical patent/JP2953019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超高圧系統又は超々高圧系統の電圧,電力
の変動補償,位相,波形の調整に用いられる電力調整装
置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power adjusting device used for voltage and power fluctuation compensation, phase and waveform adjustment of an ultra-high voltage system or an ultra-high voltage system.

〔従来の技術〕[Conventional technology]

従来、3相電力系統の電圧・無効電力変動を補償する
装置の1つとして、負荷時タップ切換器付変圧器が用い
られている。
2. Description of the Related Art Conventionally, a transformer with a tap changer at load has been used as one of devices for compensating voltage / reactive power fluctuations of a three-phase power system.

この補償装置は中性点接地の27KV以上の超高圧系統又
は超々高圧系統に用いられる場合、例えばY結線変圧器
の各相巻線が第5図に示すオートタップ形の単巻線1に
よりそれぞれ形成され、この単巻線1と接地された中性
点との間にタップ切換スイッチ2が設けられる。
When this compensating device is used in an ultra-high voltage system or an ultra-high voltage system of 27 KV or more with a neutral ground, for example, each phase winding of a Y connection transformer is formed by an auto-tap type single winding 1 shown in FIG. A tap changeover switch 2 is provided between the single winding 1 and the grounded neutral point.

そして、受電端子3と中性点との間の各相の1次側電
圧又は2次側電圧の監視に基づき、1次側電圧の変動に
応じてスイッチ2を切換え、単巻線1の各切換タップ4
と中性点との接続を切換えて出力タップ5から負荷6に
供給する単巻線1の2次側電圧の変動を抑え、負荷6の
給電電圧の変動を補償する。
Then, based on the monitoring of the primary voltage or the secondary voltage of each phase between the power receiving terminal 3 and the neutral point, the switch 2 is switched according to the fluctuation of the primary voltage, and each of the single windings 1 Switching tap 4
The change in the secondary voltage of the single winding 1 supplied from the output tap 5 to the load 6 by switching the connection between the load and the neutral point is suppressed, and the change in the supply voltage of the load 6 is compensated.

また、3相電力系統の電力変動の補償装置としては、
SVCと呼ばれる並列補償方式の無効電力補償装置があ
る。
In addition, as a compensating device for the power fluctuation of the three-phase power system,
There is a parallel compensation type reactive power compensator called SVC.

この補償装置は、例えば第5図の単巻線1の1次側電
圧又は2次側電圧の監視に基づき、単巻線1の1次側又
は2次側の無効電力を並列補償方式で調整して補償し、
負荷6の供給電力の各相の無効分の変動を抑え、電圧フ
リッカ等を防止する。
This compensator adjusts the reactive power on the primary or secondary side of the single winding 1 by a parallel compensation method based on monitoring of the primary voltage or the secondary voltage of the single winding 1 in FIG. 5, for example. And compensate,
Fluctuations of the ineffective components of the power supplied to the load 6 in each phase are suppressed, and voltage flicker and the like are prevented.

そして、電圧変動,無効電力変動のいずれの補償も行
えるようにした従来装置は、第6図に示す例において
は、Y結線変圧器の各相巻線を、1次,2次巻線としての
単巻線1と,3次巻線としての巻線7とにより形成し、こ
の巻線7に無効電力補償装置のリアクトル,コンデンサ
等からなる主回路部8を接続し、前記の両補償装置を組
合わせて形成され、スイッチ2の切換制御,主回路部8
の無効電力制御により、電圧変動,無効電力変動の並列
補償を行う。
In the conventional device which can compensate for both voltage fluctuation and reactive power fluctuation, in the example shown in FIG. 6, each phase winding of the Y-connection transformer is used as a primary winding and a secondary winding. It is formed by a single winding 1 and a winding 7 as a tertiary winding, and a main circuit section 8 including a reactor, a capacitor, and the like of a reactive power compensator is connected to the winding 7, and the above both compensators are connected. The switching control of the switch 2 and the main circuit unit 8 are formed in combination.
, The parallel compensation of the voltage fluctuation and the reactive power fluctuation is performed.

一方、3相電力系統の位相,電圧波形の調整は、従
来、位相変圧器,フィルタ等をそれぞれ用いて個別に行
われる。
On the other hand, the adjustment of the phase and voltage waveforms of the three-phase power system is conventionally performed individually using a phase transformer, a filter, and the like.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記従来の電圧補償装置,無効電力補償装置は、電圧
変動,電力変動それぞれの補償しか行えない。
The conventional voltage compensating device and reactive power compensating device can only compensate for voltage fluctuation and power fluctuation, respectively.

また、位相,電圧波形の調整には、位相変圧器,フィ
ルタそれぞれを要する。
Adjustment of the phase and voltage waveforms requires a phase transformer and a filter, respectively.

すなわち、従来は電圧変動,電力変動の補償及び位
相,電圧波形の調整にそれぞれ専用の装置が必要であ
る。
That is, conventionally, dedicated devices are required for compensating for voltage fluctuations and power fluctuations and for adjusting phases and voltage waveforms.

そして、例えば電圧変動,電力変動のいずれの補償も
行えるようにする場合は、第6図に示したように、両補
償それぞれを行う2個の補償装置を組合わせて形成する
必要があり、しかも、両補償が並列補償方式で行われ、
必要な補償量が多くなるため、極めて大型,高価な構成
になる。
If, for example, both voltage fluctuation and power fluctuation can be compensated, as shown in FIG. 6, it is necessary to combine and form two compensating devices for performing both compensations. , Both compensations are performed in parallel compensation method,
Since the required compensation amount increases, the configuration becomes extremely large and expensive.

また、無効電力補償装置によっては電力の無効分の補
償しか行えない。
Further, depending on the reactive power compensator, only the reactive power can be compensated.

そして、超高圧系統又は超々高圧系統にあっては、絶
縁階級を極力低くし、小型化及び低価格化を図って負荷
給電の電圧変動,電力変動の補償や位相,電圧波形の調
整を行うことが望まれる。
For ultra-high-voltage or ultra-high-voltage systems, the insulation class should be as low as possible, and the size and price should be reduced to compensate for voltage fluctuations in load supply, power fluctuations, and phase and voltage waveforms. Is desired.

本発明は、超高圧系統又は超々高圧系統の電力変動,
電力変動の補償及び位相,電圧波形の調整のいずれにも
用いることができる、絶縁階級が低く小型で安価な万能
型の電力調整装置を提供することを目的とする。
The present invention relates to the power fluctuation of an ultra-high voltage system or an ultra-high voltage system,
It is an object of the present invention to provide a small, inexpensive, all-purpose power regulator with a low insulation class, which can be used for both power fluctuation compensation and phase and voltage waveform adjustment.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するために、本発明の電力調整装置に
おいては、各相巻線が一端を系統各相に接続したY結線
の単巻線により形成され,各単巻線の他端の中性点が接
地され,各単巻線の出力タップから負荷に各相巻線の2
次側出力を給電するY結線変圧器と、 2次側が各単巻線の他端と中性点との間に挿入された
相毎の注入用変圧器と、 各注入用変圧器の1次側に各相のインバータの可変出
力を直列補償用の調整出力として供給し,各相巻線の2
次側出力の電圧変動,電力変動の補償,位相,電圧波形
の調整をする静止形補償電源部とを備える。
In order to achieve the above object, in the power conditioner according to the present invention, each phase winding is formed by a single Y-connected winding having one end connected to each phase of the system, and a neutral end of the other end of each single winding is provided. The point is grounded and the output tap of each single winding
A Y-connection transformer that supplies the secondary output, a secondary-side injection transformer inserted between the other end of each single winding and the neutral point, and a primary of each injection transformer. The variable output of the inverter of each phase is supplied as an adjustment output for series compensation to the
A static compensation power supply for compensating for voltage fluctuations and power fluctuations of the secondary output, and adjusting the phase and voltage waveform.

〔作用〕[Action]

前記のように構成された本発明の電力調整装置の場
合、Y結線変圧器は超高圧系統又は超々高圧系統に適合
するように、各相巻線が中性点を接地したY結線の各単
巻線により形成され、各単巻線の出力タップから負荷に
各相巻線の2次側出力が給電される。
In the case of the power regulating apparatus of the present invention configured as described above, the Y-connection transformer is adapted to the ultra-high voltage system or the ultra-ultra-high voltage system, so that each phase winding has a single connection of the Y connection with the neutral point grounded. The secondary output of each phase winding is supplied to the load from the output tap of each single winding.

さらに、静止形補償電源部のインバータ出力からなる
各相の直列補償用の調整出力が各相の注入用変圧器を介
して各単巻線と中性点との間に注入され、この直列注入
により各単巻線の2次側出力が調整される。
Further, an adjustment output for series compensation of each phase consisting of an inverter output of the static compensation power supply section is injected between each single winding and the neutral point via an injection transformer for each phase, and this series injection is performed. Thereby, the secondary output of each single winding is adjusted.

そして、負荷給電の電圧変動,電力変動に応じてイン
バータ出力を可変することにより、負荷給電の電圧,電
力が変化し、電圧変動,電力変動のいずれについても、
必要な補償量が少ない直列補償方式で補償することがで
き、このとき、電力変動については有効分の補償も行え
る。
Then, by changing the inverter output according to the voltage fluctuation and the power fluctuation of the load power supply, the voltage and the power of the load power supply change, and for both the voltage fluctuation and the power fluctuation,
The required amount of compensation can be compensated for by a small series compensation method. At this time, effective compensation can be performed for power fluctuations.

また、位相,電圧波形の必要な調整量に応じてインバ
ータ出力を可変することにより、負荷給電の位相,電圧
波形が変化して従来の位相変圧器,電圧アクティブフィ
ルタとして動作する。
Also, by varying the output of the inverter according to the required adjustment amount of the phase and the voltage waveform, the phase and the voltage waveform of the load power supply are changed to operate as a conventional phase transformer and a voltage active filter.

そして、各単巻線の他端の接地された中性点側に各注
入用変圧器を設け、調整出力を直列注入して補償する構
成であるため、必要な補償量が並列補償の場合より少な
く、各注入用変圧器,静止形補償電源部等の小型化,低
価格化を図ることができ、しかも、それらの絶縁階級
が、従来の並列補償を行う場合等より極めて低くなり、
この面からも装置の小型化,低価格化を図ることができ
る。
Then, since each injection transformer is provided at the other end of each single winding on the side of the grounded neutral point and the adjustment output is injected in series to compensate, the required compensation amount is smaller than that in the case of parallel compensation. It is possible to reduce the size and cost of each injection transformer, static compensation power supply, etc., and furthermore, their insulation class is extremely lower than in the case of conventional parallel compensation, etc.
From this aspect, the size and cost of the device can be reduced.

したがって、単巻線構成のY結線変圧器の2次側出力
を直列補償方式で調整して超高圧系統又は超々高圧系統
の電圧変動,電力変動の補償,位相,電圧波形の調整の
いずれもが行える、小型で安価な万能型の電力調整装置
を提供することができる。
Therefore, the secondary output of the single-coiled Y-connection transformer is adjusted by the series compensation method to compensate for the voltage fluctuation and power fluctuation of the ultra-high voltage system or the ultra-high voltage system, and to adjust the phase and the voltage waveform. It is possible to provide a compact and inexpensive universal power adjustment device that can be performed.

〔実施例〕〔Example〕

実施例について、第1図ないし第4図を参照して説明
する。
An embodiment will be described with reference to FIGS. 1 to 4.

第1図において、9は各相巻線が単巻線10a,10b,10c
で形成されたY結線変圧器であり、単巻線10a〜10cの一
端が各相の受電端子11a,11b,11cを形成する。
In FIG. 1, reference numeral 9 denotes a single winding 10a, 10b, 10c for each phase winding.
The one ends of the single windings 10a to 10c form power receiving terminals 11a, 11b, 11c of each phase.

12a,12b,12cは単巻線10a〜10cの2次側の出力タッ
プ、13a,13b,13cは2次側が単巻線10a〜10cの他端14a,1
4b,14cと接地された中性点15との間に挿入された相毎の
注入用変圧器である。
12a, 12b, 12c are output taps on the secondary side of the single windings 10a to 10c, and 13a, 13b, 13c are secondary ends 14a, 1 on the secondary side of the single windings 10a to 10c.
Injection transformer for each phase inserted between 4b, 14c and grounded neutral point 15.

16a,16b,16cは注入用変圧器13a〜13cの1次側それぞ
れに接続された同一構成の単相のインバータ電源回路で
あり、静止形補償電源部17を形成する。
16a, 16b, and 16c are single-phase inverter power supply circuits of the same configuration connected to the primary sides of the injection transformers 13a to 13c, respectively, and form a static compensation power supply unit 17.

そして、インバータ電源回路16a〜16cの主回路部は、
それぞれ第2図に示すように構成され、供給電源18に接
続された入力側のコンバータ回路19,エネルギ蓄積用の
コンデンサ20及び各注入用変圧器13a〜13cに接続された
出力側のインバータ回路21からなる。
And the main circuit part of the inverter power supply circuits 16a to 16c
2, each of which has an input-side converter circuit 19 connected to a power supply 18, an energy storage capacitor 20, and an output-side inverter circuit 21 connected to each of the injection transformers 13a to 13c. Consists of

また、各出力タップ12a〜12cは第2図の負荷22等の各
相の負荷に接続される。
Each output tap 12a-12c is connected to a load of each phase such as the load 22 in FIG.

つぎに、各インバータ電源回路16a〜16cの制御回路部
(図示せず)は、補償,調整の条件設定及び単巻線10a
〜10c,注入用変圧器13a〜13cの2次側電圧,各相の負荷
電流の監視に基づき、各相の負荷電圧,電力や位相,電
圧波形の目標値からのずれに応じて、調整出力の電圧で
あるインバータ回路21の出力電圧(インバータ出力電
圧)の大きさ,位相を可変する。
Next, a control circuit unit (not shown) of each of the inverter power supply circuits 16a to 16c includes a compensation and adjustment condition setting and a single winding 10a.
~ 10c, based on the monitoring of the secondary voltage of the injection transformers 13a ~ 13c and the load current of each phase, the adjustment output according to the deviation of the load voltage, power, phase and voltage waveform of each phase from the target value. The magnitude and phase of the output voltage (inverter output voltage) of the inverter circuit 21, which is the voltage of the inverter circuit 21, are varied.

そして、インバータ回路21の出力が注入用変圧器13a
〜13cの1次側,2次側を介して単巻線10a〜10cの2次側
出力に直列注入される。
The output of the inverter circuit 21 is the injection transformer 13a.
To the secondary outputs of the single windings 10a to 10c via the primary side and the secondary side of .about.13c.

このとき、第2図に示すように、単巻線10a,注入用変
圧器13aの2次側電圧1,=1.0・e0=1.0,
=V2・e−jθとし、負荷22のインピーダンスを
=Z・e−jφとすると、その負荷電圧
となる。
At this time, as shown in FIG. 2, the secondary windings 1 and 2 of the single winding 10a and the injection transformer 13a are set to 1 = 1.0 · e 0 = 1.0,
2 = V 2 · e- and the impedance of the load 22 = Z · e- , the load voltage L is L =
1 + 2 .

また、その負荷電力は単巻線10a,注入用変圧器13
aの2次側電力1,の和(W1+W2)になる。
The load power L is a single winding 10a, an injection transformer 13a.
The sum of the secondary powers 1 and 2 of a is (W 1 + W 2 ).

さらに、負荷22の電流は次の式(1)で示され
る。
Further, the current L of the load 22 is expressed by the following equation (1).

L/=e−jφ・e−j(θ+φ) …(1) そして、式(1)に基づき電力1,は次の式
(2),(3)で示される。
L = L / = e− + 2 · e− j (θ + φ) (1) Then, based on the expression (1), the electric powers 1 and 2 are expressed by the following expressions (2) and (3).

したがって、インバータ出力電圧の大きさ,位相を可
変すると、電圧のV2,jθが自在に変化し、電圧L,
電力の目標値からのずれに追従したインバータ出力
電圧の制御により、相毎の電圧変動,電力変動を直列補
償方式で補償することができる。
Therefore, when the magnitude and phase of the inverter output voltage are changed, V 2 , jθ of the voltage 2 changes freely, and the voltage L ,
By controlling the inverter output voltage in accordance with the deviation of the power L from the target value, the voltage fluctuation and the power fluctuation for each phase can be compensated by the series compensation method.

そして、電力変動の補償を行う際、電圧V2の正,負に
よりインバータ電源回路16a〜16cが電力の供給状態,回
生状態になり、有効分の電力変動の補償も行え、電力変
動の完全な補償が行える。
Then, when performing compensation of power fluctuations, a positive voltage V 2, the negative by an inverter power source circuit 16a~16c power supply state, becomes regenerative state, it can be compensated for the active component of the power variation, full of power variation Compensation can be made.

また、コンバータ回路19をコンバータとインバータと
に切換可能な構成とし、回生状態になったときに制御回
路部によってコンバータ回路19をインバータに切換える
と、回生された電力を供給電源18側に回生して電力利用
効率の向上を図ることもできる。
Further, the converter circuit 19 is configured to be switchable between a converter and an inverter, and when the converter circuit 19 is switched to the inverter by the control circuit unit when a regenerative state is established, the regenerated power is regenerated to the power supply 18 side. It is also possible to improve the power use efficiency.

つぎに、電圧V1にひずみがある場合、インバータをPW
M制御して任意波形の電圧を発生させ、V1+V2(=VL
が正弦波となるように制御したときは、電圧アクティブ
フィルタと同様の位相,電圧波形の調整が行える。
Then, if there is a distortion in the voltage V 1, the inverter PW
Generates an arbitrary waveform voltage by M control, and V 1 + V 2 (= V L )
Is controlled to be a sine wave, the same phase and voltage waveform adjustment as in the voltage active filter can be performed.

したがって、Y結線変圧器9の各相巻線の2次側出力
に静止形補償電源部17の各相のインバータ出力を直列注
入して各相の負荷の電圧変動,電力変動の補償,位相,
電圧波形の調整のいずれもが単独又は同時に行え、この
とき、電圧変動,電力変動を直列補償するため、例えば
第6図のような従来の並列補償の場合より、必要な補償
量(インバータ容量)が極めて少なくなり、装置の小型
化,低価格化を図ることができる。
Therefore, the inverter output of each phase of the static compensation power supply unit 17 is injected in series with the secondary side output of each phase winding of the Y connection transformer 9 to compensate for the voltage fluctuation and power fluctuation of the load of each phase, phase,
Any of the adjustments of the voltage waveform can be performed independently or simultaneously. At this time, in order to compensate the voltage fluctuation and the power fluctuation in series, the required compensation amount (inverter capacity) is required as compared with, for example, the conventional parallel compensation as shown in FIG. And the size and cost of the device can be reduced.

さらに、単巻線10a〜10cの接地された中性点側に注入
用変圧器13a〜13cを設けて調整出力を直列注入する構成
であるため、注入用変圧器13a〜13cや静止形補償電源部
17の絶縁階級が第6図の従来の並列補償を行う場合等よ
り大幅に低下し、絶縁階級の面からも装置の小型化,低
価格化を図ることができる。
Furthermore, since the injection transformers 13a to 13c are provided on the grounded neutral point side of the single windings 10a to 10c to inject the adjustment output in series, the injection transformers 13a to 13c and the static compensation power supply are provided. Department
The insulation class of 17 is greatly reduced as compared with the case where the conventional parallel compensation shown in FIG. 6 is performed, and the size and cost of the device can be reduced from the standpoint of the insulation class.

そのため、単巻線構成のY結線変圧器9の2次側出力
を直列補償方式で調整して超高圧系統又は超々高圧系統
の電圧変動,電力変動の補償,位相,電圧波形の調整の
いずれもが行える、小型で安価な万能型の電力調整装置
を提供することができる。
Therefore, the secondary-side output of the Y-connection transformer 9 having a single winding configuration is adjusted by a series compensation method to compensate for voltage fluctuation and power fluctuation of the ultra-high voltage system or ultra-ultra-high voltage system, and to adjust the phase and the voltage waveform. And a small and inexpensive universal power adjustment device that can perform the above-mentioned operations.

ところで、第1図では相毎の調整が容易に行えるよう
に、静止形補償電源部17を相毎に独立した単相のインバ
ータ電源回路16a〜16cにより形成したが、静止形補償電
源部17を第3図,第4図に示すように3相インバータ電
源回路23により形成して各注入用変圧器13a〜13cの1次
側をY結線又はΔ結線し、一層の小型化,低価格化を図
るようにしてもよい。
In FIG. 1, the static compensating power supply 17 is formed by independent single-phase inverter power circuits 16a to 16c for each phase so that adjustment for each phase can be easily performed. As shown in FIGS. 3 and 4, the primary side of each of the injection transformers 13a to 13c is formed by a three-phase inverter power supply circuit 23, and the primary side of each of the injection transformers 13a to 13c is Y-connected or Δ-connected to further reduce the size and cost. You may make it aim.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように構成されているため、
以下に記載する効果を奏する。
Since the present invention is configured as described above,
The following effects are obtained.

Y結線変圧器の各相巻線を、中性点を接地したY結線
の各単巻線により形成し、各単巻線の出力タップから負
荷に各相巻線の2次側出力を給電し、さらに、静止形補
償電源部のインバータ出力からなる各相の直列補償用の
調整出力を、各相の注入用変圧器を介して各単巻線と中
性点との間に注入したため、負荷の電圧変動,電力変動
に応じてインバータ出力を可変することにより、負荷給
電の電圧,電力が変化し、電圧変動,電力変動のいずれ
についても、必要な補償量が少ない直列補償方式で補償
することができ、電力変動についても有効分も補償する
ことができる。
Each phase winding of the Y connection transformer is formed by each single winding of the Y connection whose neutral point is grounded, and the secondary output of each phase winding is supplied to the load from the output tap of each single winding. In addition, the adjustment output for series compensation of each phase consisting of the inverter output of the static compensation power supply section was injected between each single winding and the neutral point via the transformer for injection of each phase. By changing the inverter output according to the voltage and power fluctuations of the inverter, the voltage and power of the load power supply change, and the voltage and power fluctuations are compensated for in a series compensation system that requires a small amount of compensation. Therefore, it is possible to compensate for the power fluctuation and the effective component.

また、位相,電圧波形の必要な調整量に応じてインバ
ータ出力を可変することにより、負荷給電の位相,電圧
波形が変化して従来の位相変圧器,電圧アクティブフィ
ルタとして動作し、位相,電圧波形を調整することがで
きる。
In addition, by changing the inverter output according to the required adjustment amount of the phase and voltage waveform, the phase and voltage waveform of the load power supply change to operate as a conventional phase transformer and voltage active filter. Can be adjusted.

そして、各単巻線の他端の接地された中性点側に各注
入用変圧器を設け、調整出力を直列注入して直列補償す
る構成であるため、必要な補償量が並列補償の場合より
少なく、各注入用変圧器,静止形補償電源部等の小型
化,低価格化を図ることができ、しかも、それらの絶縁
階級が、従来の並列補償を行う場合等より極めて低くな
り、この面からも装置の小型化,低価格化を図ることが
できる。
In addition, since each injection transformer is provided on the other end of each single winding on the grounded neutral point side, and the adjustment output is injected in series to perform series compensation, the necessary compensation amount is parallel compensation. It is possible to reduce the size and cost of each injection transformer, static compensating power supply, etc., and furthermore, their insulation class is extremely lower than in the conventional parallel compensation. The size and cost of the device can also be reduced in terms of surface.

したがって、単巻線構成のY結線変圧器の2次側出力
を直列補償方式で調整して超高圧系統又は超々高圧系統
の電圧変動,電力変動の補償,位相,電圧波形の調整の
いずれもが行える、小型で安価な万能型の電力調整装置
を提供することができる。
Therefore, the secondary output of the single-coiled Y-connection transformer is adjusted by the series compensation method to compensate for the voltage fluctuation and power fluctuation of the ultra-high voltage system or the ultra-high voltage system, and to adjust the phase and the voltage waveform. It is possible to provide a compact and inexpensive universal power adjustment device that can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第4図は本発明の電力調整装置の実施例を
示し、第1図は1実施例の結線図、第2図は第1図の一
部の詳細なブロック図、第3図,第4図はそれぞれ他の
実施例の一部の結線図、第5図,第6図はそれぞれ従来
装置の結線図である。 9……Y結線変圧器、10a,10b,10c……各相巻線として
の単巻線、13a,13b,13c……注入用変圧器、15……中性
点、17……静止形補償電源部、22……負荷。
1 to 4 show an embodiment of a power regulating apparatus according to the present invention. FIG. 1 is a connection diagram of one embodiment, FIG. 2 is a detailed block diagram of a part of FIG. 1, and FIG. 4 is a partial connection diagram of another embodiment, and FIGS. 5 and 6 are connection diagrams of a conventional device. 9: Y-connection transformer, 10a, 10b, 10c: Single winding as each phase winding, 13a, 13b, 13c: Injection transformer, 15: Neutral point, 17: Static compensation Power supply, 22 ... Load.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超高圧系統又は超々高圧系統の電力調整
装置において、 各相巻線が一端を系統各相に接続したY結線の単巻線に
より形成され,前記各単巻線の他端の中性点が接地さ
れ,前記各単巻線の出力タップから負荷に前記各相巻線
の2次側出力を給電するY結線変圧器と、 2次側が前記各単巻線の他端と前記中性点との間に挿入
された相毎の注入用変圧器と、 前記各注入用変圧器の1次側に各相のインバータの可変
出力を直列補償用の調整出力として供給し,前記各相巻
線の2次側出力の電圧変動,電力変動の補償,位相,電
圧波形の調整をする静止形補償電源部と を備えたことを特徴とする電力調整装置。
In a power regulating apparatus for an ultra-high voltage system or an ultra-high voltage system, each phase winding is formed by a Y-connected single winding having one end connected to each system phase. A neutral point grounded, and a Y-connection transformer for supplying a secondary output of each phase winding to the load from an output tap of each single winding; An injection transformer for each phase inserted between a neutral point, and a variable output of an inverter for each phase is supplied to the primary side of each injection transformer as an adjustment output for series compensation. A power adjustment device comprising: a static compensation power supply unit for compensating for voltage fluctuation and power fluctuation of a secondary output of a phase winding, and adjusting a phase and a voltage waveform.
JP2268733A 1990-10-05 1990-10-05 Power conditioner Expired - Fee Related JP2953019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268733A JP2953019B2 (en) 1990-10-05 1990-10-05 Power conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268733A JP2953019B2 (en) 1990-10-05 1990-10-05 Power conditioner

Publications (2)

Publication Number Publication Date
JPH04145837A JPH04145837A (en) 1992-05-19
JP2953019B2 true JP2953019B2 (en) 1999-09-27

Family

ID=17462594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268733A Expired - Fee Related JP2953019B2 (en) 1990-10-05 1990-10-05 Power conditioner

Country Status (1)

Country Link
JP (1) JP2953019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931698B2 (en) * 2007-05-29 2012-05-16 中国電力株式会社 Voltage fluctuation suppression device

Also Published As

Publication number Publication date
JPH04145837A (en) 1992-05-19

Similar Documents

Publication Publication Date Title
JP3701315B2 (en) Power flow control device between transmission lines
EP0801833B2 (en) Transmission line power flow controller with unequal advancement and retardation of transmission angle
Bhattacharya et al. Hybrid solutions for improving passive filter performance in high power applications
US6075350A (en) Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering
CZ244997A3 (en) Dynamic power and voltage controller for alternating voltage transmission line
JP2008506345A (en) Bi-directional energy conversion system
EP1078434B1 (en) Power inverter apparatus using the load transformer of an ac power line to insert series compensation
JPH09121545A (en) Three-phase rectifier circuit
WO2023241074A1 (en) Flexible power transformer
US5814975A (en) Inverter controlled series compensator
EP0575589A1 (en) Controlled power supply
US6433520B1 (en) Dc power regulator incorporating high power ac to dc converter with controllable dc voltage and method of use
GB2152306A (en) Static var generator having reduced harmonics
JP2953019B2 (en) Power conditioner
Raju et al. The use of decoupled converters to optimize the power electronics of shunt and series AC system controllers
Hosseini et al. Virtual synchronous generator controller for power quality enhancement in microgrids
Habibolahzadeh et al. Rating reduction and optimized DC-link voltage of the HPQC in co-phase traction power system
CN111628510A (en) Automatic device and method for compensating reactive component losses in an alternating current network
CN112886606B (en) Hybrid reactive compensation method, device, equipment and medium considering valve side regulation and control
Arabahmadi et al. Hybrid Railway Traction Power Quality Compensator for power rating reduction of converters
JPH06178449A (en) Reactive power compensator
JP3003552B2 (en) Self-excited reactive power compensator
Hatziadoniu et al. A transformerless high-pulse static synchronous compensator based on the 3-level GTO-inverter
JP2001512956A (en) Method and apparatus for improving current quality in superimposed networks
Kamath et al. EMTP simulations and experimental verification of an all-active hybrid converter arrangement for filtering power system harmonics and STATCOM

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees