JP2952148B2 - Liquid crystal optical element and manufacturing method thereof - Google Patents

Liquid crystal optical element and manufacturing method thereof

Info

Publication number
JP2952148B2
JP2952148B2 JP1134294A JP1134294A JP2952148B2 JP 2952148 B2 JP2952148 B2 JP 2952148B2 JP 1134294 A JP1134294 A JP 1134294A JP 1134294 A JP1134294 A JP 1134294A JP 2952148 B2 JP2952148 B2 JP 2952148B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer material
crystalline polymer
ferroelectric
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1134294A
Other languages
Japanese (ja)
Other versions
JPH07199162A (en
Inventor
裕章 新田
公洋 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP1134294A priority Critical patent/JP2952148B2/en
Publication of JPH07199162A publication Critical patent/JPH07199162A/en
Application granted granted Critical
Publication of JP2952148B2 publication Critical patent/JP2952148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子、液晶記
憶素子、液晶音響素子、調光ガラス等としてオプトエレ
クトロニクスの分野において好適に使用される液晶光学
素子、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal optical element suitably used in the field of optoelectronics as a liquid crystal display element, a liquid crystal storage element, a liquid crystal acoustic element, a light control glass, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】強誘電性液晶は高速応答性とメモリー性
を有することから、液晶光学素子の液晶材料として注目
されている。しかしながら、ガラス基板間に液晶材料を
注入する通常の方法で液晶光学素子を製造する場合に
は、大面積化が難しく、歩留りが悪いという問題があ
る。一方、基板として可撓性を有するもの(例えばプラ
スチックフィルム)を用いると、液晶の製膜、対向基板
とのラミネート、曲げ配向といった一連の連続プロセス
を用いることができ、生産性よく大画面の液晶光学素子
を容易に製造することができる。ところが、得られる液
晶光学素子は基板が可撓性を有するために、押圧等で導
通欠陥が生じ易く、それを防ぐためには何等かの方法で
液晶層の強化を図る必要がある。
2. Description of the Related Art A ferroelectric liquid crystal has attracted attention as a liquid crystal material of a liquid crystal optical element because of its high-speed response and memory properties. However, when manufacturing a liquid crystal optical element by a normal method of injecting a liquid crystal material between glass substrates, there is a problem that it is difficult to increase the area and the yield is low. On the other hand, if a flexible substrate (eg, a plastic film) is used as the substrate, a series of continuous processes such as film formation of a liquid crystal, lamination with a counter substrate, and bending alignment can be used. An optical element can be easily manufactured. However, in the obtained liquid crystal optical element, since the substrate has flexibility, a conduction defect is easily generated by pressing or the like. In order to prevent the defect, it is necessary to strengthen the liquid crystal layer by some method.

【0003】特開平4−199128号公報には、高分
子材料とスペーサーの混合物をマスク開口部を通して任
意の位置に選択的に付着させて基板間隔を保持する方法
が記載されている。しかしながら、この方法では、扱え
る基板の大きさはマスク(スクリーン印刷物)サイズで
制限されるので、通常、メートルサイズ以上の素子を作
製することができないといった問題がある。また、スペ
ーサー材を付着させたり、固着させる必要があるので、
通常の素子製造工程とは独立した工程を増やす必要があ
るという問題もある。
[0003] Japanese Patent Application Laid-Open No. 4-199128 describes a method in which a mixture of a polymer material and a spacer is selectively adhered to an arbitrary position through a mask opening to maintain a distance between substrates. However, in this method, the size of a substrate that can be handled is limited by the size of a mask (screen printed matter), and thus there is a problem that an element having a size of a meter or more cannot be usually manufactured. Also, it is necessary to attach or fix the spacer material,
There is also a problem that it is necessary to increase the number of steps independent of a normal element manufacturing step.

【0004】特開平4−338724号公報には、基板
上の所定の位置にスペーサーを固定するための部材を形
成し、スペーサーを固定する方法が記載されているが、
印刷等による固定部材の形成、スペーサーの散布、固定
部材の硬化といった繁雑な工程が必要とされる。
Japanese Patent Application Laid-Open No. 4-338724 discloses a method of forming a member for fixing a spacer at a predetermined position on a substrate and fixing the spacer.
Complicated steps such as formation of a fixing member by printing or the like, dispersion of spacers, and curing of the fixing member are required.

【0005】特開平2−73219号公報には、熱可塑
性樹脂を強誘電性液晶に混合し、この熱可塑性樹脂をパ
ネルの補強材として用いる方法が記載されている。しか
しながら、この方法には、スペーサーを液晶層に混入さ
せた場合に比べ、機械的強度が劣るといった問題があ
る。また、スペーサーを入れた場合と同等の強度を持た
せようとすると、熱可塑性樹脂の量を増やす必要が生
じ、コントラスト比の低下をきたすといった問題があ
る。
Japanese Patent Application Laid-Open No. 2-73219 discloses a method in which a thermoplastic resin is mixed with a ferroelectric liquid crystal and the thermoplastic resin is used as a reinforcing material for a panel. However, this method has a problem that the mechanical strength is inferior to the case where the spacer is mixed in the liquid crystal layer. Further, if it is desired to have the same strength as that in the case where the spacer is inserted, it is necessary to increase the amount of the thermoplastic resin, and there is a problem that the contrast ratio is lowered.

【0006】[0006]

【発明が解決しようとする課題】本発明は、対向する基
板の少なくとも一方が可撓性を有するものである強誘電
性液晶光学素子であって、機械的強度に優れた液晶光学
素子を提供することを目的とするものである。また、本
発明は、この液晶光学素子を面積の大小にかかわらず簡
略化された製造工程により製造することができ、また、
歩留りもよく、コストの低減を可能にする製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a ferroelectric liquid crystal optical element in which at least one of the opposing substrates has flexibility, which liquid crystal optical element has excellent mechanical strength. The purpose is to do so. Further, the present invention can manufacture the liquid crystal optical element by a simplified manufacturing process regardless of the size of the area,
It is an object of the present invention to provide a manufacturing method which has a good yield and enables cost reduction.

【0007】本発明者らは上記課題を解決するために鋭
意研究を重ねた結果、強誘電性高分子液晶と強誘電性低
分子液晶の混合物からなる強誘電性液晶層中に非液晶性
高分子材料を混在させるとともに、液晶層と基板との間
に、液晶層中の非液晶性高分子材料と互いに接着性を有
する非液晶性高分子材料からなる絶縁膜を介在させるこ
とにより、コントラスト比を低下させることなく液晶層
及びパネルの機械的強度を向上せしめ、配向欠陥、導通
欠陥を防止することが可能となることを見出した。この
ような液晶光学素子は液晶層及び絶縁膜の形成を塗布と
いう簡単な操作で行うことができ、複雑な工程を必要と
しない。また、本発明者らは、絶縁膜を塗布により形成
する際に、球状スペーサー材を混入した非液晶性高分子
材料の溶液を用いることにより、液晶光学素子の機械的
強度を簡略な方法で更に向上させることができることを
見出し、これらの知見に基づき本発明を完成するに至っ
た。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a non-liquid crystalline high liquid crystal layer is formed in a ferroelectric liquid crystal layer composed of a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low molecular liquid crystal. In addition to the mixture of molecular materials, the contrast ratio can be improved by interposing an insulating film made of a non-liquid crystalline polymer material that has adhesiveness to the non-liquid crystalline polymer material in the liquid crystal layer between the liquid crystal layer and the substrate. It has been found that it is possible to improve the mechanical strength of the liquid crystal layer and the panel without lowering the liquid crystal layer and to prevent alignment defects and conduction defects. In such a liquid crystal optical element, the formation of the liquid crystal layer and the insulating film can be performed by a simple operation of coating, and does not require a complicated process. In addition, the present inventors further improved the mechanical strength of the liquid crystal optical element by a simple method by using a solution of a non-liquid crystalline polymer material mixed with a spherical spacer material when forming the insulating film by coating. They have found that they can be improved, and have completed the present invention based on these findings.

【0008】即ち、本発明は、少なくとも一方が可撓性
を有する2枚の電極付き基板間に強誘電性液晶層が挟持
された液晶光学素子において、少なくとも一方の基板の
電極を付した面上に非液晶性高分子材料の硬化物からな
る絶縁膜を有し、強誘電性液晶層が、強誘電性高分子液
晶と強誘電性低分子液晶の混合物からなる強誘電性液晶
と非液晶性高分子材料の硬化物とからなり、強誘電性液
晶層中の強誘電性液晶と非液晶性高分子材料の硬化物と
は互いに均一に相分離して混在しており、絶縁膜を形成
する非液晶性高分子材料の硬化物と強誘電性液晶層中に
存在する非液晶性高分子材料の硬化物とが、互いに接着
性を有する非液晶性高分子材料の硬化物であることを特
徴とする液晶光学素子を提供するものである。
In other words, the present invention relates to a liquid crystal optical element in which a ferroelectric liquid crystal layer is sandwiched between two substrates with electrodes, at least one of which has flexibility, on at least one of the substrates provided with electrodes. A ferroelectric liquid crystal layer composed of a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low molecular weight liquid crystal and a non-liquid crystal property. It consists of a cured polymer material, and the ferroelectric liquid crystal in the ferroelectric liquid crystal layer and the cured product of the non-liquid crystalline polymer material are uniformly separated and mixed with each other to form an insulating film. The cured product of the non-liquid crystalline polymer material and the cured product of the non-liquid crystalline polymer material present in the ferroelectric liquid crystal layer are cured products of the non-liquid crystalline polymer material having adhesive properties to each other. And a liquid crystal optical element.

【0009】図1は本発明の液晶光学素子の一態様を示
す部分断面図であり、対向する2枚の基板1及び1′の
電極2及び2′を付した面上に、それぞれ、絶縁膜3及
び3′が形成され、強誘電性高分子液晶と強誘電性低分
子液晶の混合物である強誘電性液晶と非液晶性性高分子
材料の硬化物からなる強誘電性液晶層4が絶縁膜3及び
3′を介して2枚の基板1及び1′間に挟持されてい
る。絶縁膜3及び3′は非液晶性高分子材料の硬化物で
構成され、強誘電性液晶層4は、互いに均一に相分離し
て混在する強誘電性液晶と非液晶性高分子材料の硬化物
とで構成されている。絶縁膜は、一方の基板のみに設け
られていてもよいし、両方の基板に設けられていてもよ
い。
FIG. 1 is a partial cross-sectional view showing one embodiment of the liquid crystal optical element of the present invention. An insulating film is provided on two opposing substrates 1 and 1 'on which electrodes 2 and 2' are provided. 3 and 3 'are formed, and a ferroelectric liquid crystal layer 4 made of a cured product of a ferroelectric liquid crystal which is a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low molecular liquid crystal and a non-liquid crystal polymer material is insulated. It is sandwiched between two substrates 1 and 1 'via films 3 and 3'. The insulating films 3 and 3 'are made of a cured product of a non-liquid crystalline polymer material, and the ferroelectric liquid crystal layer 4 is formed by curing a ferroelectric liquid crystal and a non-liquid crystalline polymer material which are uniformly separated from each other and mixed. It is composed of things. The insulating film may be provided on only one substrate, or may be provided on both substrates.

【0010】本発明の液晶光学素子は、強誘電性液晶層
中に、強誘電性高分子液晶と強誘電性低分子液晶の混合
物である強誘電性液晶と、非液晶性高分子材料の硬化物
とが混在することから、強誘電性液晶層の機械的強度に
優れ、また、強い押圧により強誘電性液晶層が変形した
としても、絶縁膜の存在により、上下電極間の導通が防
止される。絶縁膜は絶縁材のみならず補強材としても機
能し、強誘電性液晶層及び素子全体の強度を更に向上さ
せている。また、強誘電性液晶層中に混在する非液晶性
高分子材料の硬化物と、絶縁膜を構成する非液晶性高分
子材料の硬化物とは、同質の非液晶性高分子材料を硬化
させたものであるため、基板と強誘電性液晶層とが絶縁
層を介して強固に接着し、強誘電性液晶層を安定化して
いる。
In the liquid crystal optical element of the present invention, a ferroelectric liquid crystal which is a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low molecular liquid crystal, and a non-liquid crystal polymer material are cured in a ferroelectric liquid crystal layer. Since the ferroelectric liquid crystal layer is excellent in mechanical strength due to the mixture of the material and the ferroelectric liquid crystal layer, and even if the ferroelectric liquid crystal layer is deformed by strong pressing, conduction between the upper and lower electrodes is prevented by the presence of the insulating film. You. The insulating film functions not only as an insulating material but also as a reinforcing material, further improving the strength of the ferroelectric liquid crystal layer and the entire device. In addition, the cured product of the non-liquid crystalline polymer material mixed in the ferroelectric liquid crystal layer and the cured product of the non-liquid crystalline polymer material forming the insulating film are obtained by curing the same non-liquid crystalline polymer material. Therefore, the substrate and the ferroelectric liquid crystal layer are firmly adhered to each other via the insulating layer, thereby stabilizing the ferroelectric liquid crystal layer.

【0011】強誘電性液晶層中に存在する非液晶性高分
子材料の硬化物の量は、強誘電性液晶100重量部に対
して通常1〜30重量部、好ましくは1〜20重量部と
することが望ましい。非液晶性高分子材料の硬化物の量
が1重量部未満であると、補強材及び接着材としての機
能が発現せず、強誘電性液晶層の強度の向上が不十分と
なることがある。また、30重量部を超えると、液晶光
学素子のコントラスト比の低下、強誘電性液晶層の配向
性の低下をきたすおそれがある。
The amount of the cured non-liquid crystalline polymer material present in the ferroelectric liquid crystal layer is usually 1 to 30 parts by weight, preferably 1 to 20 parts by weight, per 100 parts by weight of the ferroelectric liquid crystal. It is desirable to do. When the amount of the cured product of the non-liquid crystalline polymer material is less than 1 part by weight, the function as a reinforcing material and an adhesive does not appear, and the strength of the ferroelectric liquid crystal layer may not be sufficiently improved. . If the amount exceeds 30 parts by weight, the contrast ratio of the liquid crystal optical element may decrease, and the orientation of the ferroelectric liquid crystal layer may decrease.

【0012】強誘電性液晶層の厚みは、通常0.5〜1
0μm、好ましくは0.5〜4μm程度が好適である。
The thickness of the ferroelectric liquid crystal layer is usually 0.5 to 1
0 μm, preferably about 0.5 to 4 μm is suitable.

【0013】各絶縁膜は膜厚は、通常0.01〜5μ
m、好ましくは0.02〜2μm、特に好ましくは0.
05〜1μmであり、両方の基板に絶縁膜を設ける場
合、膜厚は同一でも異なっていてもよい。
Each insulating film has a thickness of usually 0.01 to 5 μm.
m, preferably 0.02 to 2 μm, particularly preferably 0.1 to 0.2 μm.
When the insulating film is provided on both substrates, the thicknesses may be the same or different.

【0014】本発明の液晶光学素子には、更に、基板間
にスペーサーが配置されていてもよい。スペーサーを配
置することにより、セルギャップの保持能力や耐圧力性
が更に向上し、強誘電性液晶層がより一層安定化する。
In the liquid crystal optical element of the present invention, a spacer may be further provided between the substrates. By arranging the spacer, the cell gap holding ability and the pressure resistance are further improved, and the ferroelectric liquid crystal layer is further stabilized.

【0015】本発明の液晶光学素子は、例えば本発明の
製造方法により好適に製造することができる。
The liquid crystal optical element of the present invention can be suitably manufactured by, for example, the manufacturing method of the present invention.

【0016】本発明の製造方法は、少なくとも一方が可
撓性を有する2枚の電極付き基板の少なくとも一方の基
板の電極を付した面上に、非液晶性高分子材料を溶媒に
溶解させた溶液を塗布し、次いで溶媒の蒸発及び非液晶
性高分子材料の硬化を行うことにより絶縁膜を形成する
工程、強誘電性高分子液晶と強誘電性低分子液晶の混合
物からなる強誘電性液晶と、絶縁膜の形成に用いた非液
晶性高分子材料と互いに接着性を有する非液晶性高分子
材料とを、溶媒に溶解させた液晶溶液を、少なくとも一
方の基板上の絶縁膜上に塗布し、次いで溶媒の蒸発を行
うことにより、強誘電性液晶と非液晶性高分子材料とが
互いに均一に相分離して混在する強誘電性液晶層を形成
する工程、2枚の基板を強誘電性液晶層がこれら2枚の
基板に絶縁膜を介して挟持されるように積層する工程、
及び積層体の強誘電性液晶層中の非液晶性高分子材料を
硬化させる工程からなる。
According to the manufacturing method of the present invention, a non-liquid crystalline polymer material is dissolved in a solvent on at least one of the two electrode-attached substrates, each of which has flexibility. A process of applying an aqueous solution, then evaporating the solvent and curing the non-liquid crystalline polymer material to form an insulating film, a ferroelectric liquid crystal comprising a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low molecular liquid crystal And a non-liquid crystalline polymer material used to form the insulating film and a non-liquid crystalline polymer material having adhesive properties to each other, and a liquid crystal solution dissolved in a solvent is applied on the insulating film on at least one substrate. And then evaporating the solvent to form a ferroelectric liquid crystal layer in which the ferroelectric liquid crystal and the non-liquid crystal polymer material are uniformly separated from each other and mixed together, and the two substrates are ferroelectric. A liquid crystal layer is formed between these two substrates via an insulating film. Laminating as is sandwiched Te,
And a step of curing the non-liquid crystalline polymer material in the ferroelectric liquid crystal layer of the laminate.

【0017】本発明においては、少なくとも一方の基板
として可撓性を有するものを用いるため、大面積の液晶
光学素子であっても容易に連続的に大量生産することが
でき、また、積層工程におけるセル中への気泡の混入も
防止することができる。
In the present invention, since a flexible substrate is used as at least one of the substrates, even a large-area liquid crystal optical element can be easily and continuously mass-produced. It is also possible to prevent air bubbles from entering the cell.

【0018】本発明において用いられる可撓性基板とし
ては、各種の材質のものを使用することができるが、通
常、生産性、反溶性、加工性等の点から、強度、耐熱
性、透明性、耐久性などに優れたプラスチックからなる
基板が好適に用いられる。この可撓性を有するプラスチ
ックの具体例としては、例えば、一軸又は二軸延伸ポリ
エチレンテレフタレート(PET)などの結晶性ポリマ
ー、ポリスルホン、ポリエーテルスルホン(PES)な
どの非結晶性ポリマー、ポリエチレン、ポリプロピレン
等のポリオレフィン、ポリカーボネート(PC)、ナイ
ロン等のポリアミドなどを挙げることができる。中で
も、ポリエチレンテレフタレート(PET)、ポリエー
テルスルホン(PES)、ポリカーボネート(PC)な
どが好適に用いられる。
As the flexible substrate used in the present invention, various substrates can be used, but usually, strength, heat resistance, transparency, etc. are considered from the viewpoints of productivity, insolubility, workability and the like. A substrate made of plastic having excellent durability and the like is preferably used. Specific examples of the flexible plastic include, for example, crystalline polymers such as uniaxially or biaxially stretched polyethylene terephthalate (PET), non-crystalline polymers such as polysulfone and polyethersulfone (PES), polyethylene, and polypropylene. Polyolefin, polycarbonate (PC), polyamide such as nylon and the like. Among them, polyethylene terephthalate (PET), polyether sulfone (PES), polycarbonate (PC) and the like are preferably used.

【0019】本発明においては、基板の一方を可撓性を
もたない基板としてもよく、その材質としては液晶光学
素子に用いられるものであれば特に制限はない。例え
ば、ガラス基板などを用いることができる。屈曲画面な
どを有する液晶光学素子を生産性よく製造するために
は、基板2枚ともをプラスチックなどの可撓性を有する
材質のものとすることが好ましい。
In the present invention, one of the substrates may be a substrate having no flexibility, and the material thereof is not particularly limited as long as it is used for a liquid crystal optical element. For example, a glass substrate or the like can be used. In order to manufacture a liquid crystal optical element having a curved screen or the like with high productivity, it is preferable that both substrates are made of a flexible material such as plastic.

【0020】基板の厚さとしては、通常、1μm〜10
mm、好ましくは10μm〜1mmとする。
The thickness of the substrate is usually 1 μm to 10 μm.
mm, preferably 10 μm to 1 mm.

【0021】本発明において、前記2枚の基板は、互い
に同じ材質のものであってもよく、また、相違する材質
のものであってもよいが、通常、少なくとも一方の基板
を光学的に透明なものとし、光学的に透明又は半透明な
電極を設けて使用する。
In the present invention, the two substrates may be made of the same material or different materials. Usually, at least one of the substrates is optically transparent. It is used by providing an optically transparent or translucent electrode.

【0022】この透明又は半透明の電極の具体例として
は、例えば、NESA膜といわれる酸化錫膜、ITO膜
といわれる酸化錫を混入した酸化インジウム膜、酸化イ
ンジウム膜、金やチタンなどの蒸着膜、或いは他の薄膜
状のアルミニウム等の金属又は合金などを挙げることが
できる。これら電極の形状としては、特に制限はなく、
基板の所定の面上の全面にわたるものであってもよく、
ストライプ状のものであってもよく、又は他の所望の形
状のものであってもよい。
Specific examples of the transparent or translucent electrode include a tin oxide film called a NESA film, an indium oxide film mixed with tin oxide called an ITO film, an indium oxide film, and a deposited film of gold or titanium. Or other metal or alloy such as aluminum in the form of a thin film. The shape of these electrodes is not particularly limited,
It may be over the entire surface on a predetermined surface of the substrate,
It may be striped or any other desired shape.

【0023】本発明において用いられる強誘電性高分子
液晶と強誘電性低分子液晶の混合物からなる強誘電性液
晶としては、高分子液晶と低分子液晶の混合物で強誘電
性を示す限りどのような組成のものであっても特に制限
はないが、例えば、一例を示すと、下記に示すような強
誘電性高分子液晶と強誘電性低分子液晶の混合物が好適
に用いられる。
The ferroelectric liquid crystal composed of a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low-molecular liquid crystal used in the present invention may be any one as long as a mixture of a high-molecular liquid crystal and a low-molecular liquid crystal exhibits ferroelectricity. There is no particular limitation on the composition, but a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low-molecular liquid crystal as shown below is preferably used, for example.

【0024】[0024]

【化1】 Embedded image

【0025】本発明において絶縁膜の形成及び強誘電性
液晶層の補強に用いられる非液晶性高分子材料として
は、絶縁性及び接着性を有し、液晶光学素子製造の際に
用いられる溶媒に可溶であれば特に制限はなく、熱可塑
性樹脂又は硬化性樹脂のいずれでもよいが、例えば、ポ
リイミド、ポリアミド、ポリエステル、セルロース、メ
ラミン樹脂、アクリル樹脂、エポキシ樹脂、フッ化エポ
キシ樹脂、ウレタン樹脂、含フッ素ウレタン樹脂、含フ
ッ素ビニル樹脂、シリコーン、これらの2種以上の混合
物、これらの共重合体等が挙げられる。これらの中でも
製膜処理の容易さという観点から好ましい非液晶性高分
子材料は、例えば含フッ素ビニル樹脂、アクリル樹脂、
エポキシ樹脂、フッ化エポキシ樹脂、含フッ素ウレタン
樹脂である。特にフルオロエチレン・ジビニルエーテル
共重合体、フルオロエチレン・アクリルモノマー共重合
体、フルオロエチレン・ビニルエステル共重合体などの
含フッ素ビニル樹脂、シリコーン、エポキシ樹脂、アク
リル樹脂等が好適に用いられる。これらの非液晶性高分
子材料には必要に応じ、硬化剤、触媒、硬化促進剤等が
配合されて用いられる。また、これらの非液晶性高分子
材料は1種単独で用いてもよいし、2種以上を併用して
もよい。
In the present invention, the non-liquid crystalline polymer material used for forming the insulating film and reinforcing the ferroelectric liquid crystal layer has an insulating property and an adhesive property, and is used in a solvent used in manufacturing a liquid crystal optical element. There is no particular limitation as long as it is soluble, and any of a thermoplastic resin or a curable resin may be used.For example, polyimide, polyamide, polyester, cellulose, melamine resin, acrylic resin, epoxy resin, fluorinated epoxy resin, urethane resin, Examples include fluorinated urethane resins, fluorinated vinyl resins, silicones, mixtures of two or more thereof, and copolymers thereof. Among these, preferred non-liquid crystalline polymer materials from the viewpoint of easiness of film forming treatment include, for example, fluorine-containing vinyl resin, acrylic resin,
Epoxy resins, fluorinated epoxy resins, and fluorinated urethane resins. In particular, fluorine-containing vinyl resins such as fluoroethylene / divinyl ether copolymer, fluoroethylene / acrylic monomer copolymer, and fluoroethylene / vinyl ester copolymer, silicone, epoxy resin, and acrylic resin are preferably used. If necessary, a curing agent, a catalyst, a curing accelerator and the like may be added to these non-liquid crystalline polymer materials. These non-liquid crystalline polymer materials may be used alone or in combination of two or more.

【0026】なお、本発明の液晶光学素子の絶縁膜及び
強誘電性液晶層中においては、上記非液晶性高分子材料
は硬化物として存在する。本明細書において、非液晶性
高分子材料の硬化とは、非液晶性高分子材料が熱可塑性
樹脂である場合には、溶融状態の熱可塑性樹脂が冷却に
よって固化すること、あるいは溶剤の蒸発によって固化
することを意味し、非液晶高分子材料が熱硬化性樹脂、
架橋性樹脂等の硬化性樹脂である場合には、硬化性樹脂
が熱、硬化剤、触媒などによって架橋して不溶不融とな
ることを意味する。
In the insulating film and the ferroelectric liquid crystal layer of the liquid crystal optical element of the present invention, the non-liquid crystalline polymer material exists as a cured product. In the present specification, the curing of the non-liquid crystalline polymer material means that when the non-liquid crystalline polymer material is a thermoplastic resin, the molten thermoplastic resin is solidified by cooling, or by evaporation of the solvent. Means solidifying, non-liquid crystal polymer material is thermosetting resin,
In the case of a curable resin such as a crosslinkable resin, it means that the curable resin is crosslinked by heat, a curing agent, a catalyst, or the like to become insoluble and infusible.

【0027】また、本明細書において、互いに接着性を
有する非液晶性高分子材料とは、硬化時に互いに親和性
ないし接着性を有しているものを意味する。好ましい組
み合わせは同種の非液晶性高分子材料同士である。
In the present specification, the non-liquid crystalline polymer materials having adhesive properties to each other means those having affinity or adhesive property when cured. A preferred combination is the same kind of non-liquid crystalline polymer materials.

【0028】本発明においては、非液晶性高分子材料の
硬化物は構造材料として用いられるので、非液晶性高分
子材料の強誘電性高分子液晶との相溶性は大きくても、
小さくても、いずれでもよい。
In the present invention, the cured product of the non-liquid crystalline polymer material is used as a structural material. Therefore, even if the compatibility of the non-liquid crystalline polymer material with the ferroelectric polymer liquid crystal is large,
It may be small or any.

【0029】本発明の液晶光学素子中にスペーサーを配
置する場合、スペーサーとしては液晶光学素子に通常設
けられるものであれば特に制限はないが、材質がシリカ
或いは耐溶剤性を有するプラスチックであり球状のもの
が連続工程による液晶光学素子の製造方法に適してお
り、好適に用いられる。本発明に用いられる球状スペー
サーに好適なプラスチックとしては、例えば、ジビニル
ベンゼン系のDynospheres(日本合成ゴム
(株)製)等が挙げられる。球状スペーサーの粒径は所
望する強誘電性液晶層の膜厚及び絶縁膜の膜厚により決
定され、通常は1〜10μmのものが用いられる。
When the spacer is arranged in the liquid crystal optical element of the present invention, the spacer is not particularly limited as long as it is usually provided in the liquid crystal optical element, but the material is silica or a plastic having solvent resistance and is spherical. Are suitable for a method of manufacturing a liquid crystal optical element by a continuous process, and are suitably used. As a plastic suitable for the spherical spacer used in the present invention, for example, divinylbenzene-based Dynospheres (manufactured by Nippon Synthetic Rubber Co., Ltd.) and the like can be mentioned. The particle size of the spherical spacer is determined by the desired film thickness of the ferroelectric liquid crystal layer and the film thickness of the insulating film, and is usually 1 to 10 μm.

【0030】球状スペーサーの量は、一方の基板上の絶
縁膜を形成する非液晶性高分子材料の硬化物に対し好ま
しくは0.1〜10重量部、更に好ましくは0.5〜1
0重量部、特に好ましくは1〜10重量部とする。球状
スペーサーの量が0.1重量部未満であると、球状スペ
ーサーのセルギャップの保持能力や耐圧力性向上の効果
が不十分となることがあり、10重量部を超えると液晶
光学素子のコントラスト比の低下、強誘電性液晶層の配
向性、配向保持性の低下をきたすおそれがある。
The amount of the spherical spacer is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 1 part by weight, based on the cured product of the non-liquid crystalline polymer material forming the insulating film on one substrate.
0 parts by weight, particularly preferably 1 to 10 parts by weight. When the amount of the spherical spacer is less than 0.1 part by weight, the effect of the spherical spacer in maintaining the cell gap and improving the pressure resistance may be insufficient. When the amount exceeds 10 parts by weight, the contrast of the liquid crystal optical element may be reduced. There is a possibility that the ratio may decrease, and the orientation and the orientation retention of the ferroelectric liquid crystal layer may decrease.

【0031】本発明の液晶光学素子の製造方法を、主に
2枚の可撓性基板の両方に絶縁膜を設け、更に球状スペ
ーサーを設ける場合を例として以下に説明する。
The method for manufacturing a liquid crystal optical element of the present invention will be described below by taking as an example a case where an insulating film is provided on both of two flexible substrates and a spherical spacer is further provided.

【0032】まず、絶縁膜形成に用いられる2種類の非
液晶性高分子材料溶液を調製する。一方の非液晶性高分
子材料溶液として、非液晶性高分子材料を溶媒に均一に
溶解させたものを調製し、他方の非液晶性高分子材料溶
液として、非液晶性高分子材料及び球状スペーサーを溶
媒に均一に溶解及び分散させた溶液を調製する。
First, two types of non-liquid crystalline polymer material solutions used for forming an insulating film are prepared. One non-liquid crystalline polymer material solution was prepared by uniformly dissolving a non-liquid crystalline polymer material in a solvent, and the other non-liquid crystalline polymer material solution was prepared as a non-liquid crystalline polymer material and a spherical spacer. Is uniformly dissolved and dispersed in a solvent to prepare a solution.

【0033】溶媒としては、基板を溶解せず、非液晶性
高分子材料を溶解するものであれば特に制限はないが、
通常、アセトン、メチルエチルケトン、トルエン、キシ
レン、ジクロロメタン、クロロホルム、テトラヒドロフ
ラン、酢酸エチル、あるいはそれらの混合溶媒等が好適
に用いられる。非液晶性高分子材料の濃度については特
に制限はなく、塗布の方法や所望する膜厚等の製膜状態
に応じて適宜選定する。
The solvent is not particularly limited as long as it does not dissolve the substrate but dissolves the non-liquid crystalline polymer material.
Usually, acetone, methyl ethyl ketone, toluene, xylene, dichloromethane, chloroform, tetrahydrofuran, ethyl acetate, a mixed solvent thereof or the like is suitably used. The concentration of the non-liquid crystalline polymer material is not particularly limited, and is appropriately selected according to a coating method and a desired film formation state such as a desired film thickness.

【0034】球状スペーサーを分散させるに際しては、
超音波等を用いて球状スペーサーを溶液中に均一に分散
させることが好ましい。球状スペーサーを含有する非液
晶性高分子材料溶液中への球状スペーサーの混入量は、
非液晶性高分子材料100重量部に対して好ましくは
0.1〜10重量部、更に好ましくは0.5〜10重量
部、特に好ましくは1〜10重量部とする。
In dispersing the spherical spacer,
It is preferable to disperse the spherical spacer uniformly in the solution using ultrasonic waves or the like. The amount of the spherical spacer mixed into the non-liquid crystalline polymer material solution containing the spherical spacer,
The amount is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 10 parts by weight, particularly preferably 1 to 10 parts by weight based on 100 parts by weight of the non-liquid crystalline polymer material.

【0035】強誘電性液晶層の形成に用いられる液晶溶
液は、強誘電性液晶と、絶縁膜の形成に用いられる非液
晶性高分子材料と互いに接着性を有する非液晶性高分子
材料とを、強誘電性液晶100重量部に対して非液晶性
高分子材料を通常1〜30重量部、好ましくは1〜20
重量部の割合で、溶媒に均一に溶解又は分散させて調製
する。球状スペーサーを設けない場合も、強誘電性液晶
と非液晶性高分子材料との割合は、上記と同様とする。
The liquid crystal solution used for forming the ferroelectric liquid crystal layer comprises a ferroelectric liquid crystal, a non-liquid crystal polymer material used for forming an insulating film, and a non-liquid crystal polymer material having adhesive properties to each other. The non-liquid crystalline polymer material is usually 1 to 30 parts by weight, preferably 1 to 20 parts by weight, based on 100 parts by weight of the ferroelectric liquid crystal.
It is prepared by uniformly dissolving or dispersing in a solvent in a ratio of parts by weight. Even when the spherical spacer is not provided, the ratio between the ferroelectric liquid crystal and the non-liquid crystalline polymer material is the same as described above.

【0036】強誘電性液晶層には、前記強誘電性液晶及
び非液晶性高分子材料のほかに、2色性色素を混入させ
てもよい。2色性色素としては、アントラキン系、アゾ
系、ジアゾ系、メロシアニン系等の色素が挙げられる。
A dichroic dye may be mixed in the ferroelectric liquid crystal layer in addition to the ferroelectric liquid crystal and the non-liquid crystalline polymer material. Examples of the dichroic dye include anthraquin, azo, diazo, and merocyanine dyes.

【0037】液晶溶液の調製に用いられる溶媒として
は、メチレンクロライド、クロロホルム、トルエン、キ
シレン、テトラヒドロフラン、アセトン、メチルエチル
ケトン、酢酸エチルなどの種々のものが利用でき、ま
た、これらの混合溶媒も用いることができる。非液晶性
高分子材料の濃度については特に制限はなく、塗布の方
法や所望する膜厚等の製膜状態に応じて適宜選定する。
溶媒の使用量は特に制限はなく、塗布の方法や所望する
膜厚等の製膜状態に応じて適宜選定する。
As the solvent used for preparing the liquid crystal solution, various solvents such as methylene chloride, chloroform, toluene, xylene, tetrahydrofuran, acetone, methyl ethyl ketone, and ethyl acetate can be used, and a mixed solvent thereof can also be used. it can. The concentration of the non-liquid crystalline polymer material is not particularly limited, and is appropriately selected according to a coating method and a desired film formation state such as a desired film thickness.
The amount of the solvent to be used is not particularly limited, and is appropriately selected depending on a coating method and a desired film formation state such as a desired film thickness.

【0038】次いで、一方の基板の電極を付した面上
に、球状スペーサーを含有する非液晶性高分子材料溶液
を塗布し、次いで溶媒を蒸発させた後、非液晶性高分子
材料を硬化させる。非液晶性高分子材料溶液の塗布法と
しては、特に限定されない。具体例としては、バーコー
ターによる方法、ロッドコーティング法、スロットコー
ティング法、ナイフコーティング法、ダイレクトグラビ
アロール法、マイクログラビアロール法などが挙げられ
る。非液晶性高分子材料の硬化の方法は非液晶性高分子
材料の材質に応じてことなるが、主に光の照射や常温以
上の加熱による。この方法で球状スペーサーを設ける場
合には、強誘電性液晶層の形成に用いる非液晶性高分子
材料として、溶剤の蒸発によって固化するもの以外の非
液晶性高分子材料を用いる。このようにして、図2に示
されるように、基板1の電極2を付した面上に非液晶性
高分子材料の硬化物からなる絶縁膜3が形成される。球
状スペーサー5は、非液晶性高分子材料の硬化物からな
る絶縁膜3により、基板1の電極2を付した面上に強固
に固定されている。
Next, a non-liquid crystalline polymer material solution containing a spherical spacer is applied on the surface of one of the substrates to which the electrodes are attached, and after the solvent is evaporated, the non-liquid crystalline polymer material is cured. . The method of applying the non-liquid crystalline polymer material solution is not particularly limited. Specific examples include a method using a bar coater, a rod coating method, a slot coating method, a knife coating method, a direct gravure roll method, and a microgravure roll method. The method of curing the non-liquid crystalline polymer material depends on the material of the non-liquid crystalline polymer material, but is mainly by light irradiation or heating at room temperature or higher. When a spherical spacer is provided by this method, a non-liquid crystalline polymer material other than one solidified by evaporation of a solvent is used as the non-liquid crystalline polymer material used for forming the ferroelectric liquid crystal layer. In this manner, as shown in FIG. 2, the insulating film 3 made of a cured non-liquid crystalline polymer material is formed on the surface of the substrate 1 on which the electrodes 2 are provided. The spherical spacer 5 is firmly fixed on the surface of the substrate 1 on which the electrode 2 is provided by an insulating film 3 made of a cured material of a non-liquid crystalline polymer material.

【0039】他方の基板の電極を付した面上には、球状
スペーサーを含有しない非液晶性高分子材料溶液を塗布
し、次いで溶媒を蒸発させた後、非液晶性高分子材料を
硬化させる。これにより、図3に示されるように、基板
1′の電極2′を付した面上に非液晶性高分子材料の硬
化物からなる絶縁膜3′が形成される。
A non-liquid crystalline polymer material solution containing no spherical spacer is applied to the surface of the other substrate on which the electrodes are provided, and after the solvent is evaporated, the non-liquid crystalline polymer material is cured. Thus, as shown in FIG. 3, an insulating film 3 'made of a cured product of a non-liquid crystalline polymer material is formed on the surface of the substrate 1' on which the electrodes 2 'are provided.

【0040】次いで、球状スペーサーが固定されていな
い基板1′上の絶縁膜3′上に、液晶溶液を塗布し、そ
の後溶媒を蒸発させることにより、強誘電性液晶と非液
晶性高分子材料とが互いに均一に相分離して混在する強
誘電性液晶層を形成する。液晶溶液の塗布方法として
は、上記非液晶性高分子材料溶液の塗布方法と同様の方
法が挙げられる。このようにして、図4に示されるよう
に、基板1′の電極2′を付した面上の絶縁膜3′上
に、強誘電性液晶層4が形成される。この段階では、こ
の強誘電性液晶層4中の非液晶性高分子材料は硬化して
いない。
Next, a liquid crystal solution is applied on the insulating film 3 'on the substrate 1' on which the spherical spacers are not fixed, and then the solvent is evaporated, so that the ferroelectric liquid crystal and the non-liquid crystalline polymer material are separated. Form a ferroelectric liquid crystal layer which is uniformly separated from each other and mixed. As a method of applying the liquid crystal solution, the same method as the method of applying the non-liquid crystalline polymer material solution can be used. Thus, as shown in FIG. 4, the ferroelectric liquid crystal layer 4 is formed on the insulating film 3 'on the surface of the substrate 1' on which the electrodes 2 'are provided. At this stage, the non-liquid crystalline polymer material in the ferroelectric liquid crystal layer 4 has not been cured.

【0041】次いで、上記の基板1及び1′を強誘電性
液晶層4がこれら2枚の基板1及び1′間に絶縁膜3及
び3′を介して挟持されるように積層する。この積層
は、例えば、加圧ローラ等を用いる通常のラミネート方
法などにより好適に行われる。
Next, the above substrates 1 and 1 'are laminated so that the ferroelectric liquid crystal layer 4 is sandwiched between these two substrates 1 and 1' via the insulating films 3 and 3 '. This lamination is suitably performed, for example, by a normal lamination method using a pressure roller or the like.

【0042】図5にこの加圧ローラを用いる積層方法の
最も簡単な例を示す。電極2を付した面上に絶縁膜3及
び球状スペーサー5を設けた基板1と、電極2′を付し
た面上に絶縁膜3′及び強誘電性液晶層4を付した基板
1′とを、強誘電性液晶層4が絶縁膜3及び3′間に挟
まれるように、加圧ローラ対6の間で積層する。加圧ロ
ーラ対6の押圧により、基板1に固定された球状スペー
サー5は、強誘電性液晶層4中に埋没し、基板1′上の
絶縁膜3′に接するに至り、積層体が形成される。
FIG. 5 shows the simplest example of a laminating method using this pressure roller. The substrate 1 provided with the insulating film 3 and the spherical spacer 5 on the surface provided with the electrode 2 and the substrate 1 'provided with the insulating film 3' and the ferroelectric liquid crystal layer 4 on the surface provided with the electrode 2 '. Then, the ferroelectric liquid crystal layer 4 is laminated between the pressure roller pair 6 so as to be sandwiched between the insulating films 3 and 3 '. By the pressing of the pressure roller pair 6, the spherical spacer 5 fixed to the substrate 1 is buried in the ferroelectric liquid crystal layer 4 and comes into contact with the insulating film 3 'on the substrate 1', whereby a laminate is formed. You.

【0043】次いで、積層体の強誘電性液晶層4中の非
液晶性高分子材料を、光照射、加熱等により、硬化させ
る。
Next, the non-liquid crystalline polymer material in the ferroelectric liquid crystal layer 4 of the laminate is cured by light irradiation, heating and the like.

【0044】図6にこのようにして製造された液晶光学
素子の部分断面図を示す。
FIG. 6 is a partial cross-sectional view of the liquid crystal optical element manufactured as described above.

【0045】絶縁膜3及び3′が、それぞれ、基板1の
電極3を付した面上及び基板1′の電極3′を付した面
上に設けられている。球状スペーサー5が、基板1の電
極2を付した面及び基板1′上の絶縁膜3′に接する状
態で存在する。
The insulating films 3 and 3 'are respectively provided on the surface of the substrate 1 on which the electrodes 3 are provided and on the surface of the substrate 1' on which the electrodes 3 'are provided. The spherical spacer 5 exists in a state of being in contact with the surface of the substrate 1 on which the electrode 2 is provided and the insulating film 3 'on the substrate 1'.

【0046】なお、一方の基板1′に絶縁膜を設けない
液晶光学素子の場合には、球状スペーサー5は基板1の
電極2を付した面及び基板1′の電極2′を付した面に
接する状態で存在する。
In the case of a liquid crystal optical element in which an insulating film is not provided on one of the substrates 1 ', the spherical spacer 5 is provided on the surface of the substrate 1 on which the electrodes 2 are provided and on the surface of the substrate 1' on which the electrodes 2 'are provided. Exists in contact.

【0047】図7は、図6の液晶光学素子の部分拡大図
である。強誘電性液晶層4中には、非液晶性高分子材料
の硬化物7が強誘電性液晶と相分離した状態で分散し、
強誘電性液晶層4の補強材として機能する。また、球状
スペーサー5は絶縁膜3により基板1の電極2を付した
面上に強固に固定されるとともに、強誘電性液晶層4中
に分散する非液晶性高分子材料の硬化物7によっても固
定されている。また、絶縁膜3及び3′を形成する非液
晶性高分子材料の硬化物と強誘電性液晶層4中の非液晶
性高分子材料の硬化物とは、互いに接着性を有する非液
晶性高分子材料の硬化物であるため、絶縁膜3及び3′
は強誘電性液晶層4と強固に接着し、液晶光学素子中で
強誘電性液晶層4を安定化している。
FIG. 7 is a partially enlarged view of the liquid crystal optical element of FIG. In the ferroelectric liquid crystal layer 4, a cured product 7 of a non-liquid crystalline polymer material is dispersed in a state of being separated from the ferroelectric liquid crystal,
It functions as a reinforcing material for the ferroelectric liquid crystal layer 4. Further, the spherical spacer 5 is firmly fixed on the surface of the substrate 1 on which the electrode 2 is provided by the insulating film 3, and is also formed by the cured product 7 of the non-liquid crystalline polymer material dispersed in the ferroelectric liquid crystal layer 4. Fixed. Further, the cured product of the non-liquid crystalline polymer material forming the insulating films 3 and 3 'and the cured product of the non-liquid crystalline polymer material in the ferroelectric liquid crystal layer 4 have a non-liquid crystalline high adhesive property with each other. Since it is a cured product of a molecular material, the insulating films 3 and 3 '
Adheres firmly to the ferroelectric liquid crystal layer 4 and stabilizes the ferroelectric liquid crystal layer 4 in the liquid crystal optical element.

【0048】本発明の液晶光学素子は、強誘電性液晶層
中の強誘電性液晶を配向させて光学素子として用いる。
配向方法は、一般に知られているあらゆる方法を用いる
ことができる。配向膜による配向を採用する場合は、絶
縁膜を一方向にラビング処理して配向層として用いても
よいし、また、絶縁膜上に酸化シリコンを斜方蒸着した
ものなどの種々の配向膜を用いることもできる。配向膜
を用いない場合は、剪断方を用いることもできる。ま
た、2枚の可撓性基板を用いる場合は、強誘電性液晶層
中の非液晶性高分子材料を硬化させる前に、積層体に曲
げ変形を与えて強誘電性液晶層中の強誘電性液晶を配向
させる方法を用いることもできる。曲げ変形による配向
は、電極間に電界を印加しながら行ってもよく、この方
法によればより良好な配向を得ることが可能となる。
The liquid crystal optical element of the present invention is used as an optical element by aligning the ferroelectric liquid crystal in the ferroelectric liquid crystal layer.
As the orientation method, any generally known method can be used. When the orientation by the orientation film is employed, the insulation film may be rubbed in one direction and used as an orientation layer, or various orientation films such as obliquely deposited silicon oxide on the insulation film may be used. It can also be used. When an alignment film is not used, a shearing method can be used. When two flexible substrates are used, the laminate is subjected to bending deformation before the non-liquid crystalline polymer material in the ferroelectric liquid crystal layer is cured, so that the ferroelectric liquid in the ferroelectric liquid crystal layer is hardened. It is also possible to use a method of orienting a liquid crystal. The orientation by bending deformation may be performed while applying an electric field between the electrodes. According to this method, a better orientation can be obtained.

【0049】本発明の方法によれば、スペーサー材を設
置するための特別の工程なしで、外部からの圧力等に優
れる液晶光学素子を容易にかつ連続的に製造することが
できる。また、絶縁膜形成用の非液晶性高分子材料溶液
に球状スペーサーを混入することにより、基板への非液
晶性高分子材料溶液の塗布という簡単な方法でスペーサ
ーを配置することができ、液晶光学素子のより一層の強
化及びセルギャップの保持能力の向上を容易に行うこと
ができる。
According to the method of the present invention, a liquid crystal optical element excellent in external pressure and the like can be easily and continuously manufactured without a special step for installing a spacer material. In addition, by mixing the spherical spacer into the non-liquid crystalline polymer material solution for forming the insulating film, the spacer can be arranged by a simple method of applying the non-liquid crystalline polymer material solution to the substrate. Further enhancement of the element and improvement of the cell gap holding ability can be easily performed.

【0050】[0050]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明はこれに限定されるものではない。
The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0051】実施例1 1. 絶縁膜形成用の溶液(1)として、メチルエチル
ケトンを溶媒として、これに有機溶剤に対して可溶性の
あるルミフロンLF200(商品名、旭硝子(株)製)
とイソシアネート系硬化剤の5対1の重量比の混合物を
5重量%溶解させた溶液を調製した。また、絶縁膜形成
用の溶液(2)として、溶液(1)と同様にして調製し
た溶液に直径2.4μmの球状シリカスペーサーを、ル
ミフロン溶液100重量部に対して0.1重量部の量で
分散させた溶液を調製した。
Embodiment 1 1. As a solution (1) for forming an insulating film, Lumiflon LF200 (trade name, manufactured by Asahi Glass Co., Ltd.) having methyl ethyl ketone as a solvent and being soluble in an organic solvent.
A solution was prepared by dissolving 5% by weight of a mixture having a weight ratio of 5: 1 to an isocyanate-based curing agent. Further, as a solution (2) for forming an insulating film, a spherical silica spacer having a diameter of 2.4 μm was added to a solution prepared in the same manner as the solution (1) in an amount of 0.1 part by weight based on 100 parts by weight of the Lumiflon solution. To prepare a dispersed solution.

【0052】2. ITO透明電極を付したポリエーテ
ルスルホンの基板の電極面上に溶液(1)をマイクログ
ラビアコーティング法で塗布し次いで溶媒が蒸発した
後、120℃の温度で20分間塗布膜を加熱し、ルミフ
ロンを硬化させ、厚み0.1μmの絶縁膜を形成した。
なお、電極の形状は、セグメント、コモン側とも幅1.
17mm、ギャップ0.1mmの単純ストライプとし
た。
2. The solution (1) was applied on the electrode surface of a polyethersulfone substrate with an ITO transparent electrode by a microgravure coating method, and after the solvent was evaporated, the coating film was heated at a temperature of 120 ° C. for 20 minutes to remove Lumiflon. This was cured to form an insulating film having a thickness of 0.1 μm.
The shape of the electrode has a width of 1.
A simple stripe having a width of 17 mm and a gap of 0.1 mm was used.

【0053】3. 2で形成した絶縁膜上に、液晶溶液
をマイクログラビアコーティング法で塗布した。強誘電
性液晶としては下記構造式の強誘電性高分子液晶A及び
強誘電性低分子液晶B(重量比、A:B=3:7)から
なるものを用い、これを強誘電性液晶100重量部に対
して、ルミフロンLF200(商品名、旭硝子(株)
製)とイソシアネート系硬化剤の5対1の重量比の混合
物(以下、単にルミフロンという。)5重量部とともに
メチルエチルケトンに溶解させ、液晶溶液とした。液晶
溶液中の強誘電性液晶及びルミフロンの合計量の割合
は、30重量%とした(即ち、メチルエチルケトン:7
0重量%)。液晶溶液を塗布した後、加熱により溶媒を
蒸発させ、厚み2.0μmの強誘電性液晶層を形成し
た。
3. A liquid crystal solution was applied on the insulating film formed in 2 by a microgravure coating method. As the ferroelectric liquid crystal, a liquid crystal composed of a ferroelectric polymer liquid crystal A and a ferroelectric low molecular liquid crystal B (weight ratio, A: B = 3: 7) having the following structural formula is used. For parts by weight, Lumiflon LF200 (trade name, Asahi Glass Co., Ltd.)
And a isocyanate-based curing agent in a weight ratio of 5 to 1 (hereinafter simply referred to as lumiflon) together with 5 parts by weight of the mixture were dissolved in methyl ethyl ketone to obtain a liquid crystal solution. The ratio of the total amount of ferroelectric liquid crystal and lumiflon in the liquid crystal solution was 30% by weight (that is, methyl ethyl ketone: 7).
0% by weight). After applying the liquid crystal solution, the solvent was evaporated by heating to form a ferroelectric liquid crystal layer having a thickness of 2.0 μm.

【0054】[0054]

【化2】 (Iso:等方相、SmA:スメクチックA相、SmC
*:カイラルスメクチックC相、Cry.:結晶状態)
Embedded image (Iso: isotropic phase, SmA: smectic A phase, SmC
* : Chiral smectic C phase, Cry. : Crystalline state)

【0055】4. 2で用いたと同種の基板の電極面上
に、溶液(2)を2と同様の方法で塗布し、溶媒の蒸発
及びルミフロンの硬化を行い、厚み0.1μmの絶縁膜
及び球状スペーサーを付した基板を作製した。
4. The solution (2) was applied on the electrode surface of the same type of substrate as used in 2 in the same manner as in 2, the solvent was evaporated and Lumiflon was cured, and a 0.1 μm thick insulating film and a spherical spacer were provided. A substrate was prepared.

【0056】5. 3で得られた絶縁膜及び強誘電性液
晶層を付した基板と、4で得られた絶縁膜及び球状スペ
ーサーを付した基板を、図5に示す方法で、加圧ロール
で挟みこんで積層し、光学液晶素子を作製した。
5. The substrate provided with the insulating film and the ferroelectric liquid crystal layer obtained in 3 and the substrate provided with the insulating film and the spherical spacer obtained in 4 are sandwiched between pressure rolls by the method shown in FIG. Then, an optical liquid crystal element was produced.

【0057】6. 5で得られた液晶光学素子に上下の
電極間に40V、50Hzの電圧をかけながら曲げ変形
を加えることにより、素子中の強誘電性液晶を配向させ
た。次いで、液晶光学素子を75℃で60分間加熱し、
強誘電性液晶層中のルミフロンを硬化させた。
6. The liquid crystal optical device obtained in 5 was subjected to bending deformation while applying a voltage of 40 V and 50 Hz between the upper and lower electrodes, thereby aligning the ferroelectric liquid crystal in the device. Next, the liquid crystal optical element is heated at 75 ° C. for 60 minutes,
Lumiflon in the ferroelectric liquid crystal layer was cured.

【0058】7. 6で得られた配向及び硬化済の液晶
光学素子上に、40×40×5mmのアクリル板を載
せ、更にその上に1kgの分銅を載せる荷重試験を行っ
た。結果を表1に示す。なお、表1中、欠陥画素とは、
配向の乱れが肉眼で確認できる状態の画素を意味する。
7. A 40 × 40 × 5 mm acrylic plate was placed on the aligned and cured liquid crystal optical element obtained in 6 above, and a load test was conducted by placing a 1 kg weight on the acrylic plate. Table 1 shows the results. In Table 1, a defective pixel is
It means a pixel in which the disorder of the alignment can be visually confirmed.

【0059】実施例2 1. 絶縁膜形成用の溶液(1)として、メチルエチル
ケトンを溶媒として、ルミフロンを10重量%溶解させ
た溶液を調製した。また、絶縁膜形成用の溶液(2)と
して、溶液(1)と同様にして調製した溶液に直径2.
4μmの球状シリカスペーサーを、ルミフロン100重
量部に対して0.1重量部の量で分散させた溶液を調製
した。
Embodiment 2 1. As a solution (1) for forming an insulating film, a solution in which 10% by weight of lumiflon was dissolved using methyl ethyl ketone as a solvent was prepared. In addition, as a solution (2) for forming an insulating film, a solution prepared in the same manner as the solution (1) had a diameter of 2.
A solution was prepared by dispersing a 4 μm spherical silica spacer in an amount of 0.1 part by weight based on 100 parts by weight of Lumiflon.

【0060】2. 実施例1の2で用いたと同様の基板
の電極面上に溶液(1)をマイクログラビアコーティン
グ法で塗布し、溶媒が蒸発した後に120℃の温度で2
0分間ルミフロンの硬化を行い、厚み0.1μmの絶縁
膜を形成した。
2. The solution (1) was applied on the electrode surface of the same substrate as used in Example 1-2 by a microgravure coating method, and after the solvent was evaporated, the solution (2) was heated at a temperature of 120 ° C.
Lumiflon was cured for 0 minutes to form an insulating film having a thickness of 0.1 μm.

【0061】3. 2で形成した絶縁膜上に、液晶溶液
をマイクログラビアコーティング法で塗布した。強誘電
性液晶としては実施例1の3で用いたと同じものを用
い、これを強誘電性液晶100重量部に対して1重量部
のルミフロンとともにメチルエチルケトンに溶解させ、
液晶溶液とした。液晶溶液中の強誘電性液晶及びルミフ
ロンの合計量の割合は、30重量%とした(即ち、メチ
ルエチルケトン:70重量%)。液晶溶液を塗布した
後、加熱により溶媒を蒸発させ、厚み2.0μmの強誘
電性液晶層を形成した。
3. A liquid crystal solution was applied on the insulating film formed in 2 by a microgravure coating method. The same ferroelectric liquid crystal as used in Example 1-3 was used, and this was dissolved in methyl ethyl ketone together with 1 part by weight of Lumiflon per 100 parts by weight of the ferroelectric liquid crystal.
A liquid crystal solution was obtained. The ratio of the total amount of ferroelectric liquid crystal and lumiflon in the liquid crystal solution was 30% by weight (that is, methyl ethyl ketone: 70% by weight). After applying the liquid crystal solution, the solvent was evaporated by heating to form a ferroelectric liquid crystal layer having a thickness of 2.0 μm.

【0062】4. 2で用いたと同種の基板の電極面上
に、溶液(2)を2と同様の方法で塗布し、溶媒の蒸発
及びルミフロンの硬化を行い、厚み0.1μmの絶縁膜
及び球状スペーサーを付した基板を作製した。
4. The solution (2) was applied on the electrode surface of the same type of substrate as used in 2 in the same manner as in 2, the solvent was evaporated and Lumiflon was cured, and a 0.1 μm thick insulating film and a spherical spacer were provided. A substrate was prepared.

【0063】5. 3で得られた絶縁膜及び強誘電性液
晶層を付した基板と、4で得られた絶縁膜及び球状スペ
ーサーを付した基板を、実施例1の5と同様の方法で積
層し、光学液晶素子を作製した。
5. The substrate provided with the insulating film and the ferroelectric liquid crystal layer obtained in 3 and the substrate provided with the insulating film and the spherical spacer obtained in 4 are laminated in the same manner as in 5 of Example 1 to obtain an optical liquid crystal. An element was manufactured.

【0064】6. 5で得られた液晶光学素子に実施例
1の6と同様の操作を行い、強誘電性液晶の配向及び強
誘電性液晶層中のルミフロンの硬化を行った。
6. The same operation as in 6 of Example 1 was performed on the liquid crystal optical element obtained in 5 to align the ferroelectric liquid crystal and cure Lumiflon in the ferroelectric liquid crystal layer.

【0065】7. 6で得られた配向及び硬化済の液晶
光学素子に対し、実施例1の7と同様の荷重試験を行っ
た。結果を表1に示す。
7. A load test similar to 7 of Example 1 was performed on the aligned and cured liquid crystal optical element obtained in 6. Table 1 shows the results.

【0066】比較例1 1. 絶縁膜形成用の溶液(1)として、メチルエチル
ケトンを溶媒として、ルミフロンを10重量%溶解させ
た溶液を調製した。また、絶縁膜形成用の溶液(2)と
して、溶液(1)と同様にして調製した溶液に直径2.
4μmの球状シリカスペーサーを、ルミフロン100重
量部に対して0.1重量部の量で分散させた溶液を調製
した。
Comparative Example 1 1. As a solution (1) for forming an insulating film, a solution in which 10% by weight of lumiflon was dissolved using methyl ethyl ketone as a solvent was prepared. In addition, as a solution (2) for forming an insulating film, a solution prepared in the same manner as the solution (1) had a diameter of 2.
A solution was prepared by dispersing a 4 μm spherical silica spacer in an amount of 0.1 part by weight based on 100 parts by weight of Lumiflon.

【0067】2. 実施例1の2で用いたと同様の基板
の電極面上に溶液(1)をマイクログラビアコーティン
グ法で塗布し、溶媒が蒸発した後に120℃の温度で2
0分間ルミフロンの硬化を行い、厚み0.1μmの絶縁
膜を形成した。
2. The solution (1) was applied on the electrode surface of the same substrate as used in Example 1-2 by a microgravure coating method, and after the solvent was evaporated, the solution (2) was heated at a temperature of 120 ° C.
Lumiflon was cured for 0 minutes to form an insulating film having a thickness of 0.1 μm.

【0068】3. 2で形成した絶縁膜上に、液晶溶液
をマイクログラビアコーティング法で塗布した。強誘電
性液晶としては実施例1の3で用いたと同じものを用
い、これをルミフロンを添加せずにメチルエチルケトン
に溶解させ、液晶溶液とした。液晶溶液中の強誘電性液
晶の割合は、30重量%とした(即ち、メチルエチルケ
トン:70重量%)。液晶溶液を塗布した後、加熱によ
り溶媒を蒸発させ、厚み2.0μmの強誘電性液晶層を
形成した。
3. A liquid crystal solution was applied on the insulating film formed in 2 by a microgravure coating method. The same ferroelectric liquid crystal as that used in Example 1-3 was used, and this was dissolved in methyl ethyl ketone without adding Lumiflon to obtain a liquid crystal solution. The ratio of the ferroelectric liquid crystal in the liquid crystal solution was 30% by weight (that is, methyl ethyl ketone: 70% by weight). After applying the liquid crystal solution, the solvent was evaporated by heating to form a ferroelectric liquid crystal layer having a thickness of 2.0 μm.

【0069】4. 2で用いたと同種の基板の電極面上
に、溶液(2)を2と同様の方法で塗布し、溶媒の蒸発
及びルミフロンの硬化を行い、厚み0.1μmの絶縁膜
及び球状スペーサーを付した基板を作製した。
4. The solution (2) was applied on the electrode surface of the same type of substrate as used in 2 in the same manner as in 2, the solvent was evaporated and Lumiflon was cured, and a 0.1 μm thick insulating film and a spherical spacer were provided. A substrate was prepared.

【0070】5. 3で得られた絶縁膜及び強誘電性液
晶層を付した基板と、4で得られた絶縁膜及び球状スペ
ーサーを付した基板を、実施例1の5と同様の方法で積
層し、光学液晶素子を作製した。
5. The substrate provided with the insulating film and the ferroelectric liquid crystal layer obtained in 3 and the substrate provided with the insulating film and the spherical spacer obtained in 4 are laminated in the same manner as in 5 of Example 1 to obtain an optical liquid crystal. An element was manufactured.

【0071】6. 5で得られた液晶光学素子に実施例
1の6の配向方法と同様の配向操作を行い、強誘電性液
晶の配向及び強誘電性液晶層中のルミフロンの硬化を行
った。
6. The liquid crystal optical element obtained in 5 was subjected to the same alignment operation as in the alignment method of 6 in Example 1 to align the ferroelectric liquid crystal and cure Lumiflon in the ferroelectric liquid crystal layer.

【0072】7. 6で得られた配向済の液晶光学素子
に対し、実施例1の7と同様の荷重試験を行った。結果
を表1に示す。
7. A load test similar to 7 of Example 1 was performed on the aligned liquid crystal optical element obtained in 6. Table 1 shows the results.

【0073】[0073]

【表1】 [Table 1]

【0074】表1から明らかなように、実施例1及び2
で得られた液晶光学素子は、比較例1で得られた液晶光
学素子に比較して欠陥画素の発生が著しく少ない。特
に、荷重試験を9日間行った際の欠陥画素の発生は、実
施例1及び2においては比較例1の約5〜6分の1であ
り、長期間にわたって優れた機械的強度を維持すること
がわかる。
As is clear from Table 1, Examples 1 and 2
In the liquid crystal optical element obtained in Comparative Example 1, the number of defective pixels is significantly reduced as compared with the liquid crystal optical element obtained in Comparative Example 1. In particular, the occurrence of defective pixels when the load test was performed for 9 days was about 5 to 6 times smaller than that of Comparative Example 1 in Examples 1 and 2, and excellent mechanical strength was maintained over a long period of time. I understand.

【0075】実施例1で得られた液晶光学素子を剥離
し、球状スペーサーを付した方の基板表面を顕微鏡にて
観察したところ、図8のような構造をしており、球状ス
ペーサーの固定能力が向上していることが分った。
The liquid crystal optical element obtained in Example 1 was peeled off, and the surface of the substrate on which the spherical spacer was attached was observed with a microscope. The substrate had a structure as shown in FIG. Was found to have improved.

【0076】本発明の液晶光学素子は、強誘電性高分子
液晶と強誘電性低分子液晶の混合物からなる強誘電性液
晶層中に補強材としての非液晶性高分子材料の硬化物が
強誘電性液晶と相分離した状態で分散しており、しかも
強誘電性液晶として低分子液晶のみならず高分子液晶も
含まれており、更に絶縁膜を基板と強誘電性液晶相との
間に設けていることから、優れた機械的強度を示し、外
部からの圧力等による配向欠陥、道通欠陥が著しく減少
される。また、絶縁膜を構成する非液晶性高分子材料の
硬化物と、強誘電性液晶層中の非液晶性高分子材料の硬
化物とが、互いに接着性を有する非液晶性高分子材料の
硬化物であるため、基板に接着する絶縁膜と強誘電性液
晶層とが強固に接着されており、剥離に対しても強い耐
性を有する。球状スペーサーを混入させた場合にも、球
状スペーサーが絶縁層及び強誘電性液晶層中の非液晶高
分子材料の硬化物により強固に固定され、優れたセルギ
ャップ保持能力を発揮する。
In the liquid crystal optical element of the present invention, a hardened material of a non-liquid crystalline polymer material as a reinforcing material is contained in a ferroelectric liquid crystal layer composed of a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low molecular liquid crystal. It is dispersed in a state separated from the dielectric liquid crystal and contains not only low molecular liquid crystal but also high molecular liquid crystal as ferroelectric liquid crystal, and furthermore, an insulating film is provided between the substrate and the ferroelectric liquid crystal phase. Due to the provision, excellent mechanical strength is exhibited, and alignment defects and passage defects due to external pressure and the like are significantly reduced. In addition, the cured product of the non-liquid crystalline polymer material forming the insulating film and the cured product of the non-liquid crystalline polymer material in the ferroelectric liquid crystal layer are cured of the non-liquid crystalline polymer material having adhesive properties to each other. As a result, the insulating film and the ferroelectric liquid crystal layer adhered to the substrate are firmly adhered to each other, and have strong resistance to peeling. Even when the spherical spacer is mixed, the spherical spacer is firmly fixed by the cured material of the non-liquid crystal polymer material in the insulating layer and the ferroelectric liquid crystal layer, and exhibits excellent cell gap holding ability.

【0077】本発明の液晶光学素子の製造方法によれ
ば、上記本発明の液晶光学素子を、スペーサー材を設置
するための特別の工程を必要とせずに、大面積の液晶光
学素子であっても容易にかつ連続的に製造することがで
きる。また、絶縁膜形成用の非液晶性高分子材料溶液に
球状スペーサーを混入することにより、基板への非液晶
性高分子材料溶液の塗布という簡単な方法でスペーサー
を配置することができ、液晶光学素子のより一層の強化
及びセルギャップの保持能力の向上を容易に行うことが
できる。
According to the method of manufacturing a liquid crystal optical element of the present invention, the liquid crystal optical element of the present invention is a large-area liquid crystal optical element without requiring a special step for installing a spacer material. Can also be manufactured easily and continuously. In addition, by mixing the spherical spacer into the non-liquid crystalline polymer material solution for forming the insulating film, the spacer can be arranged by a simple method of applying the non-liquid crystalline polymer material solution to the substrate. Further enhancement of the element and improvement of the cell gap holding ability can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶光学素子の一態様を示す部分断面
図である。
FIG. 1 is a partial sectional view showing one embodiment of a liquid crystal optical element of the present invention.

【図2】本発明の液晶光学素子の製造方法において、一
方の基板に絶縁膜及び球状スペーサーを付した状態を示
す部分断面図である。
FIG. 2 is a partial cross-sectional view showing a state where one substrate is provided with an insulating film and a spherical spacer in the method for manufacturing a liquid crystal optical element of the present invention.

【図3】本発明の液晶光学素子の製造方法において、他
方の基板に絶縁膜を付した状態を示す部分断面図であ
る。
FIG. 3 is a partial cross-sectional view showing a state where an insulating film is provided on the other substrate in the method for manufacturing a liquid crystal optical element of the present invention.

【図4】本発明の液晶光学素子の製造方法において、絶
縁膜を付した基板に更に強誘電性液晶膜を付した状態を
示す部分断面図である。
FIG. 4 is a partial cross-sectional view showing a state in which a ferroelectric liquid crystal film is further provided on a substrate provided with an insulating film in the method for manufacturing a liquid crystal optical element of the present invention.

【図5】本発明の液晶光学素子の製造方法における積層
工程を示す部分断面図である。
FIG. 5 is a partial cross-sectional view showing a laminating step in the method for manufacturing a liquid crystal optical element of the present invention.

【図6】本発明の液晶光学素子の一態様を示す部分断面
図である。
FIG. 6 is a partial cross-sectional view showing one embodiment of the liquid crystal optical element of the present invention.

【図7】図6で示した液晶光学素子の部分拡大図であ
る。
7 is a partially enlarged view of the liquid crystal optical element shown in FIG.

【図8】本発明の液晶光学素子を剥離したときの一方の
基板の表面を示す部分断面図である。
FIG. 8 is a partial cross-sectional view showing the surface of one substrate when the liquid crystal optical element of the present invention is peeled off.

【符号の説明】[Explanation of symbols]

1 基板 1′ 基板 2 電極 2′ 電極 3 絶縁膜 3′ 絶縁膜 4 強誘電性液晶層 5 球状スペーサー 6 加圧ロール 7 非液晶性高分子材料の硬化物 Reference Signs List 1 substrate 1 'substrate 2 electrode 2' electrode 3 insulating film 3 'insulating film 4 ferroelectric liquid crystal layer 5 spherical spacer 6 pressure roll 7 cured non-liquid crystalline polymer material

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02F 1/1333 610 G02F 1/1339 500 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G02F 1/1333 610 G02F 1/1339 500

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一方が可撓性を有する2枚の
電極付き基板間に強誘電性液晶層が挟持された液晶光学
素子において、少なくとも一方の基板の電極を付した面
上に非液晶性高分子材料の硬化物からなる絶縁膜を有
し、強誘電性液晶層が、強誘電性高分子液晶と強誘電性
低分子液晶の混合物からなる強誘電性液晶と非液晶性高
分子材料の硬化物とからなり、強誘電性液晶層中の強誘
電性液晶と非液晶性高分子材料の硬化物とは互いに均一
に相分離して混在しており、絶縁膜を形成する非液晶性
高分子材料の硬化物と強誘電性液晶層中に存在する非液
晶性高分子材料の硬化物とが、互いに接着性を有する非
液晶性高分子材料の硬化物であることを特徴とする液晶
光学素子。
In a liquid crystal optical element in which a ferroelectric liquid crystal layer is sandwiched between two substrates having electrodes, at least one of which has flexibility, a non-liquid crystal surface is formed on at least one of the substrates on which the electrodes are provided. It has an insulating film made of a cured polymer material, and the ferroelectric liquid crystal layer is made of a ferroelectric liquid crystal made of a mixture of a ferroelectric polymer liquid crystal and a ferroelectric low molecular liquid crystal and a non-liquid crystal polymer material. The ferroelectric liquid crystal in the ferroelectric liquid crystal layer and the cured material of the non-liquid crystalline polymer material are uniformly separated and mixed with each other in the ferroelectric liquid crystal layer to form an insulating film. Liquid crystal optics characterized in that the cured product of the molecular material and the cured product of the non-liquid crystalline polymer material present in the ferroelectric liquid crystal layer are cured products of a non-liquid crystalline polymer material having adhesive properties to each other. element.
【請求項2】 絶縁膜を構成する非液晶性高分子材料の
硬化物がポリイミド、ポリアミド、ポリエステル、セル
ロース、メラミン樹脂、エポキシ樹脂、フッ化エポキシ
樹脂、ウレタン樹脂、含フッ素ウレタン樹脂、含フッ素
ビニル樹脂、シリコーン、これらの2種以上からなる混
合物及びこれらの2種以上の共重合体からなる群から選
ばれる非液晶性高分子材料の硬化物である請求項1記載
の液晶光学素子。
2. A cured product of a non-liquid crystalline polymer material constituting an insulating film is polyimide, polyamide, polyester, cellulose, melamine resin, epoxy resin, fluorinated epoxy resin, urethane resin, fluorinated urethane resin, or fluorinated vinyl. The liquid crystal optical element according to claim 1, wherein the liquid crystal optical element is a cured product of a non-liquid crystalline polymer material selected from the group consisting of resin, silicone, a mixture of two or more of these, and a copolymer of two or more of these.
【請求項3】 強誘電性液晶層中に、非液晶性高分子材
料の硬化物が強誘電性液晶100重量部に対して1〜3
0重量部の量で含まれている請求項1又は2記載の液晶
光学素子。
3. A cured product of a non-liquid crystalline polymer material is contained in the ferroelectric liquid crystal layer in an amount of 1 to 3 parts by weight based on 100 parts by weight of the ferroelectric liquid crystal.
The liquid crystal optical element according to claim 1, wherein the liquid crystal optical element is contained in an amount of 0 parts by weight.
【請求項4】 絶縁膜を一方の基板上にのみ有し、更
に、材質がシリカ又は耐溶剤性を持つプラスチックであ
る球状スペーサーが、絶縁膜を形成する非液晶性高分子
材料の硬化物100重量部に対し0.1〜10重量部の
量で、対向する2枚の基板の電極を付した面に接する状
態で配置されている請求項1〜3いずれか記載の液晶光
学素子。
4. A cured product of a non-liquid crystalline polymer material which forms an insulating film and has a spherical spacer made of silica or a solvent-resistant plastic having an insulating film on only one substrate. The liquid crystal optical element according to any one of claims 1 to 3, wherein the liquid crystal optical element is arranged in an amount of 0.1 to 10 parts by weight with respect to part by weight and in contact with the electrode-attached surfaces of the two opposing substrates.
【請求項5】 絶縁膜を両方の基板上に有し、更に、材
質がシリカ又は耐溶剤性を持つプラスチックである球状
スペーサーが、一方の基板の電極を付した面及び他方の
基板上の絶縁膜に接する状態で配置されており、球状ス
ペーサーの量が、球状スペーサーが基板の電極を付した
面に接している方の基板上に形成された絶縁膜を形成す
る非液晶性高分子材料の硬化物100重量部に対し0.
1〜10重量部である請求項1〜3いずれか記載の液晶
光学素子。
5. An insulating film is provided on both substrates, and a spherical spacer made of silica or a solvent-resistant plastic is provided on one surface of the substrate on which the electrodes are provided and on the other substrate. It is arranged in contact with the film, and the amount of the spherical spacer is the amount of the non-liquid crystalline polymer material that forms the insulating film formed on the substrate on which the spherical spacer is in contact with the electrode-attached surface of the substrate. 0.1 parts by weight for 100 parts by weight of the cured product.
The liquid crystal optical element according to claim 1, wherein the amount is 1 to 10 parts by weight.
【請求項6】 少なくとも一方が可撓性を有する2枚の
電極付き基板の少なくとも一方の基板の電極を付した面
上に、非液晶性高分子材料を溶媒に溶解させた溶液を塗
布し、次いで溶媒の蒸発及び非液晶性高分子材料の硬化
を行うことにより絶縁膜を形成する工程、強誘電性高分
子液晶と強誘電性低分子液晶の混合物からなる強誘電性
液晶と、絶縁膜の形成に用いた非液晶性高分子材料と互
いに接着性を有する非液晶性高分子材料とを溶媒に溶解
させた液晶溶液を、少なくとも一方の基板上の絶縁膜上
に塗布し、次いで溶媒の蒸発を行うことにより、強誘電
性液晶と非液晶性高分子材料とが互いに均一に相分離し
て混在する強誘電性液晶層を形成する工程、2枚の基板
を強誘電性液晶層が絶縁膜を介してこれら2枚の基板に
挟持されるように積層する工程、及び積層体の強誘電性
液晶層中の非液晶性高分子材料を硬化させる工程からな
ることを特徴とする請求項1記載の液晶光学素子の製造
方法。
6. A solution in which a non-liquid crystalline polymer material is dissolved in a solvent is applied to at least one of the two substrates with electrodes, at least one of which has flexibility, on a surface on which the electrodes are attached, Next, a step of forming an insulating film by evaporating the solvent and curing the non-liquid crystalline polymer material, a ferroelectric liquid crystal composed of a mixture of ferroelectric polymer liquid crystal and ferroelectric low molecular liquid crystal, A liquid crystal solution obtained by dissolving the non-liquid crystalline polymer material used for the formation and the non-liquid crystalline polymer material having adhesiveness to each other in a solvent is applied on the insulating film on at least one substrate, and then the solvent is evaporated. Forming a ferroelectric liquid crystal layer in which the ferroelectric liquid crystal and the non-liquid crystalline polymer material are uniformly separated from each other and mixed together, and the two substrates are formed of an insulating film. Through the two substrates so that they are sandwiched between these two substrates. 2. The method for manufacturing a liquid crystal optical element according to claim 1, comprising a step of forming a layer and a step of curing a non-liquid crystalline polymer material in the ferroelectric liquid crystal layer of the laminate.
【請求項7】 非液晶性高分子材料がポリイミド、ポリ
アミド、ポリエステル、セルロース、メラミン樹脂、ア
クリル樹脂、エポキシ樹脂、フッ化エポキシ樹脂、ウレ
タン樹脂、含フッ素ウレタン樹脂、含フッ素ビニル樹
脂、シリコーン、これらの2種以上からなる混合物及び
これらの2種以上の共重合体からなる群から選ばれるも
のである請求項6記載の液晶光学素子の製造方法。
7. The non-liquid crystalline polymer material is polyimide, polyamide, polyester, cellulose, melamine resin, acrylic resin, epoxy resin, fluorinated epoxy resin, urethane resin, fluorinated urethane resin, fluorinated vinyl resin, silicone, 7. The method for producing a liquid crystal optical element according to claim 6, wherein the liquid crystal optical element is selected from the group consisting of a mixture of two or more of these and a copolymer of two or more of these.
【請求項8】 液晶溶液が非液晶性高分子材料を強誘電
性液晶100重量部に対して1〜30重量部の量で含有
する請求項6又は7記載の液晶光学素子の製造方法。
8. The method according to claim 6, wherein the liquid crystal solution contains the non-liquid crystalline polymer material in an amount of 1 to 30 parts by weight based on 100 parts by weight of the ferroelectric liquid crystal.
【請求項9】 一方の基板の電極を付した面上に塗布す
る非液晶性高分子材料の溶液が、材質がシリカ又は耐溶
剤性を持つプラスチックである球状スペーサーを、非液
晶性高分子材料100重量部に対し0.1〜10重量部
の量で含有する請求項6〜8いずれか記載の液晶光学素
子の製造方法。
9. A solution of a non-liquid crystalline polymer material to be coated on an electrode-attached surface of one of the substrates comprises a spherical spacer made of silica or a solvent-resistant plastic material. 9. The method for producing a liquid crystal optical element according to claim 6, wherein the content is 0.1 to 10 parts by weight based on 100 parts by weight.
JP1134294A 1994-01-07 1994-01-07 Liquid crystal optical element and manufacturing method thereof Expired - Fee Related JP2952148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134294A JP2952148B2 (en) 1994-01-07 1994-01-07 Liquid crystal optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134294A JP2952148B2 (en) 1994-01-07 1994-01-07 Liquid crystal optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07199162A JPH07199162A (en) 1995-08-04
JP2952148B2 true JP2952148B2 (en) 1999-09-20

Family

ID=11775369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134294A Expired - Fee Related JP2952148B2 (en) 1994-01-07 1994-01-07 Liquid crystal optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2952148B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100573B1 (en) 2006-11-15 2011-12-29 다이니폰 인사츠 가부시키가이샤 Process for producing liquid crystal display element

Also Published As

Publication number Publication date
JPH07199162A (en) 1995-08-04

Similar Documents

Publication Publication Date Title
US8830553B2 (en) Edge seals for, and processes for assembly of, electro-optic displays
DE19956706B4 (en) Cell substrate and liquid crystal display
US7567332B2 (en) Manufacturing method of a display panel
JP2009544060A (en) Liquid-containing film structure
JP2001133630A (en) Anisotropic film and liquid crystal display device
US20100151228A1 (en) Reworkable liquid crystal film and manufacturing method thereof
US9013670B2 (en) First substrate sheet, liquid crystal panel having first substrate sheet and method for manufacturing same
JP2952148B2 (en) Liquid crystal optical element and manufacturing method thereof
JP2686751B2 (en) Laminate having optical phase function
US20210273206A1 (en) Method for avoiding warping of substrate, method for manufacturing display panel, and display panel
JPH10301115A (en) Liquid crystal display element and its production
JPH05264989A (en) Color liquid crystal display element
JPH07270763A (en) Liquid crystal display element
JPH02311822A (en) Orientation control film, orientation control film and liquid crystal element
JPH08211376A (en) Transparent laminated film
JPH06308464A (en) Liquid crystal element and its production
JPH06301039A (en) Production of liquid crystal optical element
JP2766218B2 (en) Manufacturing method of liquid crystal optical element
JPH08320470A (en) Liquid crystal optical element and its production
JPH05307161A (en) Production of liquid crystal display panel
JP2001051285A (en) Liquid crystal device and manufacture thereof
JP2001004985A (en) Cell substrate, liquid crystal cell, liquid crystal display device and method for forming electrode
JPH0675207A (en) Production of liquid crystal display element
WO2023059839A1 (en) Multicurved optical devices, and methods for making same
JPH086091B2 (en) Ferroelectric liquid crystal material composition and liquid crystal optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090709

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110709

LAPS Cancellation because of no payment of annual fees