JP2950358B2 - Simulation method of semiconductor device - Google Patents

Simulation method of semiconductor device

Info

Publication number
JP2950358B2
JP2950358B2 JP27002394A JP27002394A JP2950358B2 JP 2950358 B2 JP2950358 B2 JP 2950358B2 JP 27002394 A JP27002394 A JP 27002394A JP 27002394 A JP27002394 A JP 27002394A JP 2950358 B2 JP2950358 B2 JP 2950358B2
Authority
JP
Japan
Prior art keywords
potential
electric field
grid
ionization
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27002394A
Other languages
Japanese (ja)
Other versions
JPH08139150A (en
Inventor
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP27002394A priority Critical patent/JP2950358B2/en
Publication of JPH08139150A publication Critical patent/JPH08139150A/en
Application granted granted Critical
Publication of JP2950358B2 publication Critical patent/JP2950358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、全空間に対する電位補
間及び全空間に対する電界を精度よく決定できる半導体
素子のシミュレーション方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simulating a semiconductor device capable of accurately interpolating a potential in an entire space and accurately determining an electric field in the entire space.

【0002】[0002]

【従来の技術】半導体素子内の電流経路についてイオン
化積分計算を行って、半導体素子の接合部のアバランシ
ェ降伏電圧を求める方法が知られている。即ち、イオン
化積分の計算結果に下式(1)が成立するとき、接合の
アバランシェブレークダウンが生じる。
2. Description of the Related Art There is known a method for calculating an avalanche breakdown voltage at a junction of a semiconductor device by performing ionization integral calculation on a current path in the semiconductor device. That is, when the following expression (1) is satisfied in the calculation result of the ionization integral, avalanche breakdown of the junction occurs.

【数1】 また、二次元以上の空間では、一般に積分経路は任意で
あり、イオン化積分を行うとき、まずイオン化積分を行
う経路を決定する必要がある。一般的に、イオン化積分
経路としては電界方向経路を用いる。ところで、イオン
化積分経路は連続する線の形であり、その通過点は一般
に任意である。またイオン化積分実行のためには経路上
すべての点の電界を定義しなければならない。更に、イ
オン化積分経路の通過位置は事前には未知であり、電界
方向をたどる経路探索の結果初めて決定される。従っ
て、対象全空間中任意の位置の電界が定義され明確にな
っていなければならない。一方、矩形格子による有限差
分法を用いた一般のデバイスシミュレーションでは、直
接的に得られる計算結果はその直交格子点上の電位であ
り、この電位から電界を求める。最も単純な方法によれ
ば、格子点上の電位から計算される電界は、図1に示す
ように水平格子線上に沿う横方向電界成分Exi+1/2,j
Exi+i/2,j+1(左右の格子点上の電位から計算)と、鉛
直格子線上に沿う縦方向電界成分Eyi,j+1/2、Ey
i+1,j+1/2(上下の格子点上の電位から計算)となる。
図1のψは直交格子点上の電位であり、Exi+1/2,j、E
yi,j+1/2は次式で表わされる。 Exi+1/2,j=−(ψi+1,j−ψi,j)/Δxi Eyi,j+1/2=−(ψi,j+1−ψi,j)/Δyj Δxi=xi+1−xi Δyj=yj+1−yj しかし、この方法で得られる電界はある一点の電界を表
さないため、計算結果は実用性に欠ける。そこで、これ
らの各電界成分の線形補間を用い、図1に示すように矩
形格子の中心点(重心)において電界を定義する方法が
行われていた。即ち、Eoを重心位置における電界、Eo
xをEoのx成分、EoyをEoのy成分とすると、 Eox=(Exi+1/2,j+Exi+1/2,j+1)/2 Eoy=(Eyi,j+1/2+Eyi+1,j+1/2)/2 である。対象全空間での電界の定義では、格子重心点に
ついて定義した電界を、その格子内全体の代表の電界と
考え、格子内のすべての位置において、その電界を先の
重心点の電界と等しく一定とする。この定義により、全
対象空間における電界の定義が可能となり、電界方向に
沿って得られるイオン化積分経路を決定することができ
る。また、同時に経路上の電界を決定して、イオン化積
分を計算できる。
(Equation 1) In addition, in a space of two or more dimensions, an integration path is generally arbitrary, and when performing ionization integration, it is necessary to first determine a path for performing ionization integration. Generally, an electric field direction path is used as an ionization integration path. Incidentally, the ionization integration path is in the form of a continuous line, and its passing point is generally arbitrary. In order to execute the ionization integration, the electric fields at all points on the path must be defined. Further, the passing position of the ionization integration path is not known in advance, and is determined for the first time as a result of a path search following the electric field direction. Therefore, the electric field at an arbitrary position in the entire target space must be defined and clarified. On the other hand, in a general device simulation using a finite difference method using a rectangular grid, a directly obtained calculation result is a potential on the orthogonal grid point, and an electric field is obtained from this potential. According to the simplest method, the electric field calculated from the potential on the grid point is a horizontal electric field component Ex i + 1/2, j along a horizontal grid line, as shown in FIG.
Ex i + i / 2, j + 1 (calculated from the potential on the left and right grid points) and the vertical electric field components Ey i, j + 1/2, Ey along the vertical grid line
i + 1, j + 1/2 (calculated from potentials on upper and lower grid points).
Ψ in FIG. 1 is a potential on an orthogonal lattice point, and Ex i + 1/2, j , E
y i, j + 1/2 is represented by the following equation. Ex i + 1/2, j = − (ψ i + 1, j −ψ i, j ) / Δx i Ey i, j + 1/2 = − (ψ i, j + 1 −ψ i, j ) / Δy j Δx i = x i + 1 −x i Δy j = y j + 1 −y j However, the electric field obtained by this method does not represent an electric field at a certain point, so that the calculation result is not practical. Therefore, a method of defining an electric field at the center point (center of gravity) of a rectangular lattice as shown in FIG. 1 has been performed by using linear interpolation of these electric field components. That is, Eo is the electric field at the position of the center of gravity, Eo
x component of Eo and x, when the Eo y and y components of Eo, Eo x = (Ex i + 1/2, j + Ex i + 1/2, j + 1) / 2 Eo y = (Ey i, j +1/2 + Ey i + 1, j + 1/2 ) / 2. In the definition of the electric field in the entire target space, the electric field defined for the center of gravity of the grid is regarded as the representative electric field of the entire grid, and the electric field is constant at all positions in the grid equal to the electric field of the previous center of gravity. And With this definition, it is possible to define an electric field in the entire target space, and it is possible to determine an ionization integration path obtained along the electric field direction. At the same time, the electric field on the path is determined, and the ionization integral can be calculated.

【0003】[0003]

【発明が解決しようとする課題】しかしこの従来の電界
定義は、正確性に欠けるため、これに基づいて決定され
るイオン化積分経路及びイオン化積分値は信頼性が著し
く低い。即ち、上記の定義法による電界のx成分は、格
子の上下の境界上のx成分電界の平均値である。よっ
て、上下境界におけるx成分電界が等しくない限り、従
来定義法による電界のx成分と上下境界上のx成分電界
は異なる。格子境界上の電界成分はその両端の格子点電
位から直接得られ、最も信頼性の高い情報である。しか
るに、上記の電界定義法では、境界上において、この重
要な情報が失われる。また、電界は電位の勾配を逆符号
としたもの(Ε=−grad ψ)であり、上記の電界定義
法では格子内で一定の電界であるから、矩形格子内のポ
テンシャル面はひとつの平面となる。各格子について、
上記方法に従ってそのポテンシャル面を設定すると、先
に挙げた格子線(格子境界)上の電界成分の矛盾から、
隣接する格子間のポテンシャル面は図2のように一般的
に不連続となる。つまり、上記の電界定義法には、不連
続な電位定義が内在し、物理的に甚だ不自然なものとな
る。したがって、このような矛盾を含む電界定義に基づ
くイオン化積分計算は信頼に欠ける。
However, since the conventional electric field definition lacks accuracy, the ionization integration path and the ionization integration value determined based on the definition are extremely low in reliability. That is, the x component of the electric field according to the above definition method is an average value of the x component electric field on the upper and lower boundaries of the lattice. Therefore, as long as the x-component electric fields at the upper and lower boundaries are not equal, the x-component of the electric field according to the conventionally defined method and the x-component electric field on the upper and lower boundaries are different. The electric field component on the lattice boundary is directly obtained from the lattice point potential at both ends, and is the most reliable information. However, in the above-described electric field definition method, this important information is lost on the boundary. In addition, the electric field is obtained by reversing the potential gradient (Ε = −grad 、), and the electric field is a constant electric field in the lattice in the above-described electric field definition method. Therefore, the potential surface in the rectangular lattice is one plane. Become. For each grid,
When the potential surface is set according to the above method, the above-mentioned inconsistency of the electric field components on the grid lines (lattice boundaries)
The potential surface between adjacent lattices is generally discontinuous as shown in FIG. That is, in the above-described electric field definition method, a discontinuous potential definition is inherent, and it is physically extremely unnatural. Therefore, the ionization integral calculation based on the electric field definition including such a contradiction is not reliable.

【0004】そこで、本発明では、前記問題を解決する
新規な電界定義法によって、より正確なイオン化積分経
路を決定できる半導体素子のシミュレーション方法を提
供することを目的とする。
Accordingly, an object of the present invention is to provide a method of simulating a semiconductor device that can determine a more accurate ionization integration path by a novel electric field definition method that solves the above problem.

【0005】[0005]

【課題を解決するための手段】二次元空間上に多角形の
格子升目を有する格子に散在する格子点を用いる本発明
による半導体素子のシュミレーション方法では、格子を
構成する一の格子升目の格子点(A、B、C、D)上の
各電位(ψa、ψb、ψc、ψd)を得る過程と、一の格子
升目の重心(G)の電位(ψg)を得る過程と、一の格
子升目の格子点(A、B、C、D)及び重心(G)の電
位(ψa、ψb、ψc、ψd、ψg)から構成され且つ重心
の電位(ψg)を共通の頂点として互いに隣接する複数
の三角計ポテンシャル平面(ψaψbψg、ψbψcψg、ψ
cψdψg、ψaψdψg)によって一の格子升目内のポテン
シャルを補間する過程とを含む。また、複数の三角計ポ
テンシャル平面(ψaψbψg、ψbψcψg、ψcψdψg
ψaψdψg)の傾きから一の格子升目内の電界を得る。
According to the present invention, a method of simulating a semiconductor device using grid points scattered on a grid having polygonal grid cells in a two-dimensional space includes a grid point of one grid cell forming the grid. The process of obtaining each potential (ψ a , ψ b , ψ c , ψ d ) on (A, B, C, D), and the process of obtaining the potential (ψ g ) of the center of gravity (G) of one grid cell , One grid cell (A, B, C, D) and the potential (ψ a , ψ b , ψ c , ψ d , ψ g ) of the center of gravity (G) and the potential of the center of gravity (ψ g ) As a common vertex and a plurality of triangular potential planes adjacent to each other (ψ a ψ b ψ g , ψ b ψ c ψ g , ψ
c ψ d ψ g and ψ a ψ d ψ g ) to interpolate the potential in one grid cell. In addition, a plurality of triangulation potential planes (ψ a ψ b ψ g , ψ b ψ c ψ g , ψ c ψ d ψ g ,
The electric field in one grid cell is obtained from the slope of ψ a ψ d ψ g ).

【0006】[0006]

【作用】格子境界線上の電界成分はその両端の格子点電
位から直接得られる値と一致すので、従来法に比べて信
頼性が高く、また隣接する格子間のポテンシャル面が連
続する。この結果、イオン化積分経路を正確に決定で
き、より精度の高い降伏電圧を計算できる。
The electric field component on the grid boundary coincides with the value directly obtained from the grid point potentials at both ends, so that the reliability is higher than in the conventional method, and the potential plane between adjacent grids is continuous. As a result, the ionization integration path can be determined accurately, and a more accurate breakdown voltage can be calculated.

【0007】[0007]

【実施例】以下、本発明による半導体素子のシュミレー
ション方法の実施例を図3〜図11について説明する。
本実施例による電界定義法では、まず、従来例と同様に
互いに直交するx軸とy軸から成るxy平面上に配置さ
れた4点A(i,j+1)、B(i+1,j+1)、C
(i+1,j)、D(i,j)の各電位ψa、ψb
ψc、ψdを得る。ここで、AB線分及びCD線分はx軸
に平行であり、AD線分及びBC線分はy軸に平行であ
る。図3に示すように、電位ψa、ψb、ψc、ψdはxy
平面に直交するψ軸上にとる。また、直交格子点上の4
点A、B、C、Dから成る四角形ABCDの重心G(i
+1/2,j+1/2)の電位ψgも同様にψ軸上にと
る。ここで、電位ψgは4個の格子点電位の平均で、ψg
=(ψa、ψb、ψc、ψd)/4とする。次に、4個の格
子升目内(四角形ABCD内)の電位をψa、ψb
ψc、ψd、ψgで構成されるポテンシャル面で補間する
が、本実施例では、4つの三角形のポテンシャル平面で
補間する。即ち、ψa、ψb、ψgから成る第1の三角形
ポテンシャル平面(1)、ψb、ψc、ψgから成る第2の
三角形ポテンシャル平面(2)、ψc、ψd、ψgから成る
第3の三角形ポテンシャル平面(3)、ψa、ψd、ψg
ら成る第4の三角形ポテンシャル平面(4)によって格
子升目内の電位を補間定義する。補間ポテンシャル面
(1)(2)(3)(4)を図3に示す。この電位定義により、図
4に示すように全空間において、それを構成する各平面
状のポテンシャル面の勾配を計算することによって電界
を得ることができる。図3及び図4から理解されるよう
に、本実施例では、格子境界線を一辺として含むポテン
シャル平面で格子境界線の電位を補間し、補間した電位
に基づいて電界を得るので、格子境界線上、即ちAB、
CD、AD、BC線分上の電界成分は各線分の両端の格
子点電位から直接得られる値と一致し、従来例とは異な
り信頼性の高い情報となる。また、格子境界上の電界成
分の矛盾が無いので、隣接する格子同志のポテンシャル
面は連続である。電界は電位の勾配の符号を逆にしたも
の(−grad ψ)である。よって、積分経路は探索開始
点を始点としてポテンシャル面の最大傾斜線方向をその
下流側(電界べクトル方向)と上流側(反電界ベクトル
方向)の二方向に向かって探索することにより決定され
る。上記の電位定義方法によれば全領域について連続な
電位を定義できるので、その定義に従って確実かつ正確
な積分経路を得ることができる。また、各三角形領域内
では、ポテンシャル面は平面であり、電界べクトルもそ
の領域内で一定である。よって、各三角形領域内での積
分経路は直線(線分)となり、全体の積分経路はそれら
が連なった連続線分となる。なお、最大傾斜線方向をた
どる経路探索過程では、半導体境界への到達、下流側で
の谷線への到達、上流側での稜線への到達等やや特殊な
状況が生ずる場合がある。しかし、いずれの場合もその
状況下におけるポテンシャル面の最大傾斜線をたどる原
則に基づき対処すればよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor device simulation method according to the present invention will be described below with reference to FIGS.
In the electric field definition method according to the present embodiment, first, four points A (i, j + 1), B (i + 1, j + 1), C (C + 1) are arranged on an xy plane composed of an x-axis and a y-axis orthogonal to each other as in the conventional example.
(I + 1, j), D (i, j) potentials ψ a , ψ b ,
ψ c and ψ d are obtained. Here, the AB line segment and the CD line segment are parallel to the x-axis, and the AD line segment and the BC line segment are parallel to the y-axis. As shown in FIG. 3, the potentials ψ a , ψ b , ψ c , ψ d are xy
Take on the ψ axis perpendicular to the plane. Also, 4 on the orthogonal grid point
The center of gravity G (i of a square ABCD consisting of points A, B, C, D
Similarly, the potential ψ g of +1/2, j + /) is also on the ψ axis. Here, the potential ψ g is an average of four grid point potentials, and ψ g
= (Ψ a , ψ b , ψ c , ψ d ) / 4. Next, the potentials in the four grid cells (in the square ABCD) are represented by ψ a , ψ b ,
Interpolation is performed using a potential plane composed of ψ c , ψ d , and ψ g . In the present embodiment, interpolation is performed using four triangular potential planes. That is, a first triangular potential plane (1) composed of ψ a , ψ b , ψ g , a second triangular potential plane (2) composed of ψ b , ψ c , ψ g , ψ c , ψ d , ψ g The potential in the grid cell is interpolated and defined by a third triangular potential plane (3) composed of the following, and a fourth triangular potential plane (4) composed of ψ a , ψ d and ψ g . FIG. 3 shows the interpolation potential planes (1), (2), (3), and (4). By this potential definition, an electric field can be obtained in the entire space by calculating the gradient of each planar potential surface constituting the space, as shown in FIG. As understood from FIGS. 3 and 4, in this embodiment, the potential of the grid boundary is interpolated on the potential plane including the grid boundary as one side, and an electric field is obtained based on the interpolated potential. Ie AB,
The electric field components on the CD, AD, and BC line segments match the values directly obtained from the grid point potentials at both ends of each line segment, and provide highly reliable information unlike the conventional example. Since there is no inconsistency in the electric field components on the lattice boundaries, the potential planes of adjacent lattices are continuous. The electric field is obtained by reversing the sign of the potential gradient (−grad−). Therefore, the integration path is determined by searching the maximum inclination line direction of the potential surface in two directions, that is, the downstream side (electric field vector direction) and the upstream side (counter electric field vector direction) with the search start point as a starting point. . According to the above-described potential definition method, since a continuous potential can be defined for all regions, a reliable and accurate integration path can be obtained according to the definition. Further, in each triangular region, the potential surface is a plane, and the electric field vector is also constant in that region. Therefore, the integration path in each triangular area is a straight line (line segment), and the entire integration path is a continuous line segment connecting them. Incidentally, in the route search process following the maximum inclination line direction, a somewhat special situation may occur such as reaching the semiconductor boundary, reaching the valley on the downstream side, reaching the ridgeline on the upstream side, and the like. However, in any case, measures should be taken based on the principle of following the maximum slope of the potential surface under such circumstances.

【0008】次に、具体的な電界計算方法について説明
する。上記のように、格子を四分割した三角形領域で
は、そのポテンシャル面を平面とし電界一定となる。本
実施例のように、各格子点が座標軸に平行な格子線をも
つ矩形格子のときは、電界はその両成分毎に簡単に得る
ことができる。即ち、図5において、Exを横方向の電
界、Eyを縦方向の電界、ψ1、ψ2、ψ3、ψ4を格子点
上の電位、Δx、Δyを各電位間の微小距離とすると次
式となる。
Next, a specific electric field calculation method will be described. As described above, in the triangular region obtained by dividing the lattice into four parts, the electric field is constant with the potential surface as a plane. As in the present embodiment, when each grid point is a rectangular grid having grid lines parallel to the coordinate axes, an electric field can be easily obtained for both components. That is, in FIG. 5, the electric field in the lateral direction E x, E y the vertical electric field, ψ 1, ψ 2, ψ 3, the potential on [psi 4 grid points, [Delta] x, small distance between the potential Δy Then, the following equation is obtained.

【数2】 又、このような矩形格子でない場合でも、以下のように
電界を計算できる。即ち、三角形状ポテンシャル平面の
内の二辺について、図6に示すベクトルで表すと、同平
面の法線方向を示すベクトルは次のようになる。
(Equation 2) In addition, even when the grid is not such a rectangular grid, the electric field can be calculated as follows. That is, when two sides of the triangular potential plane are represented by the vectors shown in FIG. 6, the vectors indicating the normal direction of the plane are as follows.

【数3】 三角形状ポテンシャル面の辺ベクトルa,bは、それら
の始点を同位置にし、ポテンシャル軸上方より見てベク
トルbがベクトルaから反時計方向180度以内にと
る。この法線ベクトルの成分を
(Equation 3) The side vectors a and b of the triangular potential surface have their starting points at the same position, and the vector b is within 180 degrees counterclockwise from the vector a when viewed from above the potential axis. The component of this normal vector

【数4】 とすると、電界は次式で表される。(Equation 4) Then, the electric field is expressed by the following equation.

【数5】 なお、法線ベクトルの各成分は次式で得られる(図
6)。 ax=x2−x1, ay=y2−y1, aψ=ψ2−ψ1 (11) bx=x3−x1, by=y3−y1, bψ=ψ3−ψ1 (12)
(Equation 5) Each component of the normal vector is obtained by the following equation (FIG. 6). a x = x 2 -x 1, a y = y 2 -y 1, a ψ = ψ 2 -ψ 1 (11) b x = x 3 -x 1, b y = y 3 -y 1, b ψ = ψ 3 −ψ 1 (12)

【数6】 (Equation 6)

【0009】次に、得られたイオン化積分経路及び経路
上の電界に基づいてイオン化積分計算する方法を示す。
図7に示すようにイオン化積分経路上、N層側からP層
側へ進む方向にlをとり、経路のN層側端点をl=0と
する。イオン化積分経路の延長をLとすると、P層側の
端点はl=Lとなる。この時イオン化積分は次式の通り
である。
Next, a method of calculating the ionization integral based on the obtained ionization integral path and the electric field on the path will be described.
As shown in FIG. 7, on the ionization integration path, l is set in the direction from the N layer side to the P layer side, and the end point on the N layer side of the path is set to l = 0. Assuming that the extension of the ionization integration path is L, the end point on the P layer side is 1 = L. At this time, the ionization integral is as follows.

【数7】 以降、式(14)をイオン化積分計数の基本式とする。
なお、イオン化率αp,αnは、電界強度の関数である。
経路は連続する線分の集合であり、電界はそれら各線分
上一定の値である。これら連続する線分の各端点のl座
標をl1,l2,...,lNとする(l1=0,lN
L)、イオン化率は電界の関数であるので、ここではひ
とつの線分上で一定であり、li,li+1間の線分上のイ
オン化率をαp(i),αn(i)とする。これらを式(14)
に適用すると以下のようになる。
(Equation 7) Hereinafter, Equation (14) is used as a basic equation for ionization integral counting.
The ionization rates α p and α n are functions of the electric field strength.
A path is a set of continuous line segments, and the electric field is a constant value on each of these line segments. The l coordinate of each end point of these continuous line segments is denoted by l 1 , l 2 ,. . . , L N (l 1 = 0, l N =
L), since the ionization rate is a function of the electric field, it is constant here on one line segment, and the ionization rates on the line segment between l i and l i + 1 are α p (i) and α n ( i) . These are expressed by equation (14)
When applied to

【数8】 ここで、(Equation 8) here,

【数9】 直接得られる経路構成線分の端点の座標はxy座標であ
る。liに対するそのxy座標を(xi,yi)とする
と、 li+1−li={(xi+1−xi2+(yi+1−yi2}1/2 (17) である。このように、数値積分等の新たな近似法を導入
することなく、イオン化積分の総和(Σ)の形へ書き下
すことができる。
(Equation 9) The coordinates of the end points of the route constituent line directly obtained are xy coordinates. The xy coordinates for l i (x i, y i ) When, l i + 1 -l i = {(x i + 1 -x i) 2 + (y i + 1 -y i) 2} 1 / 2 (17). In this way, it is possible to write down the sum of ionization integrals (Σ) without introducing a new approximation method such as numerical integration.

【0010】次に、このイオン化積分計算から降伏電圧
を求める方法について説明する。ポアソン式のみを解く
シミュレータの場合、降伏電圧の決定は、異なる試行電
圧を印加した計算を繰り返し、イオン化積分値が1とな
る印加電圧を探し出すことにより実現される。即ち、 i=f(υ) (18) i:イオン化積分値 υ:印加電圧 なる関数において、i=iBV(iBV:接合降伏時のイオン
化積分値であり、通常は1)とした方程式をυについて
解くことに相当する。ここで、関数fは、与えられた印
加電圧に対して、ポアソン式を解きイオン化積分値を得
るまでの数値計算部分を表す。本実施例では、この方程
式を解くとき、ニュートン法(Newton-Raphson法)を
用い、ニュートン法を適用する関数として、上式i=f
(υ)をそのまま使わずに、logi=g(υ)(g(υ)=log
[f(υ)])を用いる。イオン化積分値は印加電圧に対し
指数関数的に変化するので、印加電圧に対するイオン化
積分値の対数の変化は相当程度直線的になる。このた
め、イオン化積分値の対数の採用により、いかなる試行
印加電圧に対しても次の試行印加電圧及びイオン化積分
値の極端な増大を避け、この問題による発散の危険性を
排除できる。また同時に、直線に近い関係に対しニュー
トン法を適用するから、繰り返し計算中の試行印加電圧
の近似度は非常に高く、収束に要する繰り返し回数も、
指数関数的変化のイオン化積分値そのものを用いた場合
よりも確実に減少させることができ、極めて高速に計算
できる。以上から、この部分の実際の求解は次のように
なる。 logi=g(υ) (19) i:イオン化積分値 υ:印加電圧 式(19)において、i=iBV(iBV:接合降伏時のイ
オン化積分値)として、このときのυを解く。なお、方
程式h(x)=0をニュートン法で解く際には、n+1番
目の試行値の決定に微分係数h'(xn)が必要とされる
(xn:n番目の試行値)。しかし、このh(x)に相当
する部分は解析的な関数ではなく、二次元でポアソン方
程式を解き、そしてイオン化積分値を得るまでの一連の
数値計算過程全てを含み、解析的にh'(xn)を得ること
はできない。そこで数値計算的な方法によりh'(xn)を
求めることが考えられる。基本的には、Δxを微小量と
し、h'(xn)をh'(xn)≒(h(xn+Δx)−h(xn))
/Δxで近似すればよい。この方法により本実施例への
ニュートン法の使用が原則的には可能となる。しかしな
がら、この方法では、xn一点の微分係数を得るのにxn
とxn+Δxの二点に対する関数の計算が必要になり、
この関数の計算では二次元ボアソン式を解いた上、イオ
ン化積分値を求める一連の膨大な計算を行わなければな
らない。この結果、この微分係数計算部により、計算時
間が倍増する難点がある。
Next, a method of obtaining a breakdown voltage from the ionization integral calculation will be described. In the case of a simulator that solves only the Poisson equation, the breakdown voltage is determined by repeating calculations with different trial voltages applied and searching for an applied voltage at which the ionization integral value becomes 1. That is, i = f (υ) (18) i: ionization integral value υ: applied voltage In a function of: i = i BV (i BV : ionization integral value at the time of junction breakdown, usually 1) It is equivalent to solving for υ. Here, the function f represents a numerical calculation part until a Poisson equation is solved for a given applied voltage to obtain an ionization integral value. In this embodiment, when solving this equation, the Newton method (Newton-Raphson method) is used, and the above equation i = f is used as a function to which the Newton method is applied.
Without using (υ) as it is, logi = g (υ) (g (υ) = log
[f (υ)]). Since the ionization integral value changes exponentially with respect to the applied voltage, the change in the logarithm of the ionization integral value with respect to the applied voltage becomes considerably linear. For this reason, by adopting the logarithm of the ionization integral value, it is possible to avoid an extreme increase in the next trial application voltage and ionization integral value for any trial application voltage, and eliminate the risk of divergence due to this problem. At the same time, since the Newton method is applied to a relationship close to a straight line, the approximation of the trial applied voltage during the repetition calculation is very high, and the number of repetitions required for convergence is also small.
It can be reduced more reliably than the case where the ionization integral value of the exponential change itself is used, and the calculation can be performed at extremely high speed. From the above, the actual solution of this part is as follows. logi = g (υ) (19) i: ionization integral value υ: applied voltage In Expression (19), assuming that i = i BV (i BV : ionization integral value at the time of junction breakdown), υ at this time is solved. When solving the equation h (x) = 0 by the Newton method, the derivative coefficient h ′ (x n ) is required to determine the (n + 1) th trial value ( xn : the nth trial value). However, the part corresponding to h (x) is not an analytic function, but includes a whole series of numerical calculation processes until a Poisson equation is solved in two dimensions and an ionization integral value is obtained. x n ) cannot be obtained. Therefore, it is conceivable to obtain h ′ (x n ) by a numerical calculation method. Basically, Δx is set to a small amount, and h ′ (x n ) is calculated as h ′ (x n ) ≒ (h (x n + Δx) −h (x n )).
/ Δx. This method makes it possible in principle to use the Newton method in this embodiment. However, in this method, to obtain a derivative of x n a point x n
And calculation of a function for two points x n + Δx,
In calculating this function, it is necessary to solve a two-dimensional Poisson equation and perform a series of enormous calculations for calculating the ionization integral value. As a result, there is a problem that the calculation time is doubled by the differential coefficient calculator.

【0011】そこで、前記問題を解決するため、本実施
例では、h'(xn)の近似値としてh'(xn)≒(h(xn)
−h(xn-1))/(xn−xn-1)を用いる。この式によれ
ば、収束に近づく段階では、十分な近似度を示し、また
繰り返しの初期でも本実施例の関数は直線に近く、十分
に実用的な近似値となる。なお、第一回目のための試行
印加電圧は常識的に予想される耐圧を与える。また、第
二回目の試行印加電圧も前述の方法で決定できないの
で、予想で与える。しかし、収束回数を減少すべく、で
きる限り解となる降伏電圧に近い電圧を与えることが望
ましい。前述のlog(イオン化積分値)−印加電圧の関係
は直線に近い。また、実施した計算実績の検討の結果、
その傾きと降伏電圧との間にある程度の相関関係が存在
することが判明した。数個の構造での降伏電圧近傍にお
ける傾き−降伏電圧の関係を直線(破線)で図8に示
す。この相関関係を利用して、近似値としての第二試行
印加電圧を決定する。相関関係の代表としての直線の関
係をa=q(υ)で表す。ここでaは降伏時におけるlog
(イオン化積分値)−印加電圧の傾き、υは電圧であ
る。今、第一試行印加電圧をυ1、υ1に対するイオン化
積分値をi1、接合降伏時のイオン化積分値をiBV
し、第二試行印加電圧υ2を次のように決定する。 a1=q(υ1) (20)
[0011] To solve the above problems, in the present embodiment, h (x n) '( x n) h as an approximation of' ≒ (h (x n)
−h (x n−1 )) / (x n −x n−1 ) is used. According to this equation, a sufficient degree of approximation is shown at the stage of approaching convergence, and the function of this embodiment is close to a straight line even at the beginning of repetition, and is a sufficiently practical approximate value. Note that the trial applied voltage for the first time gives a withstand voltage that is expected by common sense. In addition, since the second trial applied voltage cannot be determined by the above-described method, it is given by expectation. However, in order to reduce the number of times of convergence, it is desirable to apply a voltage as close as possible to a breakdown voltage that is a solution. The above-described relationship between log (ionization integral value) and applied voltage is close to a straight line. In addition, as a result of examining the calculation results
It has been found that there is some correlation between the slope and the breakdown voltage. The relationship between the slope and the breakdown voltage in the vicinity of the breakdown voltage in several structures is shown by a straight line (broken line) in FIG. Using this correlation, the second trial applied voltage is determined as an approximate value. The relationship of a straight line as a representative of the correlation is represented by a = q (υ). Where a is the log at the time of surrender
(Ionization integral value) −Slope of applied voltage, υ is voltage. Now, the first trial applied voltage is υ 1 , the ionization integral value for υ 1 is i 1 , the ionization integral value at the time of junction breakdown is i BV, and the second trial applied voltage υ 2 is determined as follows. a 1 = q (υ 1 ) (20)

【数10】 この関係を示す図9から理解されるように、υ2はlog
(イオン化積分値)−印加電圧の関係を傾きa1の直線関
係と仮定した場合の降伏電圧に相当し、十分に有効な近
似値となる。3本のFLR(Field Limiting Ring)
を持つPN接合半導体装置に本実施例を実際に適用した
とき、その降伏電圧の計算結果は1632ボルトとな
り、実測値との誤差は2%以下であった。降伏の生ずる
イオン化積分経路とともに、降伏時の電位分布を図10
に示し、電界強度分布(主接合および第1FLR部分拡
大)を図11に示す。
(Equation 10) As can be understood from FIG. 9 showing this relationship, υ 2 is log
(Ionization integral value) - the inclination relationship between applied voltage corresponds to the breakdown voltage of assuming a linear relationship a 1, a sufficiently valid approximation. Three FLRs (Field Limiting Ring)
When this embodiment was actually applied to a PN junction semiconductor device having the following formula, the calculation result of the breakdown voltage was 1632 volts, and the error from the measured value was 2% or less. FIG. 10 shows the potential distribution at the time of breakdown together with the ionization integration path where breakdown occurs.
FIG. 11 shows the electric field intensity distribution (main junction and the first FLR part enlarged).

【0012】本実施例によれば、以下のような効果が得
られる。 (1) 格子境界線上の電界成分はその両端の格子点電
位から直接得られる値と一致するので、従来法に比べて
信頼性が高く、また隣接する格子間のポテンシャル面が
連続する。この結果、正確なイオン化積分経路を決定で
き、より精度の高い降伏電圧を計算できる。 (2) 初期印加電圧が著しく常識を逸脱しない限り、
収束に要する試行回数が4〜5回以内の繰り返しで収束
に達し、計算時間を短縮できる。
According to this embodiment, the following effects can be obtained. (1) Since the electric field component on the grid boundary coincides with the value directly obtained from the grid point potential at both ends, reliability is higher than in the conventional method, and the potential plane between adjacent grids is continuous. As a result, an accurate ionization integration path can be determined, and a more accurate breakdown voltage can be calculated. (2) Unless the initial applied voltage deviates significantly from common sense,
Convergence is reached by repeating the number of trials required for convergence within 4 to 5 times, and the calculation time can be reduced.

【0013】[0013]

【発明の効果】前述のように、本発明によれば、全空間
に対する電位補間及び全空間に対する電界を精度よく決
定できる。
As described above, according to the present invention, the potential interpolation for the entire space and the electric field for the entire space can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 単純な電界の定義および重心における電界定
義を示す図形
Fig. 1 Graphic showing simple electric field definition and electric field definition at center of gravity

【図2】 従来法により生ずる隣接格子ポテンシャル面
の不連続を示す図
FIG. 2 is a diagram showing discontinuities in adjacent lattice potential surfaces caused by a conventional method.

【図3】 ポテンシャル面を示す図形FIG. 3 is a diagram showing a potential surface

【図4】 本実施例によるポテンシャル面の連続性を示
す図
FIG. 4 is a diagram showing continuity of a potential surface according to the present embodiment.

【図5】 座標軸に平行な矩形格子の三角形領域内電界
計算法を示す図
FIG. 5 is a diagram showing a method of calculating an electric field in a triangular area of a rectangular grid parallel to a coordinate axis.

【図6】 三角形ポテンシャル平面の法線ベクトルを示
す図
FIG. 6 is a diagram showing a normal vector of a triangular potential plane.

【図7】 イオン化積分経路を示す図形FIG. 7 is a diagram showing an ionization integration path.

【図8】 降伏電圧近傍における傾き−降伏電圧の関係
を示すグラフ
FIG. 8 is a graph showing a relationship between a slope and a breakdown voltage near a breakdown voltage.

【図9】 イオン化積分値と印加電圧との関係を示すグ
ラフ
FIG. 9 is a graph showing a relationship between an ionization integral value and an applied voltage.

【図10】 降伏時の電位分布を示す図FIG. 10 shows a potential distribution at the time of breakdown.

【図11】 電界強度分布を示す図FIG. 11 is a diagram showing an electric field intensity distribution.

【符号の説明】[Explanation of symbols]

A、B、C、D・・直交格子点、ψa、ψb、ψc、ψd
・格子点の電位、ψaψbψg、ψbψcψg、ψcψdψg
ψaψdψg・・三角形ポテンシャル平面、
A, B, C, D... Orthogonal grid points, ψ a , ψ b , ψ c , ψ d
The potential at the lattice point, ψ a ψ b ψ g , ψ b ψ c ψ g , ψ c ψ d ψ g ,
ψ a ψ d ψ g

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二次元空間上に多角形の格子升目を有す
る格子に散在する格子点を用いる半導体素子のシュミレ
ーション方法において、 前記格子を構成する一の格子升目の格子点(A、B、
C、D)上の各電位(ψa、ψb、ψc、ψd)を得る過程
と、前記一の格子升目の重心(G)の電位(ψg)を得
る過程と、前記一の格子升目の格子点(A、B、C、
D)及び重心(G)の電位(ψa、ψb、ψc、ψd
ψg)から構成され且つ前記重心の電位(ψg)を共通の
頂点として互いに隣接する複数の三角形ポテンシャル平
面(ψaψbψg、ψbψcψg、ψcψdψg、ψaψdψg)に
よって前記一の格子升目内のポテンシャルを補間する過
程とを含むことを特徴とする半導体素子のシミュレーシ
ョン方法。
1. A method of simulating a semiconductor device using grid points scattered on a grid having polygonal grid cells in a two-dimensional space, wherein the grid points (A, B,
C, D) obtaining the potentials (ψ a , ψ b , ψ c , ψ d ), obtaining the potential (ψ g) of the center of gravity (G) of the one grid cell, and obtaining the one grid. Grid points (A, B, C,
D) and the potential of the center of gravity (G) (ψ a , ψ b , ψ c , ψ d ,
ψ g ) and a plurality of triangular potential planes (ψ a ψ b ψ g , ψ b ψ c ψ g , ψ c ψ d ψ g , adjacent to each other with the potential of the center of gravity (のg ) as a common vertex ψ a ψ dg ) to interpolate the potential in the one grid cell.
【請求項2】 更に、前記複数の三角形ポテンシャル平
面(ψaψbψg、ψbψcψg、ψcψdψg、ψaψdψg)の
傾きから前記一の格子升目内の電界を得る請求項1に記
載の半導体素子のシミュレーション方法。
Wherein further, said plurality of triangular potential plane (ψ a ψ b ψ g, ψ b ψ c ψ g, ψ c ψ d ψ g, ψ a ψ d ψ g) grating inclination from the one square The method for simulating a semiconductor device according to claim 1, wherein an electric field in the inside is obtained.
JP27002394A 1994-11-02 1994-11-02 Simulation method of semiconductor device Expired - Fee Related JP2950358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27002394A JP2950358B2 (en) 1994-11-02 1994-11-02 Simulation method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27002394A JP2950358B2 (en) 1994-11-02 1994-11-02 Simulation method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH08139150A JPH08139150A (en) 1996-05-31
JP2950358B2 true JP2950358B2 (en) 1999-09-20

Family

ID=17480467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27002394A Expired - Fee Related JP2950358B2 (en) 1994-11-02 1994-11-02 Simulation method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2950358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7809421B1 (en) * 2000-07-20 2010-10-05 Biosense, Inc. Medical system calibration with static metal compensation
JP4506173B2 (en) * 2001-07-12 2010-07-21 株式会社日立製作所 Sample charge measuring method and charged particle beam apparatus

Also Published As

Publication number Publication date
JPH08139150A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
KR0142647B1 (en) Method for generation mesh
Tricoche et al. Topology tracking for the visualization of time-dependent two-dimensional flows
US4969116A (en) Method of generating discretization grid for finite-difference simulation
Silvester et al. Exterior finite elements for 2-dimensional field problems with open boundaries
Cultrera et al. A simple algorithm to find the L-curve corner in the regularisation of ill-posed inverse problems
CN112435573B (en) Map drawing method and device for automatic driving simulation test
CN105259571B (en) A kind of stratigraphic dip detection method
JP2950358B2 (en) Simulation method of semiconductor device
CN106526597A (en) Ionospheric backscatter cross-detection joint inversion method
CN112733364B (en) Foil cloud scattering rapid calculation method based on impedance matrix partitioning
US6456949B1 (en) Method and apparatus for calculating electromagnetic field intensity, and a computer-readable recording medium
Dabrowski Novel PCSE-based approach of inclined structures geometry analysis on the example of the Leaning Tower of Pisa
CN107246863B (en) Irregular section tunnel inner wall image projection expansion method
US20040049751A1 (en) Method and arrangement for extracting capacitance in integrated circuits having non manhattan wiring
CN115496860A (en) Flexible rule model construction method and device, terminal equipment and storage medium
JP2007264952A (en) Ground-analyzing mesh generation method and ground-analyzing mesh generation program
Faustmann et al. Local convergence of the boundary element method on polyhedral domains
Heitzinger et al. Simulation and inverse modeling of teos deposition processes using a fast level set method
Rushton Electrical analogue solutions for the deformation of skew plates
Khalili et al. Gaussian Radial Basis Function interpolation in vertical deformation analysis
Dăuş et al. A Tale of Catalan Triangles: Counting Lattice Paths
CN111145347B (en) Method and device for correcting digital elevation data of terrain section and correction equipment
Anarova et al. Calculating Boundaries in Methods of Determination of Fractal Dimension
Pires et al. Computation of grounding grids parameter on unconventional geometry
Borkowski et al. Global and local methods for tracking the intersection curve between two surfaces

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees