JP2949150B1 - Method for producing cyclohexyl methacrylate - Google Patents

Method for producing cyclohexyl methacrylate

Info

Publication number
JP2949150B1
JP2949150B1 JP10061960A JP6196098A JP2949150B1 JP 2949150 B1 JP2949150 B1 JP 2949150B1 JP 10061960 A JP10061960 A JP 10061960A JP 6196098 A JP6196098 A JP 6196098A JP 2949150 B1 JP2949150 B1 JP 2949150B1
Authority
JP
Japan
Prior art keywords
cyclohexyl methacrylate
cyclohexanol
distillation
reaction
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10061960A
Other languages
Japanese (ja)
Other versions
JPH11246479A (en
Inventor
順一 桑山
敏男 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP10061960A priority Critical patent/JP2949150B1/en
Application granted granted Critical
Publication of JP2949150B1 publication Critical patent/JP2949150B1/en
Publication of JPH11246479A publication Critical patent/JPH11246479A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【要約】 【課題】 メタクリル酸シクロヘキシルの製造に際し、
触媒活性を維持するとともに、精製時の不溶性三次元ポ
リマーの生成を効果的に抑制する。 【解決手段】 メタクリル酸メチルとシクロヘキサノー
ルを、無水水酸化リチウム触媒の存在下でエステル交換
する。この際、系内の含水率を1000ppm以下に維
持する。特に工業用シクロヘキサノールは、凝固防止の
ため含水率1.8〜2.0%に調整されているので、あ
らかじめこれを脱水しておくのが好ましい。上記の反応
で得られた反応液は、N−ニトロソフェニルヒドロキシ
ルアミン塩が気相中に固体で存在する蒸留塔で精製し、
反応液中のメタクリル酸シクロヘキシルの重合を効率よ
く抑制し、不溶性三次元ポリマーの生成を防止する。
Abstract: PROBLEM TO BE SOLVED: To produce cyclohexyl methacrylate,
While maintaining catalytic activity, it effectively suppresses the formation of insoluble three-dimensional polymers during purification. SOLUTION: Transesterification of methyl methacrylate and cyclohexanol is carried out in the presence of anhydrous lithium hydroxide catalyst. At this time, the water content in the system is maintained at 1000 ppm or less. In particular, the water content of industrial cyclohexanol is adjusted to 1.8 to 2.0% in order to prevent coagulation, and it is preferable to dehydrate it beforehand. The reaction solution obtained by the above reaction is purified by a distillation column in which N-nitrosophenylhydroxylamine salt is present in a solid phase in a gas phase,
Polymerization of cyclohexyl methacrylate in a reaction solution is efficiently suppressed, and formation of an insoluble three-dimensional polymer is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタクリル酸シク
ロヘキシルの製造方法、特にメタクリル酸メチルとシク
ロヘキサノールを水酸化リチウムの存在化でエステル交
換し、メタクリル酸シクロヘキシルを製造する方法に関
する。
The present invention relates to a method for producing cyclohexyl methacrylate, and more particularly to a method for producing cyclohexyl methacrylate by transesterifying methyl methacrylate and cyclohexanol in the presence of lithium hydroxide.

【0002】[0002]

【従来の技術】従来、メタクリル酸メチルとアルコール
のエステル交換にあたり、アルコール原料としてシクロ
ヘキサノールを用い、触媒として水酸化リチウムを用い
ることは知られている(特開昭54−61117号公
報、特開平2−101043号公報)。
2. Description of the Related Art Conventionally, it has been known that in transesterification of methyl methacrylate and alcohol, cyclohexanol is used as an alcohol raw material and lithium hydroxide is used as a catalyst (Japanese Patent Application Laid-Open No. 54-61117, Japanese Patent Application Laid-Open No. No. 2-101043).

【0003】水酸化リチウムには、他の公知の触媒、例
えば有機スルホン酸のような有機酸、あるいは水酸化カ
リウム、水酸化カルシウムのようなアルカリ金属水酸化
物、ナトリウムメトキシドのようなアルカリ金属アルコ
キシド触媒に比べて、副反応や重合物の生成が少なく、
腐食性や反応後のそれらの除去も濾過等で容易に行えて
水洗の必要がないため、廃水問題も生じない利点があ
る。
[0003] Lithium hydroxide includes other known catalysts, for example, organic acids such as organic sulfonic acids, alkali metal hydroxides such as potassium hydroxide and calcium hydroxide, and alkali metals such as sodium methoxide. Compared with alkoxide catalyst, side reaction and generation of polymer are less,
Since there is no need to wash with water since the corrosiveness and their removal after the reaction can be easily performed by filtration or the like, there is an advantage that there is no waste water problem.

【0004】前記特開平2−101043号公報の実施
例3では、メタクリル酸メチルとシクロヘキサノールと
水酸化リチウムの組み合わせが明示されている。水酸化
リチウムには、触媒活性維持の観点から、乾燥したもの
の使用が望ましいとされている。また、系中に吹き込む
空気または酸素の含水率も1000ppm以下が好まし
いとされている。
[0004] In Example 3 of JP-A-2-101043, a combination of methyl methacrylate, cyclohexanol and lithium hydroxide is specified. From the viewpoint of maintaining the catalytic activity, it is said that the use of dried lithium hydroxide is desirable. It is also said that the water content of air or oxygen blown into the system is preferably 1000 ppm or less.

【0005】しかしながら、アルコール原料のシクロヘ
キサノールは、他の一般的なアルコール原料と異なり、
無水状態では凝固し易い性質を有する。このため、工業
的生産に際しては、貯蔵、輸送中の凝固を考慮して、
1.8〜2.0%程度の水を添加しておくのが普通であ
る。仮に、前述のごとく触媒として乾燥水酸化リチウム
を用い、含水率1000ppm以下の空気または酸素を
吹き込んでも、工業的実施に当たり原料として工業用シ
クロヘキサノールを使用するかぎり、シクロヘキサノー
ル由来の水分により系内の含水率が高くなることは避け
られない。
However, cyclohexanol as an alcohol raw material is different from other general alcohol raw materials,
In the anhydrous state, it has the property of being easily solidified. For this reason, during industrial production, taking into account solidification during storage and transportation,
It is usual to add about 1.8 to 2.0% of water. As mentioned above, even if dry lithium hydroxide is used as a catalyst and air or oxygen having a water content of 1000 ppm or less is blown, as long as industrial cyclohexanol is used as a raw material in industrial practice, water derived from cyclohexanol causes It is inevitable that the water content will increase.

【0006】一方、得られた生成メタクリル酸シクロヘ
キシル反応液は多量の不純物を含むので、このままでは
高分子の重合物は得られず、蒸留などの手段で精製する
のが普通である。しかしながら、メタクリル酸シクロヘ
キシルは重合性に富み、蒸留精製工程の加熱条件下で
は、三次元構造を有する不溶性ポリマーが急激に発生す
る。特に不溶性ポリマーは、蒸留系内の気相部において
生成し易く、蒸留塔、配管などを閉塞し、運転不能に陥
らせるおそれがあり、メタクリル酸シクロヘキシルの収
率も低下する。メタクリル酸シクロヘキシルを含めて類
似化合物の重合禁止剤としては、ハイドロキノン、ハイ
ドロキノンモノメチルエーテル、パラフェニレンジアミ
ン、フェノチアジンなどに加えて、N−ニトロソアミン
類、特にN−ニトロソフェニルヒドロキシルアミン塩
(以下「クペロン類」という)が提案されている(特開
昭63−126853号公報、特開昭64−42462
号公報等)。
On the other hand, since the obtained reaction solution of cyclohexyl methacrylate contains a large amount of impurities, a high molecular weight polymer cannot be obtained as it is, and it is usual to purify it by means such as distillation. However, cyclohexyl methacrylate is rich in polymerizability, and an insoluble polymer having a three-dimensional structure is rapidly generated under heating conditions in the distillation purification step. In particular, the insoluble polymer is easily generated in the gas phase in the distillation system, which may obstruct the distillation tower, piping, etc., causing operation failure, and also reduces the yield of cyclohexyl methacrylate. As polymerization inhibitors for similar compounds including cyclohexyl methacrylate, in addition to hydroquinone, hydroquinone monomethyl ether, paraphenylenediamine, phenothiazine and the like, N-nitrosamines, especially N-nitrosophenylhydroxylamine salts (hereinafter, “cuperons”) (Japanese Patent Application Laid-Open Nos. 63-126853 and 64-42462).
No.).

【0007】クペロン類はすぐれた重合禁止剤である
が、本発明者らの知見によれば、クペロン類自体の重合
禁止効果は意外に小さく、分解時のラジカルキャッチ作
用、分解物の重合禁止作用が複合して、メタクリル酸シ
クロヘキシルの重合を効果的に抑制すると推定される。
したがって、クペロン類を被蒸留物に溶解して蒸留塔に
供給する特開昭63−126853号公報記載の発明
や、グリコール類に溶解したクペロン類を蒸留塔に供給
する特開昭64−42462号公報記載の発明では、十
分な重合抑止効果は期待できない。仮に特開昭64−4
2462号公報記載の発明をメタクリル酸シクロヘキシ
ルの蒸留に適用しても、クペロン類を溶解して使用する
と、クペロン類それぞれの安定性の違いによって、ある
物は溶液にして蒸留塔に供給する前に溶液中で分解が進
んでしまったり、またある物は塔内に存在している間に
は分解が十分起こらずそのまま流下してしまい、もっと
も重合の起こりやすい蒸留塔の気相部で分解することに
よって得られる重合抑止効果は十分に発揮されないので
ある。
[0007] Cuprons are excellent polymerization inhibitors. However, according to the findings of the present inventors, the polymerization inhibition effect of cuperons themselves is surprisingly small, and the radical catching action during decomposition and the polymerization inhibiting action of decomposed products are observed. Is presumed to effectively suppress the polymerization of cyclohexyl methacrylate.
Accordingly, the invention described in JP-A-63-126853, in which cupperones are dissolved in a substance to be distilled and supplied to a distillation column, and the invention described in JP-A-64-42462, in which cuprons dissolved in glycols are supplied to a distillation column. In the invention described in the publication, a sufficient polymerization inhibitory effect cannot be expected. Suppose JP-A-64-4
Even if the invention described in No. 2462 is applied to the distillation of cyclohexyl methacrylate, when a cuperone is dissolved and used, due to a difference in the stability of each of the cuperons, a certain product may be dissolved before being supplied to the distillation column. Decomposition may progress in solution, or some substances may not be sufficiently decomposed while they are in the column and may flow down as they are, decomposing in the gas phase of the distillation column where polymerization is most likely to occur. The polymerization inhibiting effect obtained by the above is not sufficiently exhibited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前記のごと
き課題を解決したもので、メタクリル酸メチルとシクロ
ヘキサノールのエステル交換に際し、水酸化リチウムの
触媒活性を良好な状態に維持して高い収率でメタクリル
酸シクロヘキシルを得るとともに、得られた反応液の精
製時に、メタクリル酸シクロヘキシルの重合に基づく不
溶性ポリマーの生成を効果的に抑制するメタクリル酸シ
クロヘキシルの製造方法を提供することを目的としてい
る。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems, and at the time of transesterification between methyl methacrylate and cyclohexanol, maintains the catalytic activity of lithium hydroxide in a good state to achieve high yield. It is an object of the present invention to provide a process for producing cyclohexyl methacrylate at a high rate and effectively suppressing the generation of an insoluble polymer based on the polymerization of cyclohexyl methacrylate during purification of the obtained reaction solution.

【0009】[0009]

【課題を解決するための手段】前記目的を達成した本発
明のメタクリル酸シクロヘキシルの製造方法は、以下の
とおりである。
The process for producing cyclohexyl methacrylate of the present invention which has achieved the above objects is as follows.

【0010】 (1) メタクリル酸メチルとシクロヘキサノールを、
無水水酸化リチウム触媒の存在下で、系内の含水率を10
00ppm 以下に維持してエステル交換し、得られた反応液
を蒸留塔で、重合禁止剤N−ニトロソフエニルヒドロキ
シルアミン塩の存在下で精製するに当たり、N−ニトロ
ソフエニルヒドロキシルアミン塩を蒸留塔内の気相中に
固体で存在させることを特徴とするメタクリル酸シクロ
ヘキシルの製造方法。 (2) 固体のN−ニトロソフエニルヒドロキシルアミ
ン塩が、スラリー状であることを特徴とする前記第1項
記載のメタクリル酸シクロへキシルの製造方法。 (3) 固体のN−ニトロソフエニルヒドロキシルアミ
ン塩が、フエノール樹脂を主成分とする樹脂成形体、樹
脂発泡体または樹脂塗膜であることを特徴とする前記第
1項記載のメタクリル酸シクロヘキシルの製造方法。
(1) Methyl methacrylate and cyclohexanol are
In the presence of anhydrous lithium hydroxide catalyst, the water content in the
The transesterification was carried out while maintaining the concentration below 00 ppm, and the resulting reaction solution
In a distillation column, with a polymerization inhibitor N-nitrosophenylhydroxyl.
For purification in the presence of a silamine salt, N-nitro
Sophenylhydroxylamine salt in gas phase in distillation column
A process for producing cyclohexyl methacrylate, characterized by being present as a solid . (2) Solid N-nitrosophenylhydroxylamine
2. The method for producing cyclohexyl methacrylate according to claim 1, wherein the salt is in a slurry state . (3) Solid N-nitrosophenylhydroxylamine
The resin salt is a resin molded product mainly composed of phenolic resin,
Wherein said fat foam or resin coating film
The method for producing cyclohexyl methacrylate according to claim 1 .

【0011】本発明では、メタクリル酸メチルとシクロ
ヘキサノールを、無水水酸化リチウム触媒の存在下でエ
ステル交換するにあたり、系内の含水率を1000pp
m以下に維持することが必要である。
In the present invention, when the methyl methacrylate and cyclohexanol are transesterified in the presence of an anhydrous lithium hydroxide catalyst, the water content in the system is 1000 pp.
m or less.

【0012】含水率が1000ppmをこえると、水酸
化リチウムの触媒活性は急激に落ちて反応時間が長時間
に及んだり、反応が完結せず、メタクリル酸シクロヘキ
シルの収率が低下する。水酸化リチウムの触媒活性劣化
となる原因は、無水水酸化リチウムが触媒活性の弱い一
水塩に変化するためと推定される。また系内に水分が存
在すると、水酸化リチウムと原料のメタクリル酸メチル
や目的生成物であるメタクリル酸シクロヘキシルとの加
水分解が促進されて、水酸化リチウムが触媒活性の全く
ないメタクリル酸リチウムに変化する。このメタクリル
酸リチウムはまた濾過性がきわめて悪く、種々のトラブ
ルの要因となる。
If the water content exceeds 1000 ppm, the catalytic activity of lithium hydroxide drops sharply, the reaction time becomes longer, the reaction is not completed, and the yield of cyclohexyl methacrylate decreases. The cause of the deterioration of the catalytic activity of lithium hydroxide is presumed to be that anhydrous lithium hydroxide changes to a monohydrate having weak catalytic activity. In addition, when water is present in the system, the hydrolysis of lithium hydroxide and the raw material methyl methacrylate and the target product, cyclohexyl methacrylate, is promoted, and lithium hydroxide is converted to lithium methacrylate having no catalytic activity. I do. This lithium methacrylate also has extremely poor filterability, and causes various troubles.

【0013】前記反応系内の水分を維持する方法に関し
ては、特に制限されないが、使用原料をそれぞれあらか
じめ、乾燥あるいは脱水処理するのが望ましい。特に工
業用シクロヘキサノールは、前述のように凝固防止のた
め含水率1.8〜2.0%に調整されているので、あら
かじめ脱水しておくのが効果的である。
The method for maintaining the water content in the reaction system is not particularly limited, but it is preferable that each of the raw materials to be used is previously dried or dehydrated. In particular, since the water content of industrial cyclohexanol is adjusted to 1.8 to 2.0% to prevent coagulation as described above, it is effective to previously dehydrate it.

【0014】また前記の方法で得られた反応液は、クペ
ロン類が気相中に固体で存在する蒸留塔で精製すると、
反応液中のメタクリル酸シクロヘキシルの重合を効率よ
く抑制できる。その理由は、必ずしも明確ではないが、
気相に固体で存在すると、前述のようにクペロン類分解
時のラジカルキャッチ作用、分解物の重合禁止作用が複
合して、効果的に作用するものと推定される。
The reaction solution obtained by the above method is purified by a distillation column in which cuprons are present as a solid in the gas phase.
The polymerization of cyclohexyl methacrylate in the reaction solution can be efficiently suppressed. The reason is not always clear,
It is presumed that the presence of a solid in the gaseous phase effectively combines the radical catching action at the time of decomposing couperones and the action of inhibiting the decomposition product from polymerization as described above.

【0015】本発明において、原料メタクリル酸メチル
には工業用原料を使用する。一方、原料シクロヘキサノ
ールには、純粋な試薬も使用できるが、工業的には凝固
防止のため水分を1.8〜2.0%含む工業用を用い
る。工業用原料シクロヘキサノールはあらかじめ脱水処
理するのが望ましい。脱水処理は、原料のシクロヘキサ
ノールそのまま、あるいは水と共沸混合物を形成する溶
媒を添加して、水分を減圧あるいは常圧で留去するなど
により行い、含水率1000ppm以下、好ましくは5
00ppm以下とする。脱水シクロヘキサノールに対す
るメタクリル酸メチルの仕込量は、約1.2〜10当
量、好ましくは約1.2〜5.0当量が相当である。
In the present invention, an industrial raw material is used as the raw material methyl methacrylate. On the other hand, a pure reagent can be used as the raw material cyclohexanol, but industrially containing 1.8 to 2.0% of water is used industrially to prevent coagulation. It is desirable that the industrial raw material cyclohexanol be dehydrated in advance. The dehydration treatment is performed by, for example, adding the solvent that forms an azeotrope with water as it is, or distilling off the water under reduced pressure or normal pressure, to obtain a water content of 1000 ppm or less, preferably 5 ppm or less.
The content is set to 00 ppm or less. The amount of methyl methacrylate charged to dehydrated cyclohexanol is about 1.2 to 10 equivalents, preferably about 1.2 to 5.0 equivalents.

【0016】触媒に使用する無水水酸化リチウムには、
市販のものを使用してもよいし、水酸化リチウムの一水
塩を加熱、乾燥し、無水物にして使用してもよい。一水
塩の加熱乾燥には、恒温乾燥機や送風加熱乾燥機を用い
れば良い。乾燥の終点は、一水塩が無水物になる際の乾
燥減量が約42%であることによって確認できる。水酸
化リチウムの使用量は、シクロヘキサノールに対して約
0.1〜5重量%が好ましく、0.3〜2重量%がさら
に好ましい。水酸化リチウムは、反応開始時に一括して
仕込んでおく。分割して仕込む場合、追添分の触媒効果
はほとんどない。これは、反応の進行にともない、触媒
の水酸化リチウムや副生したメタクリル酸リチウムが反
応液に一部溶解し、追添分の水酸化リチウムが反応液に
ほとんど溶解しないためと考えられる。
The anhydrous lithium hydroxide used for the catalyst includes:
A commercially available product may be used, or a monohydrate of lithium hydroxide may be heated and dried to be used as an anhydride. A constant temperature dryer or a blast heating dryer may be used for heating and drying the monohydrate. The end point of the drying can be confirmed by a loss on drying when the monohydrate becomes an anhydride of about 42%. The amount of lithium hydroxide used is preferably about 0.1 to 5% by weight, more preferably 0.3 to 2% by weight, based on cyclohexanol. Lithium hydroxide is charged at once at the start of the reaction. When divided and charged, there is almost no catalytic effect of the added amount. This is presumably because, as the reaction progresses, lithium hydroxide as a catalyst and lithium methacrylate as a by-product are partially dissolved in the reaction solution, and additional lithium hydroxide is hardly dissolved in the reaction solution.

【0017】本発明での反応系内の水分除去方法につい
ては特に制限されないが、前述のようにあらかじめ各原
料の脱水処理をしておくのが実際的であるが、水と共沸
混合物を形成する溶媒あるいはメタクリル酸メチルを用
いて、系内の水を共沸除去してもよい。
The method for removing water from the reaction system in the present invention is not particularly limited, but it is practical to dehydrate each raw material in advance as described above, but it is necessary to form an azeotropic mixture with water. The water in the system may be azeotropically removed using a solvent or methyl methacrylate.

【0018】反応に際しては、通常重合禁止剤を用い
る。重合禁止剤としては、例えばハイドロキノン、ハイ
ドロキノンモノメチルエーテル、ジ−t−ブチルヒドロ
キシトルエン、フェノチアジン、N−N’−ジナフチル
−p−フェニレンジアミン、酸素、クペロン類などの重
合禁止剤を単独、または組み合わせて使用することがで
きる。特に、N−ニトロソフェニルヒドロキシルアミン
のアンモニウム塩(以下「クペロン」という)をシクロ
ヘキサノールとともに仕込んでおき、反応系内に酸素を
吹き込みながら反応を行い、蒸留塔内にはハイドロキノ
ンモノメチルエーテルのメタクリル酸メチル溶液を連続
添加する方法が、重合防止に対して効果的である。
In the reaction, a polymerization inhibitor is usually used. As the polymerization inhibitor, for example, hydroquinone, hydroquinone monomethyl ether, di-t-butylhydroxytoluene, phenothiazine, N-N'-dinaphthyl-p-phenylenediamine, oxygen, a polymerization inhibitor such as cuperone alone or in combination. Can be used. In particular, an ammonium salt of N-nitrosophenylhydroxylamine (hereinafter referred to as "cuperone") is charged together with cyclohexanol, and the reaction is carried out while blowing oxygen into the reaction system. Hydroquinone monomethyl ether methyl methacrylate is introduced into the distillation column. A method of continuously adding a solution is effective for preventing polymerization.

【0019】エステル交換反応の反応温度は、通常50
〜150℃、好ましくは80〜120℃である。温度が
低すぎると反応時間が長くなり生産効率が悪くなる。温
度が高すぎると重合物が生成する危険性がある。反応時
間は1〜15時間、好ましくは3〜8時間である。反応
は常圧下で行ってもよいが、生成したメタノールの除去
を容易にするため、あるいは反応温度を適切に制御する
ために減圧下にするのが望ましい。生成メタノールは蒸
留装置を用いてメタクリル酸メチルあるいは使用溶媒と
ともに共沸混合物として系外に留去させながら、反応を
進める。その際、塔頂温度がメタノールとメタクリル酸
メチルあるいは使用溶媒との共沸温度付近になるよう
に、還流比を調節するとよい。
The reaction temperature of the transesterification is usually 50
To 150 ° C, preferably 80 to 120 ° C. If the temperature is too low, the reaction time will be long and the production efficiency will be poor. If the temperature is too high, there is a risk that a polymer is formed. The reaction time is 1 to 15 hours, preferably 3 to 8 hours. The reaction may be performed under normal pressure, but it is desirable to reduce the pressure in order to facilitate the removal of generated methanol or to appropriately control the reaction temperature. The reaction proceeds while the produced methanol is distilled out of the system as an azeotrope together with methyl methacrylate or the solvent used using a distillation apparatus. At that time, the reflux ratio may be adjusted so that the top temperature is near the azeotropic temperature of methanol and methyl methacrylate or the solvent used.

【0020】反応後の反応液は、常法により濾過、蒸留
してもよいが、濾過の際には濾過助剤を用いることもで
きる。また、蒸留をクロペン類が気相中に固体で存在す
る蒸留塔により行うと、精製工程での重合がきわめて効
果的に抑制される。クロペン類としては、クペロンの他
に、N−ニトロソフェニルヒドロキシルアミンのアルミ
ニウム塩、N−ニトロソフェニルヒドロキシルアミンの
エタノールアミン塩などを用いることができる。なかで
も、クペロンは、メタクリル酸シクロヘキシルに対する
溶解度がきわめて小さく、固体状態で蒸留装置の気相部
に供給するのにもっとも適しており、不溶性ポリマーの
抑制効果にもすぐれ、入手も容易である。
The reaction solution after the reaction may be filtered and distilled by a conventional method, but a filtration aid may be used at the time of filtration. Further, when the distillation is performed using a distillation column in which clopenes are present in a solid state in the gas phase, polymerization in the purification step is extremely effectively suppressed. As clopenes, aluminum salts of N-nitrosophenylhydroxylamine, ethanolamine salts of N-nitrosophenylhydroxylamine and the like can be used in addition to cupron. Among them, cuperone has extremely low solubility in cyclohexyl methacrylate, is most suitable for being supplied in a solid state to the gas phase of a distillation apparatus, is excellent in the effect of suppressing insoluble polymers, and is easily available.

【0021】本発明で固体状クロペン類を存在させる蒸
留装置の気相部では、蒸留塔のラシヒリングなどの充填
物が配置されている充填塔、または棚段が配置されてい
る棚段塔部がもっとも効果的である。気相部におけるク
ペロン類の量は、約0.5〜5000ppm、好ましく
は約1〜1000ppm、より好ましくは約3〜100
ppmである。この量が少なすぎると、メタクリル酸シ
クロヘキシルの重合抑止効果が不十分で不溶性ポリマー
が発生し易くなる。一方、過剰となると、経済的に不利
益となるばかりでなく、蒸留物への着色の原因となるお
それがある。
In the vapor phase section of the distillation apparatus in which solid clopenes are present in the present invention, the packed column in which packing such as Raschig rings of the distillation column is disposed, or the tray column section in which the tray is disposed, is provided. Most effective. The amount of couperones in the gas phase is about 0.5 to 5000 ppm, preferably about 1 to 1000 ppm, more preferably about 3 to 100 ppm.
ppm. When the amount is too small, the effect of inhibiting the polymerization of cyclohexyl methacrylate is insufficient, and an insoluble polymer is easily generated. On the other hand, if it is excessive, it may not only be economically disadvantageous but also cause coloring of the distillate.

【0022】蒸留装置の気相部に対する固体状クペロン
類の付与方法は、特に制限されないが、クペロンの場合
は、前述のようにメタクリル酸シクロヘキシルに対する
溶解度がきわめて小さいので、メタクリル酸シクロヘキ
シルにスラリー状に分散させて付与するのが望ましい。
付与する箇所は前記充填塔、棚段部の一カ所あるいは複
数箇所からでもよく、付与を連続的あるいは不連続的に
してもよい。
The method of applying solid couperones to the gas phase of the distillation apparatus is not particularly limited. In the case of couperone, since the solubility in cyclohexyl methacrylate is extremely small as described above, the slurries are added to cyclohexyl methacrylate. It is desirable to disperse and apply.
The application location may be from one or a plurality of locations in the packed tower and the shelf, and the application may be continuous or discontinuous.

【0023】他の付与方法としては、クペロン類をいず
れもフェノール樹脂などの任意の形状の樹脂成形体内に
固定化して、この樹脂成形体を前記充填塔あるいは棚段
塔部に配置することもできる。例えば、樹脂成形体をガ
スや液が通過できる着脱可能な金網や多孔質容器に入れ
ておけば、クペロン類の消耗に応じて簡単に取り替えで
きて操作性にすぐれている。また、前記クペロン類の各
塩をフェノール樹脂、樹脂硬化剤、溶媒などと混合して
組成物を得、得られた組成物を充填塔内のラシヒリング
などのセラミックのごとき多孔質充填物に含浸、塗布し
て硬化または乾燥させ、充填物の内部及び表面に塗膜を
形成、固定化することもできる。
As another application method, it is also possible to immobilize cuprons in a resin molded body having an arbitrary shape such as a phenol resin and to dispose the resin molded body in the packed tower or the tray column. . For example, if the resin molded body is put in a detachable wire mesh or a porous container through which gas or liquid can pass, it can be easily replaced according to the consumption of cuprons, and the operability is excellent. Further, the respective salts of the cuperons are mixed with a phenol resin, a resin curing agent, a solvent, etc. to obtain a composition, and the obtained composition is impregnated into a porous filler such as a ceramic such as a Raschig ring in a packed tower, It can be applied and cured or dried to form and fix a coating film inside and on the surface of the filler.

【0024】本発明においては、蒸留時にクペロン類を
他の重合禁止剤、例えばハイドロキノン、ハイドロキノ
ンモノメチルエーテル、パラフェニレンジアミン、フェ
ノチアジンなどと別々または混合して併用することもで
きる。
In the present invention, cuperons can be used separately or in combination with other polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, paraphenylenediamine, phenothiazine and the like at the time of distillation.

【0025】[0025]

【実施例】以下に、本発明を実施例によりさらに詳細に
説明するが、本発明は、これら実施例によって何ら限定
されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0026】[0026]

【実施例1】精留塔、分留頭、冷却管、ガス導入管、攪
拌装置、温度計を備えた2L四つ口フラスコに、原料メ
タクリル酸メチル900g(9モル)、無水の試薬原料
シクロヘキサノール450g(4.5モル)、無水水酸
化リチウム3.0g、クペロン0.6gを仕込んだ。原
料仕込み後の水分率は300ppmであつた。反応装置
内に7容量%の酸素を含んだ窒素ガスを2ml/分の速
度で導入しながら、系内の圧力を450mmHgに調節
し、加熱攪拌を行った。精留塔頭頂部からは、反応の間
3ml/時の流量で1重量%のハイドロキノンモノメチ
ルエーテルを溶解したメタクリル酸メチル溶液を連続的
に添加した。減圧度は、反応温度が90〜100℃にな
るように調整し、最終的には200mmHgであった。
還流が始まってから、還流装置で生成したメタノールを
メタクリル酸メチルと共沸留去しながら反応させた。還
流開始後6時間で、ガスクロマトグラフィーにおいて、
原料シクロヘキサノールのピーク面積が、シクロヘキサ
ノールと生成物メタクリル酸シクロヘキシルの合計ピー
ク面積に対して0.3%となった時点で、エステル交換
反応を終了した。反応液を40℃まで冷却し、日本濾紙
株式会社製「KCフロックW−50S」(商品名)を3
g添加して攪拌混合した後、吸引濾過器で濾紙(アドバ
ンテック社製No.2、直径9cm)を用いて濾過を行
ったところ、濾過時間は1分30秒であった。
Example 1 A 2-L four-necked flask equipped with a rectification tower, a fractionating head, a cooling pipe, a gas introduction pipe, a stirrer, and a thermometer was charged with 900 g (9 mol) of the raw material methyl methacrylate and the cyclodextrin as a raw material. 450 g (4.5 mol) of hexanol, 3.0 g of anhydrous lithium hydroxide and 0.6 g of cupron were charged. The water content after charging the raw materials was 300 ppm. While introducing nitrogen gas containing 7% by volume of oxygen into the reactor at a rate of 2 ml / min, the pressure in the system was adjusted to 450 mmHg, and heating and stirring were performed. From the top of the rectification column, a methyl methacrylate solution in which 1% by weight of hydroquinone monomethyl ether was dissolved was continuously added at a flow rate of 3 ml / hour during the reaction. The degree of reduced pressure was adjusted so that the reaction temperature became 90 to 100 ° C., and was finally 200 mmHg.
After the reflux was started, methanol produced by the reflux apparatus was reacted with methyl methacrylate while azeotropically distilling off. Six hours after the start of reflux, in gas chromatography,
When the peak area of the starting material cyclohexanol became 0.3% of the total peak area of cyclohexanol and the product cyclohexyl methacrylate, the transesterification reaction was terminated. The reaction solution was cooled to 40 ° C., and “KC Floc W-50S” (trade name) manufactured by Nippon Filter Paper Co., Ltd.
g, and the mixture was stirred and mixed, and then filtered using a filter paper (No. 2, manufactured by Advantech Co., Ltd., diameter 9 cm) with a suction filter. The filtration time was 1 minute and 30 seconds.

【0027】濾液を精留塔、分留頭、冷却管、攪拌装
置、温度計を備えた2L四つ口フラスコに仕込み、蒸留
を行った。精留塔頭頂部からは蒸留の間3ml/時で1
重量%のハイドロキノンモノメチルエーテルを溶解した
メタクリル酸シクロヘキシル溶液を連続的に添加した。
また、蒸留開始から終了までの間、2時間ごとに1回、
1重量%のハイドロキノンモノメチルエーテルを溶解し
た1gのメタクリル酸シクロヘキシルで1mgのクペロ
ンをスラリー化して蒸留塔頭頂部に添加した。過剰のメ
タクリル酸メチルを主成分とする初留を除去後、還流比
1で精留し、メタクリル酸シクロヘキシルを主成分とし
た中留20g、ならびに64〜65℃/2mmHgで目
的のメタクリル酸シクロヘキシル730gを主留として
得た。主留の純度は99.6%(面積率)であった。ま
た蒸留終了後、精留塔内に不溶性ポリマーは認められな
かった。
The filtrate was charged into a 2 L four-necked flask equipped with a rectification tower, a fractionating head, a condenser, a stirrer, and a thermometer, and was subjected to distillation. From the top of the rectification column, 1 ml at 3 ml / h during distillation
A solution of cyclohexyl methacrylate in which weight percent hydroquinone monomethyl ether was dissolved was continuously added.
In addition, from the start to the end of distillation, once every two hours,
1 mg of cuperone was slurried with 1 g of cyclohexyl methacrylate in which 1% by weight of hydroquinone monomethyl ether was dissolved, and added to the top of the distillation column. After removing an excess of the initial distillate mainly composed of methyl methacrylate, the mixture is rectified at a reflux ratio of 1, 20 g of a middle distillate composed mainly of cyclohexyl methacrylate, and 730 g of the objective cyclohexyl methacrylate at 64-65 ° C./2 mmHg. Was obtained as a mainstay. The purity of the main fraction was 99.6% (area ratio). After completion of the distillation, no insoluble polymer was found in the rectification column.

【0028】[0028]

【実施例2】原料シクロヘキサノールとして、水分率
1.8%の工業用シクロヘキサノールを用い、あらかじ
め脱水により水分率1000ppmに調整して仕込んだ
以外は、実施例1と同様にエステル交換反応を行った。
原料仕込み後の系内の水分は850ppmであった。還
流開始後約8時間でガスクロマトグラフィーにおいて原
料シクロヘキサノールのピーク面積が、シクロヘキサノ
ールと生成物メタクリル酸シクロヘキシルの合計面積に
対して0.9%となり、エステル交換反応を終了した。
反応液を40℃まで冷却し、実施例1と同様に濾過した
ところ、濾過時間は7分であった。濾液を実施例1と同
様に蒸留し、メタクリル酸シクロヘキシルを主成分とし
た中留40g、ならびに目的のメタクリル酸シクロヘキ
シル707gを主留として得た。主留の純度は99.6
%(面積率)であった。また蒸留終了後、精留塔内に不
溶性ポリマーは認められなかった。
Example 2 A transesterification reaction was carried out in the same manner as in Example 1 except that industrial cyclohexanol having a water content of 1.8% was used as a raw material cyclohexanol and the water content was adjusted to 1000 ppm by dehydration beforehand. Was.
The water content in the system after charging the raw materials was 850 ppm. About 8 hours after the start of reflux, the peak area of the starting material cyclohexanol was 0.9% with respect to the total area of cyclohexanol and the product cyclohexyl methacrylate in gas chromatography, and the transesterification reaction was completed.
The reaction solution was cooled to 40 ° C. and filtered as in Example 1, and the filtration time was 7 minutes. The filtrate was distilled in the same manner as in Example 1 to obtain 40 g of a middle distillate mainly composed of cyclohexyl methacrylate and 707 g of the intended cyclohexyl methacrylate as a main distillate. The purity of the main run is 99.6
% (Area ratio). After completion of the distillation, no insoluble polymer was found in the rectification column.

【0029】[0029]

【実施例3】フェノールノボラック12g、ヘキサメチ
レンテトラミン3g及びクペロン1gを均一に混合し、
粉砕し、80℃で1時間加熱した後、オーブン中120
℃で1時間硬化させた。その結果、発泡率9倍のフェノ
ール樹脂発泡体を得た。実施例1と同様の条件下におい
て、クペロンを含むスラリーを使用する代わりに、上記
で得たフェノール樹脂発泡体(約0.5mm程度に分割
したもの)1gを充填塔内に均一に保持した状態で実施
例1と同様に蒸留を行い、メタクリル酸シクロヘキシル
を主成分とした中留18g、ならびに64〜65℃/2
mmHgで目的のメタクリル酸シクロヘキシル728g
を主留として得た。主留の純度は99.6%(面積率)
であった。また蒸留終了後、精留塔内に不溶性ポリマー
は認められなかった。
Example 3 12 g of phenol novolak, 3 g of hexamethylenetetramine and 1 g of cuperone were uniformly mixed.
After crushing and heating at 80 ° C. for 1 hour, 120
Cured at ℃ for 1 hour. As a result, a phenol resin foam having a foaming ratio of 9 times was obtained. Under the same conditions as in Example 1, 1 g of the above-obtained phenolic resin foam (divided into about 0.5 mm) instead of using a slurry containing cupperon is uniformly held in a packed tower. In the same manner as in Example 1, distillation was carried out, and 18 g of a middle distillate containing cyclohexyl methacrylate as a main component, and 64 to 65 ° C./2
728 g of the desired cyclohexyl methacrylate in mmHg
Was obtained as a mainstay. The purity of main dome is 99.6% (area ratio)
Met. After completion of the distillation, no insoluble polymer was found in the rectification column.

【0030】[0030]

【実施例4】フェノールノボラック10g、ヘキサメチ
レンテトラミン3g及びクペロン0.1gを、アセトン
10g及びメタノール15gに加え溶解させた。この樹
脂溶液をラシヒリング305gに浸漬法により塗布・含
浸した。次いで、ロータリーエバポレーターにより、ア
セトン及びメタノールを除去し、塗膜被覆ラシヒリング
を得た後、これをオーブン中120℃で1時間加熱し
た。次いで実施例1と同様の条件下において、クペロン
を含むスラリーを使用する代わりに、上記で得た塗膜被
覆ラシヒリング150gを充填塔に充填した状態で実施
例1と同様に蒸留を行い、メタクリル酸シクロヘキシル
を主成分とした中留20g、ならびに64〜65℃/2
mmHgで目的のメタクリル酸シクロヘキシル727g
を主留として得た。主留の純度は99.5%(面積率)
であった。また蒸留終了後、精留塔内に不溶性ポリマー
は認められなかった。
Example 4 10 g of phenol novolak, 3 g of hexamethylenetetramine and 0.1 g of cuperone were dissolved in 10 g of acetone and 15 g of methanol. This resin solution was applied and impregnated into 305 g of Raschig rings by a dipping method. Then, acetone and methanol were removed by a rotary evaporator to obtain a coating-coated Raschig ring, which was heated in an oven at 120 ° C. for 1 hour. Then, under the same conditions as in Example 1, instead of using the slurry containing cuperon, 150 g of the coating-coated Raschig ring obtained above was packed in a packed tower, and distillation was carried out in the same manner as in Example 1 to obtain methacrylic acid. 20 g of a middle distillate mainly composed of cyclohexyl, and 64-65 ° C./2
727 g of the desired cyclohexyl methacrylate in mmHg
Was obtained as a mainstay. The purity of the main dome is 99.5% (area ratio)
Met. After completion of the distillation, no insoluble polymer was found in the rectification column.

【0031】[0031]

【実施例5】実施例3で用いたクペロンの代わりに、N
−ニトロソフエニルヒドロキシルアミンのアルミニウム
塩を用いたこと以外は、実施例3と同様に行い、メタク
リル酸シクロヘキシルを主成分とした中留17g、なら
びに64〜65°C/2mmHgで目的のメタクリル酸
シクロヘキシル730gを主留として得た。主留の純度
は99.6%(面積率)であつた。また蒸留終了後、精
留塔内には不溶性ポリマーは認められなかった。
Example 5 Instead of cuperone used in Example 3, N
-The same procedure as in Example 3 was carried out except that an aluminum salt of nitrosophenylhydroxylamine was used, and 17 g of a middle distillate containing cyclohexyl methacrylate as a main component, and the desired cyclohexyl methacrylate at 64 to 65 ° C / 2 mmHg. 730 g were obtained as the main fraction. The purity of the main fraction was 99.6% (area ratio). After the distillation was completed, no insoluble polymer was found in the rectification column.

【0032】[0032]

【実施例6】実施例4で用いたクペロンの代わりに、N
−ニトロソフエニルヒドロキシルアミンのエタノールア
ミン塩を用いたこと以外は、実施例4と同様に行い、メ
タクリル酸シクロヘキシルを主成分とした中留22g、
ならびに64〜65℃/2mmHgで目的のメタクリル
酸シクロヘキシル724gを主留として得た,主留の純
度は99.7%(面積率)であった。また蒸留終了後、
精留塔内には不溶性ポリマーは認められなかつた。
Example 6 Instead of cuperone used in Example 4, N was used.
-The same procedure as in Example 4 was carried out except that an ethanolamine salt of nitrosophenylhydroxylamine was used, and 22 g of a middle distillate containing cyclohexyl methacrylate as a main component,
Also, 724 g of the intended cyclohexyl methacrylate was obtained as a main fraction at 64 to 65 ° C./2 mmHg, and the purity of the main fraction was 99.7% (area ratio). After the distillation,
No insoluble polymer was found in the rectification column.

【0033】[0033]

【比較例1】原料シクロヘキサノールとして、水分率を
3000ppmに調整した外は、実施例1と同様に反応
を行った。原料仕込み後の系内の水分は1150ppm
であった。還流開始後約8時間でメタノールの生成が見
られなくなったので、反応を終了した。ガスクロマトグ
ラフィーにおいて原料シクロヘキサノールのピーク面積
は、シクロヘキサノールと生成物メタクリル酸シクロヘ
キシルの合計面積に対して8.5%であった。反応液を
40℃まで冷却し、実施例1と同様に濾過したところ、
途中で濾過ができなくなった。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the water content was adjusted to 3000 ppm as the raw material cyclohexanol. The water content in the system after charging the raw materials is 1150ppm
Met. Approximately 8 hours after the start of the reflux, the production of methanol was no longer observed, and the reaction was terminated. In gas chromatography, the peak area of the starting material cyclohexanol was 8.5% based on the total area of cyclohexanol and the product cyclohexyl methacrylate. The reaction solution was cooled to 40 ° C. and filtered as in Example 1,
Filtration was not possible on the way.

【0034】[0034]

【比較例2】実施例1で用いたクペロンのスラリーを使
用する代わりに、1重量%のハイドロキノンモノメチル
エーテルを溶解したメタクリル酸シクロヘキシル溶液
を、塔頂より0.1ml/分で連続的にフィードした事
以外は、実施例1と同様に行った。中留から主留に切り
替える頃に、蒸留塔の差圧が増大し、塔上部及び中段部
に不溶性ポリマーが発生し、塔上部は閉塞状態であっ
た。
Comparative Example 2 Instead of using the slurry of cuperone used in Example 1, a cyclohexyl methacrylate solution in which 1% by weight of hydroquinone monomethyl ether was dissolved was continuously fed from the top of the column at a rate of 0.1 ml / min. Except for this, the procedure was the same as in Example 1. Around the time of switching from the middle distillate to the main distillate, the pressure difference in the distillation column increased, and insoluble polymer was generated in the upper part and the middle part of the column, and the upper part of the column was in a closed state.

【0035】[0035]

【比較例3】実施例1で用いたクペロンのスラリーを使
用する代わりに、1重量%のフェノチアジンを溶解した
メタクリル酸シクロヘキシル溶液を、塔頂より0.1m
l/分で連続的にフィードした事以外は、実施例1と同
様に行ったところ、主留留出中に、蒸留塔の差圧が増大
し、塔上部及び中段部に不溶性ポリマーが発生し、塔上
部は閉塞状態であった。
COMPARATIVE EXAMPLE 3 Instead of using the cuperon slurry used in Example 1, a solution of cyclohexyl methacrylate in which 1% by weight of phenothiazine was dissolved was 0.1 m from the top of the tower.
The same procedure as in Example 1 was carried out except that the feed was continuously carried out at 1 / min. During the main distillation, the pressure difference in the distillation column increased, and insoluble polymer was generated in the upper part and middle part of the column. The upper part of the tower was closed.

【0036】[0036]

【比較例4】実施例1において、蒸留前に反応濾過液に
0.1重量%のクペロンを添加し、クペロンのスラリー
を使用する代わりに、1重量%のハイドロキノンモノメ
チルエーテルを溶解したメタクリル酸シクロヘキシル溶
液を、塔頂より0.1ml/分で連続的にフィードした
事以外は、実施例1と同様に行った。主留留出中に、蒸
留塔の差圧が増大し、塔上部及び中段部に不溶性ポリマ
ーが発生し、塔上部は閉塞状態であった。
Comparative Example 4 In Example 1, 0.1% by weight of couperone was added to the reaction filtrate before distillation, and instead of using a slurry of couperone, cyclohexyl methacrylate in which 1% by weight of hydroquinone monomethyl ether was dissolved was used. The procedure was performed in the same manner as in Example 1 except that the solution was continuously fed from the top of the tower at 0.1 ml / min. During the main distillation, the pressure difference in the distillation column increased, and insoluble polymer was generated in the upper part and middle part of the column, and the upper part of the column was in a closed state.

【0037】[0037]

【比較例5】実施例1で用いたクペロンのスラリーを使
用する代わりに、1重量%のN−ニトロソフェニルヒド
ロキシルアミンのアルミニウム塩を溶解したメタクリル
酸シクロヘキシル溶液を塔頂より0.1ml/分で連続
的にフィードした事以外は、実施例1と同様に行ったと
ころ、主留留出中に、蒸留塔の差圧が増大し、塔中段部
に不溶性ポリマーが発生していた。
COMPARATIVE EXAMPLE 5 Instead of using the cuperon slurry used in Example 1, a cyclohexyl methacrylate solution in which 1% by weight of an aluminum salt of N-nitrosophenylhydroxylamine was dissolved was added at a rate of 0.1 ml / min from the top of the tower. Except for feeding continuously, the same procedure as in Example 1 was carried out. During the main distillation, the pressure difference in the distillation column increased, and an insoluble polymer was generated in the middle part of the column.

【0038】[0038]

【発明の効果】本発明によれば、メタクリル酸メチルと
シクロヘキサノールのエステル交換によりメタクリル酸
シクロヘキシルを製造するに際し、系内の水分を100
0ppm以下、特に工業用の原料シクロヘキサノールの
水分率を1000ppm以下に調整することで、水酸化
リチウムの触媒活性を維持して、高い収率でメタクリル
酸シクロヘキシルを得るとともに、得られたエステル交
換反応液を引き続き蒸留精製するに際し、クペロン類を
実質的に固体状で蒸留塔の気相部に付与することによ
り、メタクリル酸シクロヘキシルの重合を効果的に抑制
し、不溶性ポリマーの生成による装置の閉塞などを防
止、併せてメタクリル酸シクロヘキシルの工業的な一貫
製造システムが可能となった。
According to the present invention, in producing cyclohexyl methacrylate by transesterification between methyl methacrylate and cyclohexanol, water in the system is reduced to 100%.
By adjusting the water content of 0 ppm or less, particularly the industrial raw material cyclohexanol to 1000 ppm or less, the catalytic activity of lithium hydroxide is maintained, cyclohexyl methacrylate is obtained in a high yield, and the obtained transesterification reaction is performed. In the subsequent distillation and purification of the liquid, by applying couperones in a substantially solid state to the gas phase of the distillation column, the polymerization of cyclohexyl methacrylate is effectively suppressed, and clogging of the apparatus due to generation of insoluble polymer, etc. , And an integrated industrial production system for cyclohexyl methacrylate has been made possible.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 (56)参考文献 特開 平2−101042(JP,A) 特開 昭49−125315(JP,A) 特開 平10−195022(JP,A) (58)調査した分野(Int.Cl.6,DB名) C07C 69/54 C07C 67/03 C07C 67/54 C07C 67/62 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 C07B 61/00 300 (56) References JP-A-2-101042 (JP, A) JP-A-49 -125315 (JP, A) JP-A-10-195022 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C07C 69/54 C07C 67/03 C07C 67/54 C07C 67/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 メタクリル酸メチルとシクロヘキサノー
ルを、無水水酸化リチウム触媒の存在下で、系内の含水
率を1000ppm 以下に維持してエステル交換し、得られた
反応液を蒸留塔で、重合禁止剤N−ニトロソフエニルヒ
ドロキシルアミン塩の存在下で精製するに当たり、N−
ニトロソフエニルヒドロキシルアミン塩を蒸留塔内の気
相中に固体で存在させることを特徴とするメタクリル酸
シクロヘキシルの製造方法。
The method according to claim 1] methyl methacrylate and cyclohexanol, in the presence of anhydrous lithium hydroxide catalyst, and transesterification while maintaining the water content in the system to 1000ppm or less, the resulting
The reaction solution is passed through a distillation column, and the polymerization inhibitor N-nitrosophenyl
In purifying in the presence of droxylamine salt, N-
Nitrosophenylhydroxylamine salt is removed from the gas in the distillation column.
A process for producing cyclohexyl methacrylate, characterized in that it is present as a solid in the phase .
【請求項2】 固体のN−ニトロソフエニルヒドロキシ
ルアミン塩が、スラリー状であることを特徴とする請求
項1記載のメタクリル酸シクロへキシルの製造方法。
2. Solid N-nitrosophenylhydroxy
The method for producing cyclohexyl methacrylate according to claim 1 , wherein the ruamine salt is in a slurry state .
【請求項3】 固体のN−ニトロソフエニルヒドロキシ
ルアミン塩が、フエノール樹脂を主成分とする樹脂成形
体、樹脂発泡体または樹脂塗膜であることを特徴とする
請求項1記載のメタクリル酸シクロヘキシルの製造方
法。
3. Solid N-nitrosophenylhydroxy
Luamine salt is a resin molding whose main component is phenolic resin
The method for producing cyclohexyl methacrylate according to claim 1, wherein the method is a body, a resin foam, or a resin coating film .
JP10061960A 1998-02-27 1998-02-27 Method for producing cyclohexyl methacrylate Expired - Lifetime JP2949150B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10061960A JP2949150B1 (en) 1998-02-27 1998-02-27 Method for producing cyclohexyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10061960A JP2949150B1 (en) 1998-02-27 1998-02-27 Method for producing cyclohexyl methacrylate

Publications (2)

Publication Number Publication Date
JP2949150B1 true JP2949150B1 (en) 1999-09-13
JPH11246479A JPH11246479A (en) 1999-09-14

Family

ID=13186271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10061960A Expired - Lifetime JP2949150B1 (en) 1998-02-27 1998-02-27 Method for producing cyclohexyl methacrylate

Country Status (1)

Country Link
JP (1) JP2949150B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137228B2 (en) * 1998-04-27 2008-08-20 旭化成ケミカルズ株式会社 Method for producing cyclohexyl methacrylate
FR2815631B1 (en) * 2000-10-25 2003-12-19 Atofina PROCESS FOR THE MANUFACTURE OF METHYLCYCLOHEXYL (METH) ACRYLATES
JP4894203B2 (en) * 2005-08-30 2012-03-14 宇部興産株式会社 Process for producing higher alcohol esters of acrylic acid and higher alcohol esters of methacrylic acid
EP2220023B1 (en) 2007-12-19 2017-04-05 Evonik Röhm GmbH Process for preparing (meth)acrylates

Also Published As

Publication number Publication date
JPH11246479A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
TWI323252B (en) Method for production of acrylic acid
BRPI0610011A2 (en) process for preparing alkyl (meth) acrylates
BG99598A (en) Method for the preparation of n-acyl- -aminoacid derivatives
JPS5953441A (en) Preparation of aromatic carboxylic acid
JP2949150B1 (en) Method for producing cyclohexyl methacrylate
JP5378207B2 (en) Method for producing (meth) acrylic acid
JPH0352843A (en) Production of acrylic acid ester
JPH0244296B2 (en)
JP3832868B2 (en) Acrylic acid purification method
JP2001002416A (en) Production of ethylene glycol soluble germanium dioxide and dissolving method thereof
JP3826435B2 (en) Purification method of acrylic acid or methacrylic acid
JPH1129538A (en) Production of saturated aliphatic carboxylic acid amide
JPS6310691B2 (en)
JP2002003444A (en) Method of producing methacrylic ester
JPS6212776B2 (en)
JPH0749414B2 (en) Method for purifying unsaturated carboxylic acid isocyanatoalkyl ester
JPH10330320A (en) Production of 2-hydroxyethyl (meth)acrylate
JP4601120B2 (en) Acrylic acid production method
JP3155983B2 (en) Distillation method of cyclohexyl methacrylate
JPS6263544A (en) Production of acrylic acid or methacrylic acid tertiary butyl ester
JP3623855B2 (en) Method for producing N-methylol (meth) acrylamide
JPH1045670A (en) Decomposition of michael adduct of acrylic ester
JPS5945667B2 (en) Method for producing amino acid aminoalkyl ester
JP4322358B2 (en) Cyclic alcohol treatment method
US5840978A (en) Process for preparing ethylidene bisformamide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term