JP2948935B2 - Antigen and antibody detection methods - Google Patents

Antigen and antibody detection methods

Info

Publication number
JP2948935B2
JP2948935B2 JP3074003A JP7400391A JP2948935B2 JP 2948935 B2 JP2948935 B2 JP 2948935B2 JP 3074003 A JP3074003 A JP 3074003A JP 7400391 A JP7400391 A JP 7400391A JP 2948935 B2 JP2948935 B2 JP 2948935B2
Authority
JP
Japan
Prior art keywords
antigen
particles
antibody
magnetic
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3074003A
Other languages
Japanese (ja)
Other versions
JPH04285857A (en
Inventor
是 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3074003A priority Critical patent/JP2948935B2/en
Publication of JPH04285857A publication Critical patent/JPH04285857A/en
Application granted granted Critical
Publication of JP2948935B2 publication Critical patent/JP2948935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に抗原や抗体の微量
検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to a method for detecting a trace amount of an antigen or an antibody.

【0002】[0002]

【従来の技術】抗原や抗体を検出するためのイムノアッ
セイが注目を集めている。
2. Description of the Related Art An immunoassay for detecting an antigen or an antibody has attracted attention.

【0003】例えば、食物や薬剤中などのアレルゲンの
検出や除去は、アレルギーの診断、予防などにおいて極
めて重要である。これまでアレルゲンの検出には、放射
性同位体を用いるRAST(Radioallergosorbenttes
t)法、皮膚テスト(ブリックテスト、スクラッチテス
ト、皮内テスト)、ヒスタミン遊離試験などが用いられ
てきた。しかし、RAST法は放射性同位体を用いなけ
ればならず、皮膚テストは、アナフィラキシーショック
などの危険を伴うという欠点があった。このため新しい
アレルゲンの検出システムの開発が望まれている。
[0003] For example, detection and removal of allergens in foods and medicines are extremely important in diagnosis and prevention of allergy. Until now, allergens have been detected using RAST (Radioallergosorbenttes) using radioisotopes.
t) method, skin test (brick test, scratch test, intradermal test), histamine release test, etc. have been used. However, the RAST method has to use radioisotopes, and the skin test has a drawback that it involves risks such as anaphylactic shock. Therefore, development of a new allergen detection system is desired.

【0004】そこで、本発明者らは、磁性細菌から抽出
した蛍光色素標識抗体を固定化し、微量抗原の検出を行
う旨を報告している(ANALYTICAL CHEMISTRY,VOL. 6
3,No. 3,FEBRUARY1,1991 P268−P27
2)。
Therefore, the present inventors have reported that a fluorescent dye-labeled antibody extracted from a magnetic bacterium is immobilized and a trace amount of antigen is detected (ANALYTICAL CHEMISTRY, VOL. 6).
3, No. 3, FEBRUARY1, 1991 P268-P27
2).

【0005】この方法は、蛍光色素標識抗体固定化磁性
細菌と抗原とを液中で反応させ、抗原抗体反応に基づく
凝集を生じさせたのち、凝集分離後の液の分散液の蛍光
強度を測定し、蛍光強度の減少から、抗体減少量を検出
し、抗原量を定量するものである。
In this method, a magnetic bacterium immobilized with a fluorescent dye-labeled antibody is allowed to react with an antigen in a liquid to cause aggregation based on the antigen-antibody reaction, and then the fluorescence intensity of the liquid dispersion after the aggregation and separation is measured. Then, the amount of decrease in the antibody is detected from the decrease in the fluorescence intensity, and the amount of the antigen is quantified.

【0006】[0006]

【発明が解決しようとする課題】しかし、この方法で
は、前記報文P271Figure4に示されるように、数百
pg/ml 程度までの抗体量の減少量までしか定量できず、
抗原の微量定量に不適である。
However, according to this method, as shown in the above-mentioned report P271, FIG.
It can only be quantified up to the amount of antibody amount reduced to about pg / ml,
Not suitable for trace quantification of antigen.

【0007】本発明の主たる目的は、磁性細菌粒子等の
強磁性粒子を用い、きわめて微量の抗原、抗体を精度よ
く検出できる方法を提供することにある。
[0007] A main object of the present invention is to provide a method capable of accurately detecting an extremely small amount of an antigen or an antibody using ferromagnetic particles such as magnetic bacterial particles.

【0008】[0008]

【課題を解決するための手段】このような目的は、下記
の(1)〜(3)の本発明によって達成される。
This and other objects are achieved by the present invention which is defined below as (1) to (3).

【0009】(1) 強磁性粒子に、磁性細菌から抽出
した磁性細菌粒子に、蛍光標識を行った抗体または抗原
を固定化し、これと抗原または抗体とを液中で反応さ
せ、抗原抗体反応に基づく凝集を生じさせたのち、これ
を磁気的に分離濃縮し、凝集物の蛍光濃度を測定するこ
とを特徴とする抗原、抗体検出方法。
(1) Immobilize fluorescently labeled antibodies or antigens on magnetic bacterial particles extracted from magnetic bacteria on ferromagnetic particles, and react them with the antigens or antibodies in a solution to perform antigen-antibody reactions. A method for detecting an antigen and an antibody, comprising the steps of magnetically separating and concentrating the resulting aggregate after the occurrence of the aggregation, and measuring the fluorescence concentration of the aggregate.

【0010】(2) 前記強磁性粒子は、表面に有機薄
膜を有する上記(1)に記載の抗原、抗体検出方法。
(2) The method for detecting an antigen or antibody according to (1), wherein the ferromagnetic particles have an organic thin film on a surface.

【0011】(3) 前記強磁性粒子は、磁性細菌粒子
である上記(1)または(2)に記載の抗原、抗体検出
方法。
(3) The method for detecting an antigen or antibody according to the above (1) or (2), wherein the ferromagnetic particles are magnetic bacterial particles.

【0012】[0012]

【発明の具体的構成】以下、本発明の具体的構成につい
て詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific configuration of the present invention will be described in detail.

【0013】磁性細菌は、1970年代、アメリカで発
見され、菌体内に50〜100nmの程度の粒径のマグネ
タイト(Fe34 )単結晶の微粒子が10〜20個ほ
ど連なったマグネトソームと呼ばれるチェーン状の粒子
を保持している。磁性細菌はこのマグネトソームを保持
することで地磁気を感知し、磁力線の方向を認識するこ
とができる。磁性細菌は微好気性の細菌であり、地磁気
を感知することで好気的な水面から微好気的な沈殿物表
層へ磁力線に沿って泳ぐことができる。前記報文に示さ
れるように、このものは単菌分離され、大量培養が可能
となった磁性細菌は大きさがおよそ2μmのグラム陰性
の螺旋菌で、菌体内に10〜20個のマグネタイト単結
晶を合成する。
A magnetic bacterium was discovered in the United States in the 1970's, and is called a magnetosome in which about 10 to 20 magnetite (Fe 3 O 4 ) single crystal microparticles having a particle size of about 50 to 100 nm are connected in the cell. Holds chain-like particles. The magnetic bacteria can detect the geomagnetism by holding the magnetosome and recognize the direction of the magnetic field lines. A magnetic bacterium is a microaerobic bacterium. By sensing geomagnetism, a magnetic bacterium can swim from an aerobic water surface to a microaerobic sediment surface layer along a magnetic field line. As indicated in the above-mentioned report, this was isolated as a single bacterium, and the magnetic bacterium that was able to be mass-cultured was a gram-negative spiral bacterium having a size of about 2 μm. Synthesize crystals.

【0014】この磁性細菌中の磁性粒子は、六角柱で粒
径、形状が非常に均一であり、純度も高く、粒子を含む
菌体の磁化を微粒子当りに換算すると約50emu/g であ
る。また、保磁力は230 Oe で、単磁区構造をとって
いることが確かめられている。
The magnetic particles in the magnetic bacterium are hexagonal prisms, have a very uniform particle size and shape, have high purity, and have a magnetization of about 50 emu / g when the magnetization of bacterial cells containing the particles is converted per fine particle. It has been confirmed that the coercive force is 230 Oe and that it has a single magnetic domain structure.

【0015】また、粒子表面が有機薄膜で覆われている
ことから金属の溶出がほとんど起こらず安定に存在し、
水溶液中での分散性にも優れているといった特性を有し
ている。そして、この有機薄膜はホスファチジルエタノ
ールアミンを主成分とする厚さが約4nmの脂質二分子膜
である。この有機薄膜は除去しないで使用することが好
ましい。
Further, since the surface of the particles is covered with the organic thin film, the metal is hardly eluted and is stably present.
It has the property of being excellent in dispersibility in an aqueous solution. The organic thin film is a lipid bilayer having a thickness of about 4 nm and containing phosphatidylethanolamine as a main component. This organic thin film is preferably used without being removed.

【0016】なお、磁性細菌粒子は、通常1次粒子単独
であるが、その2〜10個の2次粒子であってもよい。
The magnetic bacterial particles are usually primary particles alone, but may be 2 to 10 secondary particles.

【0017】磁性細菌からの磁性細菌粒子の抽出方法に
はフレンチプレスを用いた物理的圧力破砕、アルカリ煮
沸、酵素処理、超音波破砕処理などがあり、いずれの方
法で抽出された磁性細菌粒子もその表面が有機薄膜で覆
われている。リゾチーム、プロテアーゼなどの酵素を用
いると、菌体内で保持されていたマグネトソームの状態
で抽出することができ、また、超音波処理を用いると一
つ一つが分散した状態のものが得られる。よって、その
利用目的により適した抽出方法を用いることが望まれ
る。しかし、磁性細菌粒子を大量に得る場合には、現在
のところ超音波による破砕が適しているといえる。な
お、この有機薄膜は化学処理により除去可能であるが、
後述の抗原、抗体の固定化のためには残しておくことが
好ましい。
Methods for extracting magnetic bacterial particles from magnetic bacteria include physical pressure crushing using a French press, alkali boiling, enzymatic treatment, and ultrasonic crushing. Magnetic bacterial particles extracted by any of the methods are also used. Its surface is covered with an organic thin film. When an enzyme such as lysozyme or protease is used, it can be extracted in the form of magnetosomes retained in the cells, and when ultrasonic treatment is used, a product in which each is dispersed can be obtained. Therefore, it is desired to use an extraction method more suitable for the purpose of use. However, when obtaining a large amount of magnetic bacterial particles, it can be said that ultrasonic crushing is suitable at present. Although this organic thin film can be removed by chemical treatment,
It is preferable to leave it for immobilization of antigens and antibodies described below.

【0018】また、本発明で用いる強磁性粒子として
は、好ましくは結合性官能基を有するリン脂質層の有機
薄膜で被覆された磁気微粒子であってもよい。
The ferromagnetic particles used in the present invention may preferably be magnetic fine particles coated with an organic thin film of a phospholipid layer having a binding functional group.

【0019】ここで結合性官能基としては、例えば、ア
ミノ基、カルボキシル基、水酸基等が挙げられ、アミノ
基およびカルボキシル基が一般的である。このような結
合性官能基を有するリン脂質としては、例えば、ホスフ
ァチジルエタノールアミン、ホスファチジルセリン、ホ
スファチジルイノシトール、カルジオリピン、ホスファ
チジル−N−メチルエタノールアミン、ホスファチジル
コリン、ホスファチジルグリセロール、スフィンゴミエ
リン、ホスファチジルトレオニン等がある。
Here, examples of the binding functional group include an amino group, a carboxyl group, a hydroxyl group and the like, and an amino group and a carboxyl group are generally used. Examples of such a phospholipid having a binding functional group include phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylglycerol, sphingomyelin, and phosphatidylthreonine.

【0020】また、強磁性微粒子としては、例えば、F
34 、γ−Fe23 、Co−γ−Fe23
(NiCuZn)O・Fe23 、(CuZn)O・F
23 、(Mn・Zn)O・Fe23 、(NiZ
n)O・Fe23 、SrO・6Fe23 、BaO・
6Fe23 、SiO2 で被覆したFe34 、(粒径
約200A )[Enzyme Microb. Technol.,vol.2, p.2〜
10(1980)参照] 、各種の高分子材料(ナイロン、ポリア
クリルアミドタンパク質等)とフェライトとの複合微粒
子、磁性金属微粒子等を挙げることができる。
As the ferromagnetic fine particles, for example, F
e 3 0 4, γ-Fe 2 O 3, Co-γ-Fe 2 O 3,
(NiCuZn) O.Fe 2 O 3 , (CuZn) OF
e 2 O 3 , (Mn · Zn) O · Fe 2 O 3 , (NiZ
n) O · Fe 2 O 3 , SrO · 6Fe 2 O 3, BaO ·
6Fe 2 O 3, Fe 3 0 4 was covered with SiO 2, (particle size of about 200A) [Enzyme Microb. Technol. , Vol.2, p.2~
10 (1980)], composite fine particles of various polymer materials (nylon, polyacrylamide protein, etc.) and ferrite, magnetic metal fine particles, and the like.

【0021】このような粒子は、例えば、水性媒体中に
おいて結合性官能基を有するリン脂質の脂質二重層から
なるリボソームを形成し、このリボソーム内に共沈法に
よりフェライトを合成する方法等で製造される。
Such particles are produced, for example, by forming a ribosome comprising a lipid bilayer of a phospholipid having a binding functional group in an aqueous medium, and synthesizing ferrite in the ribosome by a coprecipitation method. Is done.

【0022】このような磁性細菌粒子等の強磁性粒子に
は、蛍光標識を行った抗体や抗原が固定化される。使用
可能な抗体、抗原としては、イムノアッセイに用いられ
る全てのものが可能である。また、蛍光物質についても
制限はなく、その抗体や抗原への固定化についても制限
はない。蛍光物質の抗体等に対する固定量は、一般的
に、抗体等1分子あたり、1〜10分子程度である。
[0022] Fluorescently labeled antibodies and antigens are immobilized on such ferromagnetic particles as magnetic bacterial particles. Usable antibodies and antigens include all those used in immunoassays. There is no restriction on the fluorescent substance, and there is no restriction on the immobilization on the antibody or antigen. The amount of the fluorescent substance fixed to the antibody or the like is generally about 1 to 10 molecules per molecule of the antibody or the like.

【0023】また、蛍光標識抗体等を磁性細菌粒子に固
定するには、磁性細菌粒子等の好ましくは有機薄膜を利
用して、グルタルアルデヒド等の各種多官能性化合物
や、各種カップリング剤等を用いて行えばよい。そし
て、蛍光標識抗体等の磁性細菌粒子等に対する固定量
は、一般に、粒子1個あたり、1〜10分子程度とす
る。
In order to immobilize a fluorescently labeled antibody or the like on magnetic bacterial particles, various polyfunctional compounds such as glutaraldehyde or various coupling agents are preferably used by using an organic thin film such as magnetic bacterial particles. What is necessary is to use it. The amount of the fluorescently labeled antibody or the like immobilized on magnetic bacterial particles or the like is generally about 1 to 10 molecules per particle.

【0024】本発明では、このような蛍光標識抗体ある
いは抗原を固定した磁性細菌粒子等を、緩衝液中に好ま
しくは超音波分散する。そして、例えば蛍光標識抗体固
定磁性細菌微粒子と、アレルゲンとの抗原抗体反応を行
う。反応時には、外部から磁場を印加し、磁性細菌粒子
等の凝集を促進することが好ましい。反応時間は1〜6
0分程度とする。
In the present invention, such magnetic bacterial particles or the like on which such fluorescently labeled antibodies or antigens are immobilized are preferably ultrasonically dispersed in a buffer. Then, for example, an antigen-antibody reaction between the fluorescently labeled antibody-immobilized magnetic bacterial microparticles and the allergen is performed. At the time of the reaction, it is preferable to apply a magnetic field from the outside to promote aggregation of the magnetic bacterial particles and the like. Reaction time is 1-6
It is about 0 minutes.

【0025】反応終了後、抗原抗体反応に基づき凝集し
た磁性細菌粒子等と、未反応の微粒子とを磁気的に分離
濃縮する。凝集粒子を分離するには、凝集粒子の磁界感
応性の高さを利用して、反応終了後の液中の凝集粒子を
磁石により捕集した状態でデカンテーションしたり、あ
るいは液を流入流出させながら、磁石により凝集粒子の
みを捕捉したりすればよい。なお、一般に、凝集粒子
は、1次ないし2次粒子である磁性細菌粒子等10個程
度の凝集体である。
After completion of the reaction, unreacted fine particles are magnetically separated from magnetic bacteria particles and the like agglomerated by the antigen-antibody reaction. In order to separate the aggregated particles, utilizing the high magnetic field sensitivity of the aggregated particles, the aggregated particles in the liquid after the reaction are decanted while being collected by a magnet, or the liquid is caused to flow in and out. However, only the aggregated particles may be captured by the magnet. Generally, the aggregated particles are approximately 10 aggregates such as magnetic bacterial particles that are primary or secondary particles.

【0026】分離された凝集強磁性粒子は、必要に応じ
ゼラチンを含む緩衝液中に分散させ、蛍光強度の測定を
行う。このとき、50pg/ml 以上、例えば50〜100
0pg/ml の微量抗原量が定量できる。
The separated agglomerated ferromagnetic particles are dispersed in a buffer containing gelatin, if necessary, and the fluorescence intensity is measured. At this time, 50 pg / ml or more, for example, 50 to 100
A trace amount of antigen of 0 pg / ml can be determined.

【0027】[0027]

【実施例】【Example】

【0028】以下、本発明を、実施例によってさらに詳
細に説明する。
Now, the present invention will be described in further detail with reference to Examples.

【0029】実施例 前記報文(ANALYTICAL CHEMISTRY)に準じ、下記の操作
を行った。
Example The following operation was performed according to the above-mentioned report (ANALYTICAL CHEMISTRY).

【0030】まず、磁性細菌Aquaspirillum magnetotac
ticum Strain AMB−1を定常期初期まで培養した。菌体
からの磁性細菌粒子の抽出は、超音波破砕で行った。ま
た、菌体破砕物中からの磁性細菌粒子の抽出は、Sm−
Co磁石を用いて行った。
First, the magnetic bacterium Aquaspirillum magnetotac
ticum Strain AMB-1 was cultured until the early stationary phase. Extraction of the magnetic bacterial particles from the cells was performed by sonication. In addition, extraction of magnetic bacterial particles from crushed bacterial cells was performed using Sm-
This was performed using a Co magnet.

【0031】蛍光標識抗体としては、フルオロセインイ
ソシアネート(FITC)を固定化したマウスイムノグ
ロブリンE(IgE)を用いた。磁性細菌粒子は周囲を
脂質膜で覆われていることから、グルタルアルデヒド処
理で抗体の固定化を行った。
As the fluorescently labeled antibody, mouse immunoglobulin E (IgE) on which fluorescein isocyanate (FITC) was immobilized was used. Since the magnetic bacterial particles are covered with a lipid membrane, the antibodies were immobilized by glutaraldehyde treatment.

【0032】より詳細には、抽出した磁性細菌粒子を超
音波洗浄機(Tocho UC 0310100W )で分散させ、2.5
%グルタルアルデヒド溶液と1時間、室温でインキュベ
ートした。リン酸緩衝生理食塩水(PBSpH7.4)で
洗浄後、FITC標識マウスIgE抗体と12時間、4
℃でインキュベートし固定化を行った。未反応の抗体を
洗浄除去後、PBS中に分散させ4℃で保存した。
More specifically, the extracted magnetic bacterial particles were dispersed in an ultrasonic washer (Tocho UC 0310100W),
% Glutaraldehyde solution for 1 hour at room temperature. After washing with phosphate buffered saline (PBS pH 7.4), the cells were washed with FITC-labeled mouse IgE antibody for 12 hours.
Incubation was performed at ℃ for immobilization. After removing the unreacted antibody by washing, it was dispersed in PBS and stored at 4 ° C.

【0033】これとは別に、モデルアレルゲンであるジ
ニトロフェニル化した牛血清アルブミン(DNP−BS
A)を、ゼラチン−ベロナール緩衝液(GVBpH8.3
ゼラチン0.1%)で0〜1000ng/ml の濃度になる
ように希釈した。この希釈標準試料は測定毎に調製し
た。
Separately, a model allergen, dinitrophenylated bovine serum albumin (DNP-BS
A) was converted to a gelatin-veronal buffer (GVB pH 8.3).
(Gelatin 0.1%) to a concentration of 0 to 1000 ng / ml. This diluted standard sample was prepared for each measurement.

【0034】50μgの抗体固定化磁性細菌粒子と、5
0μlの試料を混合し、37℃、15分間インキュベー
トした。抗原抗体反応に基づく凝集反応では、Sm−C
o磁石で磁場を与え、反応時間の短縮を行った。
50 μg of the antibody-immobilized magnetic bacterial particles,
0 μl of the sample was mixed and incubated at 37 ° C. for 15 minutes. In the agglutination reaction based on the antigen-antibody reaction, Sm-C
o A magnetic field was applied by a magnet to shorten the reaction time.

【0035】抗原抗体反応をさせた後に、凝集反応を起
こした磁性細菌粒子と未反応の粒子を磁気的に分離濃縮
し、凝集反応を起こした粒子量をその蛍光強度を指標に
測定した。すなわち、磁石により凝集粒子を捕捉した状
態で、デカンテーションを行い、分離濃縮した粒子をフ
ロー型マイクロセル(12μl)を改良したものを用い
て、粒子の沈降を抑えるためにセル外部に磁場を与え、
蛍光強度を測定した。また、凝集粒子は、ゼラチン1%
を含むGVBにThermomixer (サーモニクス社Model T
M−105)を用いて分散させ、蛍光分光光度計(日立
F−1200)で蛍光強度を測定した。励起光は490
nm、蛍光は520nmで検出し、10×10mmの石英セル
を用いて測定を行った。蛍光強度は値の安定する15分
後の値で評価した。
After the antigen-antibody reaction, the magnetic bacteria particles that had undergone the agglutination reaction and the unreacted particles were magnetically separated and concentrated, and the amount of the particles that had undergone the agglutination reaction was measured using the fluorescence intensity as an index. That is, decantation is performed in a state where the aggregated particles are captured by the magnet, and the separated and concentrated particles are improved using a flow microcell (12 μl), and a magnetic field is applied to the outside of the cell to suppress the sedimentation of the particles. ,
The fluorescence intensity was measured. Aggregated particles are 1% gelatin
GVB including Thermomixer (Thermonics Model T
M-105) and the fluorescence intensity was measured with a fluorescence spectrophotometer (Hitachi F-1200). The excitation light is 490
nm and fluorescence were detected at 520 nm, and the measurement was performed using a 10 × 10 mm quartz cell. The fluorescence intensity was evaluated at a value 15 minutes after the value was stabilized.

【0036】DNP−BSA濃度0〜500pg/ml にお
ける蛍光強度を表1に示す。この場合、抗原を加えずイ
ンキュベートし、測定した時のバックグラウンドの値を
100として相対強度計算した。DNP−BSA濃度5
0pg/ml から相対蛍光強度の増加がみられ、より高感度
での検出が可能であった。
Table 1 shows the fluorescence intensity at a DNP-BSA concentration of 0 to 500 pg / ml. In this case, incubation was performed without adding the antigen, and the relative intensity was calculated with the background value measured as 100. DNP-BSA concentration 5
From 0 pg / ml, an increase in relative fluorescence intensity was observed, and detection with higher sensitivity was possible.

【0037】[0037]

【表1】 [Table 1]

【0038】なお、500pg/ml 〜1000mg/ml にお
いても、精度よく定量を行うことができた。
It should be noted that quantification could be performed with high accuracy even at 500 pg / ml to 1000 mg / ml.

【0039】また、FITC標識マウスIgE抗体固定
化磁性細菌粒子と、マウスIgG、牛血清アルブミン
(BSA)をそれぞれ混合し、37℃、15分間反応
後、蛍光強度を測定した。DNP−BSAとともにイン
キュベートした場合にのみ蛍光強度の増大がみられ、他
のタンパク質の場合には減少はみられなかった。また、
DNP−BSAと他のタンパク質を混合した場合も、D
NP−BSAを含む場合のみ増大がみられた。このこと
から、抗原抗体反応に基づく選択的な抗原の測定が可能
であった。
Further, FITC-labeled mouse IgE antibody-immobilized magnetic bacterial particles, mouse IgG, and bovine serum albumin (BSA) were mixed, and reacted at 37 ° C. for 15 minutes, and the fluorescence intensity was measured. The fluorescence intensity increased only when incubated with DNP-BSA, and did not decrease with other proteins. Also,
When DNP-BSA is mixed with other proteins,
The increase was seen only when NP-BSA was included. From this, selective measurement of the antigen based on the antigen-antibody reaction was possible.

【0040】[0040]

【発明の効果】本発明によれば、抗原または抗体を、き
わめて微量まで高感度に精度よく定量することができ
る。
According to the present invention, an antigen or an antibody can be quantified with high sensitivity and accuracy to an extremely small amount.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 33/543 581 G01N 33/543 541 G01N 33/543 575 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 33/543 581 G01N 33/543 541 G01N 33/543 575

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強磁性粒子に、蛍光標識を行った抗体ま
たは抗原を固定化し、これと抗原または抗体とを液中で
反応させ、抗原抗体反応に基づく凝集を生じさせたの
ち、これを磁気的に分離濃縮し、凝集物の蛍光濃度を測
定することを特徴とする抗原、抗体検出方法。
1. An antibody or antigen which has been fluorescently labeled is immobilized on ferromagnetic particles, and the antibody or antigen is reacted with the antigen or antibody in a solution to cause aggregation based on an antigen-antibody reaction. A method for detecting an antigen and an antibody, wherein the method comprises the steps of: isolating and concentrating the mixture; and measuring the fluorescence concentration of the aggregate.
【請求項2】 前記強磁性粒子は、表面に有機薄膜を有
する請求項1に記載の抗原、抗体検出方法。
2. The method according to claim 1, wherein the ferromagnetic particles have an organic thin film on a surface.
【請求項3】 前記強磁性粒子は、磁性細菌粒子である
請求項1または2に記載の抗原、抗体検出方法。
3. The method for detecting an antigen and an antibody according to claim 1, wherein the ferromagnetic particles are magnetic bacterial particles.
JP3074003A 1991-03-13 1991-03-13 Antigen and antibody detection methods Expired - Fee Related JP2948935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074003A JP2948935B2 (en) 1991-03-13 1991-03-13 Antigen and antibody detection methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074003A JP2948935B2 (en) 1991-03-13 1991-03-13 Antigen and antibody detection methods

Publications (2)

Publication Number Publication Date
JPH04285857A JPH04285857A (en) 1992-10-09
JP2948935B2 true JP2948935B2 (en) 1999-09-13

Family

ID=13534466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074003A Expired - Fee Related JP2948935B2 (en) 1991-03-13 1991-03-13 Antigen and antibody detection methods

Country Status (1)

Country Link
JP (1) JP2948935B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035964A1 (en) * 1996-03-27 1997-10-02 Tdk Corporation Fine magnetic particles containing useful proteins bound thereto, process for producing the same, and use thereof

Also Published As

Publication number Publication date
JPH04285857A (en) 1992-10-09

Similar Documents

Publication Publication Date Title
US5108933A (en) Manipulation of colloids for facilitating magnetic separations
US4241176A (en) Magnetic gel suitable to immunoenzymatic determinations
US7358099B2 (en) Process for (A) separating biological/ligands from dilute solutions and (B) conducting an immunochromatographic assay thereof employing superparamagnetic particles throughout
JPH02276968A (en) Immunity test using fragment of f(ab')2
CN108982834B (en) Method for detecting biological molecules by using nano enzyme immune sandwich novel technology
JPH089995A (en) Implementation of enzyme reaction
AU2000263456B2 (en) Increased separation efficiency via controlled aggregation of magnetic nanoparticles
JPS62190466A (en) Method of separating particle
US6844426B2 (en) Magnetic carrier capable of binding with protein and purification method of protein utilizing the magnetic carrier
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
JPH05209884A (en) Method for detecting antigen and antibody
JP2948935B2 (en) Antigen and antibody detection methods
US5055395A (en) Latex agglutination method for the detection of anti-streptococcal deoxyribonuclease b
JPH0599926A (en) Method for measuring bacterium, cell and virus
JPH0588787B2 (en)
JP2009276089A (en) Stirring method of liquid composition, detection method and detection kit
JPH02210262A (en) Method for indirectly measuring flocculation reaction
JP3979949B2 (en) Magnetic carrier capable of binding to protein and protein purification method using the same
JP2938936B2 (en) Method for measuring antigen or antibody concentration
JP2004301646A (en) Nonspecific reaction absorbent for immunity inspection
Eisler Influence of collodion particles on the visible end-point in antibody titrations
JPH0740031B2 (en) Immunological measurement method
CN106279420B (en) CD20 antibody immunomagnetic beads and preparation method thereof
JPH08327629A (en) Pretreatment of specimen
JP4246009B2 (en) Method for producing a carrier carrying a ligand

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees