JP2946946B2 - Power supply line switching circuit for submarine cable system - Google Patents
Power supply line switching circuit for submarine cable systemInfo
- Publication number
- JP2946946B2 JP2946946B2 JP17393592A JP17393592A JP2946946B2 JP 2946946 B2 JP2946946 B2 JP 2946946B2 JP 17393592 A JP17393592 A JP 17393592A JP 17393592 A JP17393592 A JP 17393592A JP 2946946 B2 JP2946946 B2 JP 2946946B2
- Authority
- JP
- Japan
- Prior art keywords
- relay
- power supply
- end point
- electromagnet coil
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は海底ケーブルシステムの
給電路切替回路に関し、特に分岐路を有する海底ケーブ
ルシステムの給電路切替回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feed line switching circuit for a submarine cable system, and more particularly to a feed line switching circuit for a submarine cable system having a branch path.
【0002】[0002]
【従来の技術】図4を参照すると、従来の海底ケーブル
システムの給電路切替回路は、電磁石コイル1,3,
7,9と、リレー12,32,71,72,91,92
とから構成され、電磁石コイル1はリレー12を、電磁
石コイル3はリレー32を、電磁石コイル7はリレー7
1,72を、および電磁石コイル9はリレー91,92
を各各所定の電流で駆動する。また、図4は従来の海底
ケーブルシステムの給電路切替回路の初期状態、すなわ
ち各各の電磁石コイルが各各のリレーを駆動する前の各
リレーの開閉状態を示している。2. Description of the Related Art Referring to FIG. 4, a feed line switching circuit of a conventional submarine cable system includes electromagnet coils 1, 3, and 3.
7, 9 and relays 12, 32, 71, 72, 91, 92
The electromagnet coil 1 is a relay 12, the electromagnet coil 3 is a relay 32, and the electromagnet coil 7 is a relay 7
1, 72 and the electromagnet coil 9 are relays 91, 92
Are driven by respective predetermined currents. FIG. 4 shows an initial state of the power supply line switching circuit of the conventional submarine cable system, that is, an open / closed state of each relay before each electromagnet coil drives each relay.
【0003】ここで、従来の海底ケーブルシステムの給
電路切替回路による海底ケーブルシステムの動作を図2
および図5を図4と併せて参照して詳述すると、給電装
置101、102、103は定電流電源であるとともに
定電圧電源としても使用でき、かつ給電極性を正極性お
よび負極性のいずれにも設定できる。ここでは給電装置
101および給電装置103は正電圧で給電し、給電装
置102は負電圧で給電する。給電立ち上げ操作手順は
図5に〜で示しており、まず給電装置101および
給電装置102を立上げ、次に給電装置103を立上げ
る。このとき最初、給電装置103は給電路γへ通じる
経路を内部で開放状態にしておき、また、給電装置10
1は定電流源に、給電装置102は定電圧源に設定す
る。なお、給電装置101と給電装置102間に給電電
流I2を流したときに給電路切替回路200の端点Cの
電圧(すなわち、結合点X,結合点Yおよび結合点Zの
電圧)が接地電位となる給電装置101の給電電圧V1
および給電装置102の給電電圧V2は予め決められて
いる。次に、給電立上げ操作手順について説明すると、
手順では、電磁石コイル3がリレー32を駆動しない
給電電圧V1(このとき給電装置101と給電装置10
2との間に給電電流I1が流れる)まで給電装置102
を操作する。手順では、電磁石コイル3がリレー32
を駆動する給電電流I2(このときの給電装置101の
給電電圧はV2になる)まで給電装置101を操作す
る。この結果、リレー32は接点aと接点b間を開放に
して端点Cと結合点Z間を開放状態にし、かつ接点aと
接点c間を短絡にして端点Cと端点D間を短絡状態にす
る。手順では、給電装置101の給電電流を所定のI
3(このとき給電装置101の給電電圧はV3になる)
まで給電装置101を操作する。手順では、給電装置
101および給電装置102の各各の給電電圧が極性が
逆でほぼ同じ電圧値になるように給電装置102の給電
電圧を所定のV4(このとき給電装置101の給電電圧
はV5≒−V4になり、給電装置101と給電装置10
2間に流れる給電電流はI3になる)まで給電装置10
2を操作する。手順では、最初開放状態にしておいた
給電装置103内部の給電路γへ通じる経路を接続状態
にし、所定の給電電流I3(このとき給電装置103の
給電電圧はV6になる)まで給電装置103を操作す
る。この結果、電磁石コイル9にはリレー32の接点a
および接点bを通して給電電流I3が流れてリレー91
を駆動し接点間を短絡にして端点cと端点e間を短絡状
態にし、かつリレー92の接点間を開放にする。以上の
給電立上げ後は給電装置101,給電装置102および
給電装置103はいずれも定電流源として動作し、給電
電流はいずれも定電流I3となる。給電立下げ操作手順
は、上述した給電立上げ操作手順と逆の手順で行う。以
上の給電操作では最初に給電装置101および給電装置
102を使用して行ったが、給電装置102および給電
装置103を最初に使用して給電操作を行う場合も同様
である。FIG. 2 shows the operation of a submarine cable system using a feed line switching circuit of a conventional submarine cable system.
5 in conjunction with FIG. 4, the power supply devices 101, 102, and 103 are both constant current power supplies and can be used as constant voltage power supplies, and have a positive or negative power supply polarity. Can also be set. Here, the power supply devices 101 and 103 supply power at a positive voltage, and the power supply device 102 supplies power at a negative voltage. The power supply start-up operation procedure is indicated by in FIG. 5. First, the power supply apparatuses 101 and 102 are started up, and then the power supply apparatus 103 is started up. At this time, first, the power supply device 103 keeps the path leading to the power supply path γ internally open,
1 is set as a constant current source, and the power supply device 102 is set as a constant voltage source. Note that, when the power supply current I2 flows between the power supply devices 101 and 102, the voltage at the end point C of the power supply line switching circuit 200 (that is, the voltage at the connection points X, Y, and Z) is set to the ground potential. Power supply voltage V1 of the power supply device 101
The power supply voltage V2 of the power supply device 102 is predetermined. Next, the power supply start-up operation procedure will be described.
In the procedure, the power supply voltage V1 at which the electromagnet coil 3 does not drive the relay 32 (the power supply devices 101 and 10
Until the power supply current I1 flows between the power supply device 102 and the power supply device 102).
Operate. In the procedure, the electromagnet coil 3
The power supply device 101 is operated until the power supply current I2 for driving the power supply (the power supply voltage of the power supply device 101 at this time becomes V2). As a result, the relay 32 opens the contact point a and the contact point b to open the end point C and the connection point Z, and short-circuits the contact point a and the contact point c to short-circuit the end point C and the end point D. . In the procedure, the power supply current of the power supply apparatus 101 is set to a predetermined I
3 (at this time, the power supply voltage of the power supply apparatus 101 becomes V3)
The power supply device 101 is operated up to this point. In the procedure, the power supply voltage of the power supply device 102 is set to a predetermined V4 (at this time, the power supply voltage of the power supply device 101 is V5 so that the power supply voltages of the power supply device 101 and the power supply device 102 have opposite polarities and substantially the same voltage value. ≒ −V4, and the power supply devices 101 and 10
Until the power supply current flowing between the two becomes I3).
Operate 2. In the procedure, the path leading to the power supply path γ inside the power supply apparatus 103 which was initially opened is connected, and the power supply apparatus 103 is turned on until a predetermined power supply current I3 (at this time, the power supply voltage of the power supply apparatus 103 becomes V6). Manipulate. As a result, the contact a of the relay 32 is
And the supply current I3 flows through the contact b and the relay 91
Is driven to short-circuit the contacts so that the end points c and e are short-circuited, and the contacts of the relay 92 are opened. After the above-described power supply startup, the power supply devices 101, 102, and 103 all operate as constant current sources, and the power supply current is constant current I3. The power supply lowering operation procedure is performed in a procedure reverse to the power supply raising operation procedure described above. In the above power supply operation, the power supply device 101 and the power supply device 102 are used first, but the same applies to the case where the power supply operation is performed using the power supply device 102 and the power supply device 103 first.
【0004】次に、上述した給電立上後の給電中に三つ
の給電路α、給電路βおよび給電路γのいずれかが切断
される障害が発生した場合の給電について説明する。給
電路αが切断されると給電装置101と給電装置102
間の給電が停止して給電路βへの給電は不可能となる
が、給電装置103と給電路切替回路200間は電磁石
コイル9によりリレー91の接点間が短絡にされ、リレ
ー92の接点間が開放にされているためリレー32が復
旧して接点aと接点c間が開放になり接点aと接点b間
が短絡になっても給電路γへの給電は保持される。給電
路αが切断された状態での給電装置102および給電装
置103による給電路βおよび給電路γへの再給電は可
能である。給電路γが切断されると給電装置103と給
電路切替回路200間の給電は停止するが、給電装置1
01と給電装置102間の給電は電磁石コイル3がリレ
ー32の接点aと接点b間を開放にしているため給電路
αおよび給電路βへの給電は保持される。給電路γが切
断された状態での給電装置101および給電装置102
による給電路αおよび給電路βへの再給電は可能であ
る。給電路βが切断されると給電装置101と給電装置
102間の給電は停止するが、給電装置103と給電路
切替回路200間は電磁石コイル9によりリレー91の
接点間が短絡にされ、リレー92の接点間が開放にされ
ているため給電路γへの給電は保持される。しかし給電
路αへの給電は不可能となる。給電路βが切断された状
態での給電装置101および給電装置103による給電
路αおよび給電路γへの再給電は、給電立上げ時の各リ
レーの開閉状態は図4における初期状態になっているた
め電磁石コイル1および電磁石コイル3に給電電流が流
れ、リレー12およびリレー32の各各の接点aと接点
b間が開放になるため不可能であるNext, a description will be given of power supply in the case where a failure occurs in which any one of the three power supply paths α, β and γ is disconnected during power supply after the above-described power supply startup. When the power supply path α is disconnected, the power supply apparatuses 101 and 102
Between the power supply device 103 and the power supply line switching circuit 200 is short-circuited between the contacts of the relay 91 by the electromagnet coil 9 and between the contacts of the relay 92. Is open, the relay 32 is restored, the contact between the contacts a and c is opened, and even if the contacts a and b are short-circuited, the power supply to the power supply path γ is maintained. It is possible to re-feed power to the power supply paths β and γ by the power supply devices 102 and 103 with the power supply path α disconnected. When the power supply path γ is disconnected, the power supply between the power supply apparatus 103 and the power supply path switching circuit 200 stops, but the power supply apparatus 1
In the power supply between the power supply device 01 and the power supply device 102, the power supply to the power supply paths α and β is maintained because the electromagnet coil 3 opens the contact point a and the contact point b of the relay 32. Power supply device 101 and power supply device 102 with power supply path γ disconnected
Is possible to supply power again to the power supply path α and the power supply path β. When the power supply path β is cut off, the power supply between the power supply apparatus 101 and the power supply apparatus 102 is stopped. However, between the power supply apparatus 103 and the power supply path switching circuit 200, the contact of the relay 91 is short-circuited by the electromagnet coil 9 and the relay 92 is turned off. Is open, the power supply to the power supply path γ is maintained. However, power cannot be supplied to the power supply path α. When the power supply apparatus 101 and the power supply apparatus 103 supply power to the power supply path α and the power supply path γ in a state where the power supply path β is disconnected, the open / close state of each relay at the time of power supply startup is the initial state in FIG. Therefore, the power supply current flows through the electromagnet coil 1 and the electromagnet coil 3, and the contact between the contact a and the contact b of each of the relay 12 and the relay 32 is opened, which is impossible.
【発明が解決しようとする課題】この従来の海底ケーブ
ルシステムの給電路切替回路では、給電立上げ操作時に
−−の操作手順を経ないで、最初から例えば給電
装置101の給電電圧を一挙にV3まで立上げると端点
Cが高電圧から急激に接地されることになり電磁石コイ
ルに過大電流が流れて給電路切替回路が破壊される。さ
らに、給電路βが切断されたときに残りの給電路αおよ
び給電路γに再給電できない。In the conventional power supply line switching circuit of the submarine cable system, the power supply voltage of the power supply device 101 can be changed from the beginning to the V3 voltage without performing the operation procedure at the time of the power supply start-up operation. When the terminal C is started up, the end point C is rapidly grounded from a high voltage, an excessive current flows through the electromagnet coil, and the power supply line switching circuit is destroyed. Furthermore, when the power supply path β is disconnected, power cannot be supplied to the remaining power supply paths α and γ again.
【0005】[0005]
【課題を解決するための手段】本発明の海底ケーブルシ
ステムの給電路切替回路は、第1の端点,第2の端点,
第3の端点および第4の端点と、第1の結合点,第2の
結合点および第3の結合点とを有し、第1の端点と第1
の結合点との間に直列に接続され復旧時に閉状態で第1
の端点と第1の結合点とを短絡状態にする第1のリレー
および第2のリレーと、復旧時に閉状態で第1の抵抗と
直列に接続されて前記第1のリレーに並列に接続され駆
動時に閉状態で第1の電磁石コイルを第1の端点と第2
の端点との間に接続する第3のリレーと、第2の端点と
第2の結合点との間に直列に接続され復旧時に閉状態で
第2の端点と第2の結合点とを短絡状態にする第4のリ
レーおよび第5のリレーと、復旧時に閉状態で第2の抵
抗と直列に接続されて前記第4のリレーに並列に接続さ
れ駆動時に閉状態で第2の電磁石コイルを第2の端点と
第4の端点との間に接続する第6のリレーと、第3の端
点と第3の結合点との間に直列に接続され復旧時に閉状
態で第3の端点と第3の結合点とを短絡状態にする第7
のリレーおよび第8のリレーと、復旧時に閉状態で第3
の抵抗と直列に接続されて前記第7のリレーに並列に接
続され駆動時に閉状態で第3の電磁石コイルを第3の端
点と第4の端点との間に接続する第9のリレーと、復旧
時に閉状態で第1の結合点と第2の結合点との間に第4
の電磁石コイルおよび第5の電磁石コイル6を直列に接
続する第10のリレーと、復旧時に閉状態で第2の結合
点と第3の結合点との間に第6の電磁石コイルおよび第
7の電磁石コイル4を直列に接続する第11のリレー
と、復旧時に閉状態で第3の結合点と第1の結合点との
間に第8の電磁石コイルおよび第9の電磁石コイル5を
直列に接続する第12のリレーと、前記第1のリレーの
駆動時に第1の端点と第4の端点との間に直列に接続さ
れる第4の抵抗および第13のリレーと前記第2のリレ
ーとを駆動する前記第1の電磁石コイルと、前記第1の
リレーの駆動時に前記第4の抵抗に並列に接続される駆
動時に閉状態の前記第13のリレーと、前記第4のリレ
ーの駆動時に第2の端点と第4の端点との間に直列に接
続される第5の抵抗および第14のリレーと前記第5の
リレーとを駆動する前記第2の電磁石コイルと、前記第
4のリレーの駆動時に前記第5の抵抗に並列に接続され
る駆動時に閉状態の前記第14のリレーと、前記第7の
リレーの駆動時に第3の端点と第4の端点との間に直列
に接続される第6の抵抗および第15のリレーと前記第
8のリレーとを駆動する前記第3の電磁石コイルと、前
記第7のリレーの駆動時に前記第6の抵抗に並列に接続
される駆動時に閉状態の前記第15のリレーと、前記リ
レー11およびリレー12を駆動する前記第6の電磁石
コイルと、前記リレー21およびリレー22を駆動する
前記第8の電磁石コイルと、前記リレー31およびリレ
ー32を駆動する前記第4の電磁石コイルと、前記リレ
ー40を駆動する前記第7の電磁石コイルと、前記リレ
ー50を駆動する前記第9の電磁石コイルと、前記リレ
ー60を駆動する前記第5の電磁石コイルとを備える。A feed line switching circuit for a submarine cable system according to the present invention comprises a first end point, a second end point,
It has a third end point and a fourth end point, a first end point, a second end point, and a third end point, and has a first end point and a first end point.
Connected in series between the
And a second relay for short-circuiting the end point of the first connection point and the first connection point, and connected in series with the first resistor in a closed state at the time of recovery and connected in parallel to the first relay. The first electromagnet coil is connected to the first end point and the second
And a third relay connected between the second end point and the second connection point, and connected in series between the second end point and the second connection point, and short-circuited between the second end point and the second connection point in a closed state upon restoration. A fourth relay and a fifth relay to be turned on, and a second electromagnet coil which is connected in series with the second resistor in a closed state at the time of recovery and connected in parallel to the fourth relay and closed in a driving state. A sixth relay connected between the second end point and the fourth end point, and a third relay connected in series between the third end point and the third connection point and closed in the closed state upon restoration; No. 7 for shorting the connection point 3
Relay and eighth relay, and third
A ninth relay connected in series with the resistance of the third relay and connected in parallel with the seventh relay to connect the third electromagnet coil between the third end point and the fourth end point in a closed state during driving; In the closed state at the time of recovery, the fourth connection point between the first connection point and the second connection point
And a tenth relay connecting the fifth electromagnet coil and the fifth electromagnet coil 6 in series, and a sixth electromagnet coil and a seventh electromagnet coil between the second connection point and the third connection point in the closed state at the time of restoration. An eleventh relay for connecting the electromagnet coils 4 in series, and an eighth electromagnet coil and a ninth electromagnet coil 5 connected in series between the third connection point and the first connection point in a closed state during recovery. A twelfth relay, a fourth resistor connected in series between a first end point and a fourth end point when the first relay is driven, a thirteenth relay, and the second relay. The first electromagnet coil to be driven, the thirteenth relay which is connected in parallel to the fourth resistor when the first relay is driven, and is closed when driven, and the third relay which is closed when the fourth relay is driven. A fifth resistor connected in series between the second endpoint and the fourth endpoint And the second electromagnet coil that drives the fourteenth relay and the fifth relay, and the fourteenth relay that is connected in parallel with the fifth resistor when the fourth relay is driven, and is closed when driven. And a sixth resistor connected in series between a third end point and a fourth end point when the seventh relay is driven, and a fifteenth relay and driving the eighth relay. A third electromagnet coil, the fifteenth relay connected in parallel with the sixth resistor when the seventh relay is driven, the fifteenth relay closed when driven, and the sixth relay driving the relays 11 and 12 , The eighth electromagnet coil that drives the relays 21 and 22, the fourth electromagnet coil that drives the relays 31 and 32, and the seventh electromagnet that drives the relay 40 Ko Comprising a Le, said ninth electromagnetic coil for driving the relay 50, and the fifth electromagnetic coils for driving the relay 60.
【実施例】次に本発明について図面を参照して説明す
る。本発明の一実施例を示す図1を参照すると、海底ケ
ーブルシステムの給電路切替回路は、電磁石コイル1,
2,3,4,5,6,7,8,9と、リレー11,1
2,21,22,31,32,40,50,60,7
1,72,81,82,91,92と、抵抗401,4
02,403,404,405,406とから構成さ
れ、電磁石コイル1はリレー11,12を、電磁石コイ
ル2はリレー21,22を、電磁石コイル3はリレー3
1,32を、電磁石コイル4はリレー40を、電磁石コ
イル5はリレー50を、電磁石コイル6はリレー60
を、電磁石コイル7はリレー71,72を、電磁石コイ
ル8はリレー81,82を、および電磁石コイル9はリ
レー91,92を各各所定の電流で駆動する。また、抵
抗401はリレー12の接点cに、抵抗402はリレー
32の接点cに、抵抗403はリレー22の接点cに、
抵抗404はリレー40の接点bに、抵抗405はリレ
ー50の接点bに、および抵抗406はリレー60の接
点bに各各接続される。また、図1は本発明の海底ケー
ブルシステムの給電路切替回路の初期状態、すなわち各
各の電磁石コイルが各各のリレーを駆動する前の各リレ
ーの開閉状態を示している。ここで、本発明の海底ケー
ブルシステムの給電路切替回路による海底ケーブルシス
テムの動作を図2および図3を図1と併せて参照して詳
述すると、給電装置101、給電装置102および給電
装置103は定電流電源であるとともに定電圧電源とし
ても使用でき、かつ給電極性を正極性および負極性のい
ずれにも設定できる。ここでは給電装置101および給
電装置103は正電圧で給電し、給電装置102は負電
圧で給電する。給電立上げ操作手順は図3に〜で示
しており、まず給電装置101および給電装置102を
立上げ次に給電装置103を立上げる。このとき最初、
給電装置103は給電路γへ通じる経路を内部で開放状
態にしておき、また、給電装置101は定電圧源に、給
電装置102は定電流源に設定する。次に、給電立ち上
げ操作手順について説明すると、手順では、給電装置
101で給電電圧をV5まで操作する。このときの給電
電流は給電装置101→給電路α→端点A→リレー12
→結合点X→結合点Y→端点B→給電路β→給電装置1
02の経路で流れる。給電装置101の給電電圧がV5
まで上昇する間にまず電磁石コイル3はリレー31の接
点間を開放にし、かつリレー32の接点aと接点b間を
開放にして接点aと接点c間を短絡にして端点Cと結合
点Z間の接続を切り放すともに、給電路γに蓄積された
電荷を抵抗402を通して端点Dから接地へ放電させ
る。このとき抵抗402は、給電路γからの放電電流が
電磁石コイル9を破壊しないように抑える役割りをす
る。リレー31は、給電装置101で給電電圧をV5ま
で操作する過程で開放にされ、電磁石コイル5→電磁石
コイル2→電磁石コイル4→電磁石コイル1の経路で電
流が流れて電磁石コイル5,2,4,1が動作しない役
割りをする。次に電磁石コイル6がリレー60の接点a
と接点b間を開放にし接点aと接点c間を短絡にして端
点Cを端点Dを介して接地する。手順では、給電装置
101および給電装置102の各各の給電電圧が極性が
逆でほぼ同じ電圧値になるように給電装置102の給電
電圧を所定のV4(このとき給電装置101の給電電圧
はV5≒−V4になり、給電装置101と給電装置10
2間に流れる給電電流はI3になる)まで給電装置10
2を操作する。手順では、最初開放状態にしておいた
給電装置103の給電路γへ通じる内部経路を短絡に
し、給電装置103を所定の給電電流I3(このとき給
電装置103の給電電圧はV6になる)まで操作する。
このとき給電電流I3はまずリレー60の接点aおよび
接点bを通して流れ、次に電磁石コイル9がリレー91
の接点間を短絡し、かつリレー92の接点間を開放にす
る。このとき電磁石コイル9とリレー60は給電電流I
3が抵抗402に流れて抵抗402が熱破壊されるのを
防ぐ役割りをする。続いて給電立下げ操作手順について
説明する。給電立下げ操作は立上げ操作の逆の手順→
→で行う。手順では、給電装置103の給電電圧
をV6から接地電位まで下げる。このとき電磁石コイル
9はリレー91の接点間を解放にし、リレー92の接点
間を短絡にする。このとき端点Cはリレー32の接点a
と接点b間が開放になっているので高電圧がかかってい
る結合点Zとは分離されている。手順では、給電装置
102の給電電流を所定のI3(このとき給電装置10
2の給電電圧はV4になる)から接地電位まで下げ、給
電装置103は内部の給電路γへ通じる経路を解放状態
にする。手順では、給電装置101の給電電圧をV5
から接地電位まで降げる。このとき給電電圧V5が下が
るにしたがって、まず電磁石コイル6がリレー60を復
旧して接点aと接点c間を開放にし接点aと接点b間を
短絡にする。これにより端点Cは抵抗406およびリレ
ー92を介して結合点Zと接続され、給電路γは抵抗4
06を通して充電される。このとき抵抗406は、給電
路γに充放電される電流により給電切替回路回路200
内の電磁石コイルが破壊しないように抑える役割をす
る。次に電磁石コイル3が復旧してリレー32の接点a
と接点c間を開放にし接点aと接点b間を短絡にする。
以上の給電操作では最初に給電装置101および給電装
置102を使用して行ったが、給電装置102および給
電装置103を最初に使用して給電操作を行う場合も同
様である。給電装置101および給電装置103を最初
に使用して給電操作を行う場合は、給電装置103を負
電圧に設定することにより同様に行うことができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. Referring to FIG. 1 showing an embodiment of the present invention, a feed line switching circuit of a submarine cable system includes an electromagnet coil 1,
2,3,4,5,6,7,8,9 and relay 11,1
2,21,22,31,32,40,50,60,7
1, 72, 81, 82, 91, 92 and resistors 401, 4
02, 403, 404, 405 and 406, the electromagnet coil 1 is for relays 11 and 12, the electromagnet coil 2 is for relays 21 and 22, and the electromagnet coil 3 is for relay 3
1, 32, the electromagnet coil 4 is the relay 40, the electromagnet coil 5 is the relay 50, and the electromagnet coil 6 is the relay 60.
The electromagnet coil 7 drives the relays 71 and 72, the electromagnet coil 8 drives the relays 81 and 82, and the electromagnet coil 9 drives the relays 91 and 92 with respective predetermined currents. The resistor 401 is connected to the contact c of the relay 12, the resistor 402 is connected to the contact c of the relay 32, the resistor 403 is connected to the contact c of the relay 22,
The resistor 404 is connected to the contact b of the relay 40, the resistor 405 is connected to the contact b of the relay 50, and the resistor 406 is connected to the contact b of the relay 60. FIG. 1 shows an initial state of the power supply line switching circuit of the submarine cable system of the present invention, that is, an open / closed state of each relay before each electromagnet coil drives each relay. Here, the operation of the submarine cable system by the power supply line switching circuit of the submarine cable system of the present invention will be described in detail with reference to FIGS. 2 and 3 in conjunction with FIG. 1. The power supply device 101, the power supply device 102, and the power supply device 103 Is a constant current power supply and can be used as a constant voltage power supply, and the power supply polarity can be set to either positive polarity or negative polarity. Here, the power supply devices 101 and 103 supply power at a positive voltage, and the power supply device 102 supplies power at a negative voltage. The power supply start-up operation procedure is indicated by in FIG. 3. First, the power supply apparatuses 101 and 102 are started, and then the power supply apparatus 103 is started. At this time,
The power supply device 103 keeps a path leading to the power supply path γ open inside, the power supply device 101 is set as a constant voltage source, and the power supply device 102 is set as a constant current source. Next, the power supply start-up operation procedure will be described. In the procedure, the power supply apparatus 101 controls the power supply voltage to V5. The power supply current at this time is: power supply device 101 → power supply path α → end point A → relay 12
→ Connection point X → Connection point Y → End point B → Power supply path β → Power supply device 1
It flows on the route 02. The power supply voltage of the power supply apparatus 101 is V5
While ascending, the electromagnet coil 3 opens the contact between the contacts of the relay 31 and opens the contact between the contact a and the contact b of the relay 32 to short-circuit the contact a and the contact c to connect the end point C and the junction point Z. And the electric charge accumulated in the power supply path γ is discharged from the end point D to the ground through the resistor 402. At this time, the resistor 402 serves to suppress the discharge current from the power supply path γ from damaging the electromagnet coil 9. The relay 31 is opened in the process of operating the power supply voltage up to V5 by the power supply device 101, and a current flows through the electromagnet coil 5, the electromagnet coil 2, the electromagnet coil 4, and the electromagnet coil 1 so that the electromagnet coils 5, 2, 4 , 1 play a role. Next, the electromagnetic coil 6 is connected to the contact a of the relay 60.
And the contact b is opened, the contact a and the contact c are short-circuited, and the end point C is grounded via the end point D. In the procedure, the power supply voltage of the power supply device 102 is set to a predetermined V4 (at this time, the power supply voltage of the power supply device 101 is V5 so that the power supply voltages of the power supply device 101 and the power supply device 102 have opposite polarities and substantially the same voltage value. ≒ −V4, and the power supply devices 101 and 10
Until the power supply current flowing between the two becomes I3).
Operate 2. In the procedure, the internal path leading to the power supply path γ of the power supply device 103 that was initially opened is short-circuited, and the power supply device 103 is operated until a predetermined power supply current I3 (the power supply voltage of the power supply device 103 becomes V6 at this time). I do.
At this time, the supply current I3 first flows through the contacts a and b of the relay 60, and then the electromagnet coil 9
Are short-circuited, and the contacts of the relay 92 are opened. At this time, the electromagnet coil 9 and the relay 60 supply the current I
3 serves to prevent the resistor 402 from being thermally broken by flowing into the resistor 402. Next, the power supply lowering operation procedure will be described. Power supply shutdown operation is the reverse procedure of startup operation →
Perform with →. In the procedure, the power supply voltage of the power supply device 103 is reduced from V6 to the ground potential. At this time, the electromagnet coil 9 opens between the contacts of the relay 91 and short-circuits between the contacts of the relay 92. At this time, the end point C is the contact a of the relay 32.
And the contact point b is open, so that it is separated from the connection point Z to which a high voltage is applied. In the procedure, the power supply current of the power supply device 102 is set to a predetermined I3 (at this time, the power supply device 10
2 becomes V4) to the ground potential, and the power supply device 103 releases the path leading to the internal power supply path γ. In the procedure, the power supply voltage of the power supply apparatus 101 is set to V5
To ground potential. At this time, as the power supply voltage V5 decreases, the electromagnet coil 6 first restores the relay 60 to open the contact a and the contact c and short-circuit the contact a and the contact b. As a result, the end point C is connected to the connection point Z via the resistor 406 and the relay 92, and the power supply path γ is connected to the resistor 4
06. At this time, the resistor 406 is connected to the power supply switching circuit 200 by the current charged and discharged in the power supply path γ.
It plays a role in keeping the electromagnet coil inside from being destroyed. Next, the electromagnetic coil 3 is restored, and the contact a of the relay 32 is restored.
And the contact c is opened, and the contact a and the contact b are short-circuited.
In the above power supply operation, the power supply device 101 and the power supply device 102 are used first, but the same applies to the case where the power supply operation is performed using the power supply device 102 and the power supply device 103 first. When a power supply operation is performed using the power supply device 101 and the power supply device 103 for the first time, the same operation can be performed by setting the power supply device 103 to a negative voltage.
【0006】次に、上述した給電立上後の給電中に三つ
の給電路α、給電路βおよび給電路γのいずれかが切断
される障害が発生した場合を説明する。給電路αが切断
されると給電装置101と給電装置102間の給電は停
止して給電路βへの給電は不可能となるが、給電装置1
03と給電路切替回路200間は電磁石コイル9により
リレー91の接点間が短絡にされ、リレー92の接点間
が開放にされているため給電装置103から給電路γへ
の給電は保持される。給電路αが切断された状態での給
電装置102および給電装置103による給電路βおよ
び給電路γへの再給電は可能である。給電路γが切断さ
れると給電装置103と給電路切替回路200間の給電
が停止してが給電路γへの給電は不可能となるが、給電
装置101と給電装置102間の給電は電磁石コイル3
がリレー32の接点aと接点b間を開放にしているため
給電路αおよび給電路βへの給電は保持される。給電路
γが切断されている状態での給電装置101および給電
装置102による給電路αおよび給電路βへの再給電は
可能である。給電路βが切断されると給電装置101と
給電装置102間の給電は停止するが、給電装置103
と給電路切替回路200間は電磁石コイル9がリレー9
1の接点間を短絡にし、リレー92の接点間を開放にし
ているため給電路γへの給電は保持される。しかし給電
路αへの給電は不可能となる。給電路βが切断された状
態での給電装置101および給電装置103による給電
路αおよび給電路γへの再給電は、図1における給電立
上げ時の各リレーの開閉の初期状態で、端点A→結合点
X→結合点Z→端点Cの経路で給電電流が流れ、電磁石
コイル5がリレー50の接点aと接点b間を開放にし電
磁石コイル2がリレー22の接点aと接点b間およびリ
レー22の接点間を開放にしているため、可能である。Next, a case will be described in which a failure occurs in which any one of the three power supply paths α, β and γ is disconnected during the power supply after the above-described power supply startup. When the power supply path α is cut off, the power supply between the power supply apparatus 101 and the power supply apparatus 102 stops, and power supply to the power supply path β becomes impossible.
The contact between the relay 91 and the power supply line switching circuit 200 is short-circuited between the contacts of the relay 91 by the electromagnet coil 9 and the contact between the relays 92 is open, so that the power supply from the power supply device 103 to the power supply line γ is maintained. It is possible to re-feed power to the power supply paths β and γ by the power supply devices 102 and 103 with the power supply path α disconnected. When the power supply path γ is disconnected, power supply between the power supply apparatus 103 and the power supply path switching circuit 200 stops, but power supply to the power supply path γ becomes impossible. Coil 3
Makes the contact between the contact a and the contact b of the relay 32 open, the power supply to the power supply path α and the power supply path β is maintained. It is possible for the power supply devices 101 and 102 to re-feed power to the power supply lines α and β while the power supply line γ is disconnected. When the power supply path β is disconnected, the power supply between the power supply apparatus 101 and the power supply apparatus 102 stops, but the power supply apparatus 103
The electromagnet coil 9 is connected to the relay 9 between the
Since the contacts between the contacts 1 are short-circuited and the contacts between the relays 92 are open, the power supply to the power supply path γ is maintained. However, power cannot be supplied to the power supply path α. The re-feeding of the power to the power supply paths α and γ by the power supply devices 101 and 103 in the state where the power supply path β is cut off is performed in the initial state of opening and closing each relay at the time of power supply startup in FIG. The power supply current flows in the path from the connection point X to the connection point Z to the end point C, the electromagnetic coil 5 opens the contact a and the contact b of the relay 50, and the electromagnet coil 2 opens the contact a and the contact b of the relay 22 and the relay. This is possible because the 22 contacts are open.
【0007】[0007]
【発明の効果】以上説明したように、本発明の海底ケー
ブルシステムの給電回路切替回路は、給電立上げおよび
立下げ操作時に給電路と給電路切替回路間に流れる充放
電電流を、給電路切替回路内に設けた抵抗を介して流す
ことにより電磁石コイルに過大電流が流れて給電路切替
回路が破壊されるのを防げる。また、三つの給電路のい
ずれが切断されても、その一つの給電路が切断された状
態で残りの二つの給電路に再給電できる。As described above, the power supply circuit switching circuit of the submarine cable system according to the present invention uses the power supply line switching circuit to switch the charging / discharging current flowing between the power supply line and the power supply line switching circuit during the power supply start-up and power-down operations. By flowing the current through a resistor provided in the circuit, it is possible to prevent an excessive current from flowing through the electromagnet coil and break the power supply line switching circuit. Further, even if any one of the three power supply paths is cut off, power can be supplied again to the remaining two power supply paths with one of the power supply paths cut off.
【図1】本発明の海底ケーブルシステムの給電路切替回
路の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of a power supply line switching circuit of a submarine cable system of the present invention.
【図2】海底ケーブルシステムのブロック図である。FIG. 2 is a block diagram of a submarine cable system.
【図3】本発明の海底ケーブルシステムの給電路切替回
路を使用した給電立上げ操作手順の一例を説明する図で
ある。FIG. 3 is a diagram illustrating an example of a power supply start-up operation procedure using a power supply path switching circuit of the submarine cable system of the present invention.
【図4】従来の海底ケーブルシステムの給電路切替回路
を示すブロック図である。FIG. 4 is a block diagram showing a power supply line switching circuit of a conventional submarine cable system.
【図5】従来の海底ケーブルシステムの給電路切替回路
を使用した給電立上げ操作手順の一例を説明する図であ
る。FIG. 5 is a diagram illustrating an example of a power supply start-up operation procedure using a power supply line switching circuit of a conventional submarine cable system.
1,2,3,4,5,6,7,8,9 電磁石コイル 11,12,21,22,31,32,40,50,6
0 リレー 71,72,81,82,91,92 リレー 101,102,103 給電装置 200 給電路切替回路 201,202,203 端局装置 301,302,303,304,305,306 海
底中継器 401,402,403,404,405,406 抵
抗 X,Y,Z 結合点 a,b,c リレー接点 α,β,γ 給電路1,2,3,4,5,6,7,8,9 Electromagnet coil 11,12,21,22,31,32,40,50,6
0 Relays 71, 72, 81, 82, 91, 92 Relays 101, 102, 103 Power supply device 200 Power supply line switching circuit 201, 202, 203 Terminal device 301, 302, 303, 304, 305, 306 Submarine repeater 401, 402, 403, 404, 405, 406 Resistance X, Y, Z Connection points a, b, c Relay contacts α, β, γ Feeding path
Claims (1)
よび第4の端点と、第1の結合点,第2の結合点および
第3の結合点とを有し、 第1の端点と第1の結合点との間に直列に接続され復旧
時に閉状態で第1の端点と第1の結合点とを短絡状態に
する第1のリレーおよび第2のリレーと、 復旧時に閉状態で第1の抵抗と直列に接続されて前記第
1のリレーに並列に接続され駆動時に閉状態で第1の電
磁石コイルを第1の端点と第2の端点との間に接続する
第3のリレーと、 第2の端点と第2の結合点との間に直列に接続され復旧
時に閉状態で第2の端点と第2の結合点とを短絡状態に
する第4のリレーおよび第5のリレーと、 復旧時に閉状態で第2の抵抗と直列に接続されて前記第
4のリレーに並列に接続され駆動時に閉状態で第2の電
磁石コイルを第2の端点と第4の端点との間に接続する
第6のリレーと、 第3の端点と第3の結合点との間に直列に接続され復旧
時に閉状態で第3の端点と第3の結合点とを短絡状態に
する第7のリレーおよび第8のリレーと、 復旧時に閉状態で第3の抵抗と直列に接続されて前記第
7のリレーに並列に接続され駆動時に閉状態で第3の電
磁石コイルを第3の端点と第4の端点との間に接続する
第9のリレーと、 復旧時に閉状態で第1の結合点と第2の結合点との間に
第4の電磁石コイルおよび第5の電磁石コイル6を直列
に接続する第10のリレーと、 復旧時に閉状態で第2の結合点と第3の結合点との間に
第6の電磁石コイルおよび第7の電磁石コイル4を直列
に接続する第11のリレーと、 復旧時に閉状態で第3の結合点と第1の結合点との間に
第8の電磁石コイルおよび第9の電磁石コイル5を直列
に接続する第12のリレーと、 前記第1のリレーの駆動時に第1の端点と第4の端点と
の間に直列に接続される第4の抵抗および第13のリレ
ーと前記第2のリレーとを駆動する前記第1の電磁石コ
イルと、 前記第1のリレーの駆動時に前記第4の抵抗に並列に接
続される駆動時に閉状態の前記第13のリレーと、 前記第4のリレーの駆動時に第2の端点と第4の端点と
の間に直列に接続される第5の抵抗および第14のリレ
ーと前記第5のリレーとを駆動する前記第2の電磁石コ
イルと、 前記第4のリレーの駆動時に前記第5の抵抗に並列に接
続される駆動時に閉状態の前記第14のリレーと、 前記第7のリレーの駆動時に第3の端点と第4の端点と
の間に直列に接続される第6の抵抗および第15のリレ
ーと前記第8のリレーとを駆動する前記第3の電磁石コ
イルと、 前記第7のリレーの駆動時に前記第6の抵抗に並列に接
続される駆動時に閉状態の前記第15のリレーと、 前記リレー11およびリレー12を駆動する前記第6の
電磁石コイルと、 前記リレー21およびリレー22を駆動する前記第8の
電磁石コイルと、 前記リレー31およびリレー32を駆動する前記第4の
電磁石コイルと、 前記リレー40を駆動する前記第7の電磁石コイルと、 前記リレー50を駆動する前記第9の電磁石コイルと、 前記リレー60を駆動する前記第5の電磁石コイルと、 を備えることを特徴とする海底ケーブルシステムの給電
路切替回路。A first end point, a second end point, a third end point, and a fourth end point; a first connection point, a second connection point, and a third connection point; A first relay and a second relay which are connected in series between the end point of the first connection point and the first connection point to close the first end point and the first connection point in a closed state at the time of restoration, and A second resistor connected in series with the first resistor in the closed state and connected in parallel to the first relay, and connected to the first electromagnet coil between the first end point and the second end point in the closed state during driving; A third relay, a fourth relay connected in series between the second end point and the second connection point, and closing the second end point and the second connection point in a closed state upon recovery, and a fourth relay; 5 is connected in series with the second resistor in a closed state at the time of recovery, is connected in parallel to the fourth relay, and is in a closed state at the time of driving. A sixth relay connecting the stone coil between the second end point and the fourth end point, and a third relay connected in series between the third end point and the third connection point, and closed in the closed state upon recovery; A seventh relay and an eighth relay for short-circuiting the end point and the third connection point, and connected in series with the third resistor in a closed state at the time of recovery and connected in parallel with the seventh relay to drive A ninth relay connecting the third electromagnet coil between the third end point and the fourth end point in a closed state, and between the first connection point and the second connection point in a closed state when restored A tenth relay connecting the fourth electromagnet coil and the fifth electromagnet coil 6 in series, a sixth electromagnet coil between the second junction point and the third junction point in the closed state at the time of restoration, and An eleventh relay for connecting the seventh electromagnet coil 4 in series, and a third connection point and a first connection in a closed state upon recovery. A twelfth relay that connects an eighth electromagnet coil and a ninth electromagnet coil 5 in series between the first and second points, and a series between the first end point and the fourth end point when the first relay is driven. A fourth resistor and a thirteenth relay connected to the first electromagnet coil for driving the thirteenth relay and the second relay; and a parallel connection to the fourth resistor when the first relay is driven. The thirteenth relay, which is closed when driven; a fifth resistor and a fourteenth relay connected in series between a second end point and a fourth end point when the fourth relay is driven; A second electromagnet coil that drives a fifth relay; a fourth relay that is connected in parallel to the fifth resistor when the fourth relay is driven, and is closed when driven; Connected in series between the third and fourth endpoints when driving the relay A sixth resistor and a third electromagnet coil that drives a fifteenth relay and an eighth relay, and a drive that is connected in parallel with the sixth resistor when the seventh relay is driven. The fifteenth relay in a closed state, the sixth electromagnet coil driving the relays 11 and 12, the eighth electromagnet coil driving the relays 21 and 22, the relays 31 and 32 The fourth electromagnet coil that drives the relay, the seventh electromagnet coil that drives the relay 40, the ninth electromagnet coil that drives the relay 50, and the fifth electromagnet that drives the relay 60 A feed line switching circuit for a submarine cable system, comprising: a coil;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17393592A JP2946946B2 (en) | 1992-07-01 | 1992-07-01 | Power supply line switching circuit for submarine cable system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17393592A JP2946946B2 (en) | 1992-07-01 | 1992-07-01 | Power supply line switching circuit for submarine cable system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0621852A JPH0621852A (en) | 1994-01-28 |
JP2946946B2 true JP2946946B2 (en) | 1999-09-13 |
Family
ID=15969801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17393592A Expired - Lifetime JP2946946B2 (en) | 1992-07-01 | 1992-07-01 | Power supply line switching circuit for submarine cable system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2946946B2 (en) |
-
1992
- 1992-07-01 JP JP17393592A patent/JP2946946B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0621852A (en) | 1994-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4604565A (en) | Microcomputer-controlled DC three-wire circuit for vehicle | |
KR20180083951A (en) | Method and apparatus for connecting a plurality of battery cells in series or in parallel | |
WO1982003732A1 (en) | Solid state arc suppression device | |
US11945326B2 (en) | Method and charging device for charging a high-voltage battery of an electric vehicle | |
JP2946946B2 (en) | Power supply line switching circuit for submarine cable system | |
JPH04251595A (en) | Battery driving gear | |
JPH077807A (en) | Electric motor car controller | |
CN212113569U (en) | Relay drive circuit and electromagnetic heating equipment | |
JP3067116B2 (en) | Power supply line switching circuit for submarine cable system | |
JP3355818B2 (en) | Overvoltage protection device for section switching device in AC feeding equipment | |
CN213276312U (en) | Drive device, vehicle-mounted controller and vehicle | |
US1007684A (en) | Telephone ringing device. | |
JP2653039B2 (en) | Communication line remote disconnection device | |
JPH09180690A (en) | Battery pack and battery protecting device | |
JPH03107332A (en) | Dc power supply device for servo | |
JPH05304721A (en) | Power supply circuit | |
JPH0766772A (en) | Portable radio equipment and power supply device | |
US8004199B2 (en) | Method for powering a control circuit for a gas discharge lamp during pre-heating of said lamp, and a device for performing said method | |
KR20220028868A (en) | Apparatus for controlling the reverse voltage of the inverter | |
JPH10229648A (en) | Charger | |
JP2865182B2 (en) | Communication line remote disconnection device | |
JPS62264530A (en) | Driving circuit for single winding latching type electromagnetic relay | |
JPH11332129A (en) | Cutting-off circuit for backup battery | |
JPS5854841A (en) | Method of connecting automotive vehicle electric load to storage battery | |
JPH0488842A (en) | Power source system for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990601 |