JP2946363B2 - High frequency acceleration focusing device - Google Patents

High frequency acceleration focusing device

Info

Publication number
JP2946363B2
JP2946363B2 JP18576391A JP18576391A JP2946363B2 JP 2946363 B2 JP2946363 B2 JP 2946363B2 JP 18576391 A JP18576391 A JP 18576391A JP 18576391 A JP18576391 A JP 18576391A JP 2946363 B2 JP2946363 B2 JP 2946363B2
Authority
JP
Japan
Prior art keywords
conductive
frequency
electric field
conductive metal
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18576391A
Other languages
Japanese (ja)
Other versions
JPH0513199A (en
Inventor
憲司 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP18576391A priority Critical patent/JP2946363B2/en
Priority to US07/885,641 priority patent/US5334943A/en
Priority to EP92108423A priority patent/EP0514832B1/en
Priority to DE69213321T priority patent/DE69213321T2/en
Publication of JPH0513199A publication Critical patent/JPH0513199A/en
Application granted granted Critical
Publication of JP2946363B2 publication Critical patent/JP2946363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、4重極の加速集束電場
内で入射された荷電粒子を直線状に加速集束させるため
の高周波加速集束装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency accelerating focusing device for linearly accelerating and focusing charged particles incident in a quadrupole accelerating focusing electric field.

【0002】[0002]

【従来の技術】従来、この種の高周波加速集束装置は、
図3に示すように、ビ−ム加速軸Bに沿って通過孔を有
する導電性外筒部1と、この導電性外筒部1内に、ビ−
ム加速軸Bを囲んで互いに90度の角度的な間隔を置い
て配設された4つの導電性翼部(ベイン)40によって
構成された高周波共振装置(キャビティ)と、この高周
波共振装置を励振するための高周波導入装置(図示せ
ず)とを備えている。この構成では、高周波共振装置に
高周波導入装置から高周波を導入することにより、ビー
ム加速軸に4重極の加速集束電場を発生させ、荷電粒子
を直線状に加速集束させている。このような高周波加速
集束装置は、通常、RFQライナック(Radio Frequenc
y Quaduapole Linac) と呼ばれている。
2. Description of the Related Art Conventionally, this kind of high-frequency acceleration focusing apparatus has
As shown in FIG. 3, a conductive outer cylinder 1 having a through hole along a beam acceleration axis B, and a beam is provided in the conductive outer cylinder 1.
And a high-frequency resonator (cavity) constituted by four conductive wings (vanes) 40 arranged at 90-degree intervals from each other around the acceleration axis B, and the high-frequency resonator is excited. And a high-frequency introducing device (not shown) for performing the operation. In this configuration, by introducing a high frequency from the high frequency introducing device to the high frequency resonance device, a quadrupole accelerated focusing electric field is generated on the beam acceleration axis, and the charged particles are accelerated and focused linearly. Such a high-frequency accelerating focusing apparatus is usually provided with an RFQ linac (Radio Frequenc).
y Quaduapole Linac).

【0003】実際に使用されている高周波加速集束装置
では、図3からも明らかなように、4つの導電性翼部4
0は、それぞれ導電性外筒部1の内部に設けられてお
り、且つ、高周波接合部(図示せず)に電気的に接続さ
れている。
[0003] In a high-frequency accelerating and focusing device actually used, as is apparent from FIG.
Numerals 0 are respectively provided inside the conductive outer cylinder portion 1 and are electrically connected to a high-frequency bonding portion (not shown).

【0004】より具体的に言えば、4つの導電性翼部4
0は、導電性外筒部1の側面の所定個所に固定されてい
る。このため、導電性外筒部1の所定個所には、各導電
性翼部40を固定するためのプラグが設けられると共
に、導電性外筒部1の内側で、隣接する導電性翼部40
の間の空間には、電場調整装置が設けられており、この
電場調整装置は、4重極電場の対称性を良くし、且つ、
4重極電場をビーム加速軸Bに沿って高い平坦度で発生
するのに、役立つ。
[0004] More specifically, four conductive wings 4
Numeral 0 is fixed at a predetermined position on the side surface of the conductive outer cylinder portion 1. For this reason, a plug for fixing each conductive wing portion 40 is provided at a predetermined position of the conductive outer cylinder portion 1, and an adjacent conductive wing portion 40 is provided inside the conductive outer cylinder portion 1.
An electric field adjusting device is provided in the space between the two, which improves the symmetry of the quadrupole electric field, and
It is useful for generating a quadrupole electric field with high flatness along the beam acceleration axis B.

【0005】上記した構成では、導電性外筒部のTE
210 モードと呼ばれる共振モードが高周波導入装置から
供給される高周波電力によって励振されると、キャビテ
ィ内表面をビーム加速軸に対して垂直方向に高周波電流
が流れる。このとき、隣接する導電性翼部40には互い
に半周期遷移した高周波電流が流れ、逆極性の高周波電
圧が印加されるので、結果として、ビーム加速軸Bに4
重極の加速集束電場が発生する。
[0005] In the above configuration, the TE of the conductive outer cylinder portion is
When a resonance mode called 210 mode is excited by high-frequency power supplied from the high-frequency introducing device, a high-frequency current flows in the cavity inner surface in a direction perpendicular to the beam acceleration axis. At this time, a high-frequency current having a half-period transition flows to the adjacent conductive wings 40, and a high-frequency voltage of the opposite polarity is applied.
An accelerating focused electric field of the heavy pole is generated.

【0006】[0006]

【発明が解決しようとする課題】通常、RFQライナッ
クの高周波加速集束装置では、4つの導電性翼部内の空
間に、4重極の加速集束電場をビーム加速軸に対して対
称性良く発生させなければならない。このため、4つの
導電性翼部の取り付け位置の調整には、特に厳密な調整
が必要である。更に、最終的な4重極電場の微調整に
は、電場調整装置が必要であると共に、この調整は電場
調整装置の突出容積を変えることにより行うため構造が
複雑なうえ、煩雑、且つ、微妙な調整作業が必要にな
る。
Normally, in the RFQ linac high-frequency accelerating focusing device, a quadrupole accelerating focusing electric field must be generated in the space inside the four conductive wings with good symmetry with respect to the beam acceleration axis. Must. For this reason, adjustment of the mounting position of the four conductive wings requires particularly strict adjustment. Further, a final adjustment of the quadrupole electric field requires an electric field adjusting device, and since this adjustment is performed by changing the projecting volume of the electric field adjusting device, the structure is complicated, complicated, and delicate. Adjustment work is required.

【0007】更に、従来のRFQライナックにおける他
の問題点として、大電流ビーム加速時に、4重極電場の
対称性と平坦度が乱されることが挙げられる。RFQラ
イナックでは、加速集束に使用する高周波共振装置の規
準振動(TE210モード)と同一の周波数である高周
波電力を高周波導入装置から導入し、導電性翼部に高い
高周波電圧を発生させ、ビーム加速軸に加速集束電場を
発生させている。換言すれば、高周波共振装置に高周波
エネルギーを貯え、このエネルギーを利用して、荷電粒
子を加速、集束させている。
Further, another problem in the conventional RFQ linac is that the symmetry and flatness of the quadrupole electric field are disturbed during acceleration of a large current beam. In the RFQ linac, high-frequency power having the same frequency as the reference vibration (TE 210 mode) of the high-frequency resonator used for acceleration focusing is introduced from the high-frequency introduction device, and a high high-frequency voltage is generated in the conductive wing portion, and beam acceleration is performed. An accelerating focused electric field is generated on the shaft. In other words, high-frequency energy is stored in the high-frequency resonator, and this energy is used to accelerate and focus the charged particles.

【0008】ここで、高周波加速収束装置内で、荷電粒
子群(ビーム)が加速されている場合の高周波エネルギ
ーの収支に注目する。ビームが加速軸上で加速される際
に、ビームはそのエネルギー増加分に比例するエネルギ
ーを高周波加速収束装置から受けとり、高周波加速収束
装置はこれに等しい高周波エネルギーを失うことにな
る。また、このような形で高周波加速収束装置が失うエ
ネルギー量はビームの電流値に比例する
Here, attention is paid to the balance of the high-frequency energy when the charged particle group (beam) is accelerated in the high-frequency acceleration convergence device. As the beam is accelerated on the acceleration axis, the beam receives energy proportional to its energy increase from the RF acceleration convergence device, and the RF acceleration convergence device loses equal RF energy. Also, the amount of energy lost by the high-frequency acceleration convergence device in this manner is proportional to the beam current value .

【0009】従って、高周波加速収束装置内に貯えられ
る高周波エネルギー量に比べて、ビームが持ち去る高周
波エネルギー量が無視できないような比較的大電流のビ
ームを加速する場合には、ビーム加速軸上で局部的に高
周波エネルギー量が低下する領域が生じ、高周波エネル
ギー量の不均一性が発生する。このような高周波エネル
ギー量の不均一性は時間と共に増長され、加速収束電場
の対称性と平坦度に乱れを生じさせ、ひいては、加速性
能の低下を引き起こしてしまう。したがって、従来のR
FQライナックにおいては、比較的大電流のビームを加
速する場合には、性能が低下しやすいという問題点があ
った。
[0009] Therefore, it is stored in the high-frequency acceleration convergence device.
High energy that the beam carries away
In the case of accelerating a relatively large current beam whose wave energy is not negligible, a region where the amount of high-frequency energy is locally reduced occurs on the beam acceleration axis, causing non-uniformity of the amount of high-frequency energy. Such non-uniformity in the amount of high-frequency energy increases with time, causing disturbance in the symmetry and flatness of the accelerating electric field, and consequently, lowering the acceleration performance. Therefore, the conventional R
In the FQ linac, there is a problem that the performance tends to deteriorate when a beam of a relatively large current is accelerated.

【0010】これらの問題点は導電性外筒部の筒長Lが
空間自由波長λに比べて、長くなるにつれてより深刻化
する。これは、4重極加速集束電場の対称性や平坦度が
導電性外筒部や導電性翼部の構造的バラツキ、特に、寸
法及び取付位置のバラツキにより乱される度合や電場の
不安定度が(L/λ)に比例して増大するからであ
る。このように、筒長Lが長くなるにつれて、対称性及
び平坦度の高い4重極電場を調整により達成するのが困
難になる根本的な原因は、従来のRFQライナックで
は、高周波加速集束装置内での群速度(高周波エネルギ
ーの伝搬速度)が殆ど0であるTE210モードを使用
していることにある。
[0010] These problems become more serious as the tube length L of the conductive outer tube portion becomes longer than the space free wavelength λ. This is because the degree of symmetry and flatness of the quadrupole accelerating focused electric field is disturbed by the structural variation of the conductive outer cylinder and the conductive wing, especially the variation in dimensions and mounting positions, and the degree of instability of the electric field. Is increased in proportion to (L / λ) 2 . As described above, as the cylinder length L becomes longer, it is difficult to achieve a quadrupole electric field having high symmetry and flatness by adjustment. The fundamental cause of the problem is that in the conventional RFQ linac, in the high-frequency acceleration focusing device, Is that the TE 210 mode in which the group velocity (propagation velocity of high-frequency energy) is almost zero.

【0011】本発明の目的は、導電性外筒部の筒長に拘
らず、安定性が高く、且つ、対称性の良い4重極の加速
集束電場を発生することができる高周波加速集束装置を
提供することにある。本発明の他の目的は4重極電場の
調整を容易に行い得ることができる高周波加速集束装置
を提供することである。
An object of the present invention is to provide a high-frequency accelerating and focusing apparatus capable of generating a quadrupole accelerated and focused electric field having high stability and good symmetry regardless of the length of the conductive outer cylinder. To provide. It is another object of the present invention to provide a high-frequency acceleration focusing device that can easily adjust a quadrupole electric field.

【0012】[0012]

【課題を解決するための手段】本発明では、群速度の大
きい共振装置では、周囲の比較的高周波エネルギー量の
多い領域から、少ない領域へ高周波エネルギーが伝搬す
るため、高い電場安定度が実現できることに基づき、ビ
ーム加速軸方向の群速度が0でないように、高周波加速
集束装置を構成している。
According to the present invention, in a resonance device having a large group velocity, high-frequency energy propagates from a relatively high-frequency energy region to a low-frequency region, so that a high electric field stability can be realized. , The high-frequency acceleration focusing device is configured so that the group velocity in the beam acceleration axis direction is not zero.

【0013】具体的に言えば、本発明によれば、ビーム
加速軸に沿って通過孔を内側に規定した空間を有する筒
形の導電性外筒部と、前記導電性外筒部内に、前記通過
孔を挟んで互いに間隔を置いて配置され、前記導電性外
筒部に固定された導電性金属板と、前記導電性金属板の
間に、前記通過孔を囲むように、位置付けられた導電性
翼部と、前記各導電性金属板と前記導電性翼部とを接続
する導電性介挿部とにより構成された共振セルを複数
個、前記ビーム加速軸に沿って配置する一方、前記各共
振セルを励振し、前記各共振セル内の前記通過孔を含む
空間内に4重極電場を発生させる高周波導入装置とを備
え、前記高周波導入装置により、前記ビーム加速軸の方
向に少なくとも一つの節を形成する共振モードで、前記
複数の共振セルは励振されることを特徴とする高周波加
速集束装置が得られる。
More specifically, according to the present invention, a cylindrical conductive outer cylindrical portion having a space defining a passage hole inside along the beam acceleration axis, and the conductive outer cylindrical portion includes: Passing
Are spaced apart from each other across the hole,
A conductive metal plate fixed to the cylindrical portion, and the conductive metal plate
A conductive wing positioned so as to surround the passage hole, and the conductive metal plates and the conductive wing are connected therebetween.
And a plurality of resonant cells constituted by
Are arranged along the beam acceleration axis, while
Exciting the vibration cells and including the through holes in each of the resonance cells
A high frequency introduction device for generating a quadrupole electric field in a space , wherein the high frequency introduction device excites the plurality of resonance cells in a resonance mode in which at least one node is formed in a direction of the beam acceleration axis. A high-frequency acceleration focusing device characterized by the above feature is obtained.

【0014】[0014]

【作用】本発明では、ビーム加速軸方向に、少なくとも
一つの節を形成するTE11N モ−ドを使用していると共
に、ビーム加速軸方向に複数の共振セルを結合した構成
を有し、共振セル間でRFエネルギーの伝搬が容易であ
るため、4重極電場の安定性が高く、筒長が長くなって
も、4重極電場の対称性及び平坦度は乱されることはな
い。
According to the present invention, the beam acceleration axis, TE 11N mode to form at least one section - have together using de, a configuration that combines multiple resonant cells to the beam acceleration axis direction, the resonance Since the RF energy is easily transmitted between the cells, the quadrupole electric field has high stability, and the symmetry and flatness of the quadrupole electric field are not disturbed even when the cylinder length is increased.

【0015】[0015]

【実施例】以下、実施例としてTE112 モ−ドを用いた
例を挙げ、本発明の高周波加速集束装置を詳細に説明す
る。図1及び図2(A)、(B)、及び(C)は本発明
の一実施例である高周波加速集束装置を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The high frequency accelerating and focusing apparatus according to the present invention will be described in detail below, taking an example using a TE 112 mode as an embodiment. FIGS. 1 and 2A, 2B, and 2C are views showing a high-frequency acceleration focusing apparatus according to one embodiment of the present invention.

【0016】図示のように、高周波加速集束装置は、ビ
−ム加速軸Bに沿った通過孔を有する円筒形状の導電性
外筒部100を備えている。この導電性外筒部100内
には、ビーム加速軸Bを挟んで、互いに間隔をおいて対
向する3組の導電性金属板(リッジ)対2A及び2B、
2C及び2D、2E及び2Fがビーム加速軸Bに沿って
配置され、これら導電性金属板対2A及び2B、2C及
び2D、2E及び2Fはそれぞれ導電性外筒部100に
固定されている。換言すれば、この実施例では、3組の
導電性金属板対が外筒部100内にビーム加速軸方向
に、対向する2方向から突出している。導電性金属板対
2A及び2Bは第1組の導電性金属板、導電性金属板対
2C及び2Dは第2組の導電性金属板、及び、導電性金
属板対2E及び2Fは第3組の導電性金属板と称する。
また、各組の導電性金属板間には、ビーム加速軸Bの方
向に沿って、空隙が設けられており、更に、図の上側に
設けられた導電性金属板2A、2C、及び2Eが直線状
に配設されており、他方、下側に設けられた導電性金属
板2B、2D、及び2Fも直線状に配設されている。
As shown in the drawing, the high-frequency acceleration focusing apparatus includes a cylindrical conductive outer cylinder portion 100 having a through hole extending along a beam acceleration axis B. In the conductive outer cylindrical portion 100, three pairs of conductive metal plates (ridges) 2A and 2B facing each other with a space therebetween with respect to the beam acceleration axis B,
2C and 2D, 2E and 2F are arranged along the beam acceleration axis B, and these conductive metal plate pairs 2A and 2B, 2C and 2D, 2E and 2F are fixed to the conductive outer cylinder part 100, respectively. In other words, in this embodiment, three pairs of conductive metal plates protrude into the outer cylindrical portion 100 from two opposite directions in the beam acceleration axis direction. The conductive metal plate pairs 2A and 2B are a first set of conductive metal plates, the conductive metal plate pairs 2C and 2D are a second set of conductive metal plates, and the conductive metal plate pairs 2E and 2F are a third set. Of the conductive metal plate.
In addition, a gap is provided between the conductive metal plates of each set along the direction of the beam acceleration axis B. Further, the conductive metal plates 2A, 2C, and 2E provided on the upper side of the drawing are provided. The conductive metal plates 2B, 2D, and 2F provided on the lower side are also disposed linearly.

【0017】図2(B)及び(C)に最も良く示されて
いるように、導電性金属板対2A及び2B、2C及び2
D、2E及び2Fで挟まれた空間には、ビーム加速軸B
を囲むように、4つの導電性翼部4A乃至4Dが互いに
90度の角度間隔を置いて配置されており、各導電性翼
部4A乃至4Dはビーム加速軸Bに沿って延在してい
る。
As best shown in FIGS. 2B and 2C, conductive metal plate pairs 2A and 2B, 2C and 2
In the space between D, 2E and 2F, the beam acceleration axis B
, Four conductive wings 4A to 4D are arranged at an angular interval of 90 degrees from each other, and each conductive wing 4A to 4D extends along the beam acceleration axis B. .

【0018】ここで、第1組の導電性金属板の内、一方
の導電性金属板2Aは、図2(B)及び(A)に示され
ているように、一対の半円形状の導電性介挿部3Bによ
り、互いに対向した導電性翼部4B及び4Dに接続され
ており、他方、導電性金属板2Bは一対の半円形状の導
電性介挿部3Aにより、残りの導電性翼部4A及び4C
に接続されている。これらの第1の導電性金属板2A及
び2B、導電性介挿部3A、3B、並びに、導電性翼部
4A乃至4Dにより第1の共振セルが構成される。
Here, one conductive metal plate 2A of the first set of conductive metal plates is, as shown in FIGS. 2B and 2A, a pair of semi-circular conductive metal plates. The conductive metal plate 2B is connected to the conductive wings 4B and 4D facing each other by the conductive insert 3B, while the conductive metal plate 2B is connected to the remaining conductive wings by a pair of semicircular conductive inserts 3A. Parts 4A and 4C
It is connected to the. The first conductive metal plates 2A and 2B, the conductive inserts 3A and 3B, and the conductive wings 4A to 4D form a first resonance cell.

【0019】また、第2組の導電性金属板の内、導電性
金属板2Cは、図2(C)及び(A)からも明らかな通
り、一対の半円形状の導電性介挿部3Cにより、互いに
対向する導電性翼部4A及び4Cに接続されており、ま
た、一方の導電性金属板2Dは一対の導電性介挿部3D
により、残りの導電性翼部4B及び4Dに接続され、第
2の共振セルが構成されている。更に、第3組の導電性
金属板2E及び2Fは前記第1組の導電性金属板と同様
に半円形状の導電性介挿部3E及び3Fを介して導電性
翼部4A乃至4Dと接続されて、第3の共振セルが構成
されている。
As is clear from FIGS. 2C and 2A, the conductive metal plate 2C of the second set of conductive metal plates has a pair of semicircular conductive insertion portions 3C. Are connected to the conductive wing portions 4A and 4C facing each other, and one conductive metal plate 2D is connected to a pair of conductive insertion portions 3D.
Thus, the second conductive cell is connected to the remaining conductive wings 4B and 4D, thereby forming a second resonance cell. Further, similarly to the first set of conductive metal plates, the third set of conductive metal plates 2E and 2F are connected to the conductive wing portions 4A to 4D via semicircular conductive inserts 3E and 3F. Thus, a third resonance cell is configured.

【0020】そして、隣り合う導電性金属板の間の空隙
には、電場を調整するための電場調整手段、即ち、チュ
ーナ7が設けられている。
An electric field adjusting means for adjusting an electric field, that is, a tuner 7 is provided in a gap between adjacent conductive metal plates.

【0021】このような構成を有するRFQライナック
が図示されない高周波導入装置から与えられる高周波に
よってTE112 モードで励振されると、図2(A)、
(B)、(C)に示されたように、高周波電流が各導電
性金属板4A乃至4Dの表面に流れる。即ち、互いに相
隣り合う共振セルには、互いに逆方向に高周波電流が流
れる。しかしながら、隣接する共振セルにおける導電性
翼部4A乃至4Dと一対の導電性金属板との導電性介挿
部による接続関係は互いに反転している。したがって、
導電性翼部4A乃至4Dには、図2(B)及び(C)に
示すような高周波電圧が生じる。図2(B)からも明ら
かな通り、第1の共振セルの隣り合う導電性翼部には、
互いに逆極性の電圧が発生しており、これによって、導
電性翼部4A乃至4Dで囲まれたビーム加速軸には、4
重極電場が生じている。一方、第2の共振セルの導電性
翼部にも、第1の共振セルの導電性翼部4A乃至4Dと
同極性の高周波電圧が印加され、ビーム加速軸に4重極
電場が発生する。このことは、第3の共振セルにおいて
も同様である。
When the RFQ linac having such a configuration is excited in a TE 112 mode by a high frequency supplied from a high frequency introducing device (not shown), FIG.
As shown in (B) and (C), a high-frequency current flows on the surfaces of the conductive metal plates 4A to 4D. That is, high-frequency currents flow in mutually opposite directions in the resonance cells adjacent to each other. However, the connection relation between the conductive wings 4A to 4D and the pair of conductive metal plates in the adjacent resonance cells by the conductive insertion portions is reversed. Therefore,
High-frequency voltages as shown in FIGS. 2B and 2C are generated in the conductive wings 4A to 4D. As is clear from FIG. 2B, adjacent conductive wings of the first resonance cell include:
Voltages of opposite polarities are generated, which causes the beam acceleration axis surrounded by the conductive wings 4A to 4D to have 4
A dipole electric field is generated. On the other hand, a high-frequency voltage having the same polarity as that of the conductive wings 4A to 4D of the first resonance cell is also applied to the conductive wing of the second resonance cell, and a quadrupole electric field is generated on the beam acceleration axis. This is the same in the third resonance cell.

【0022】上記したように、互いに対向する導電性翼
部、4Aと4C、及び4Bと4Dは導電性介挿部(3A
及び3C、3F及び3B、3D及びと3E)によって、
電気的に短絡されており、両者における電位は常に等し
い。また、隣り合う導電性翼部同志に与えられる電位の
極性は互いに逆極性であり、且つ、その電位の絶対値は
等しい。したがって、対称性の良い4重極電場をビーム
加速軸上の任意の場所に発生させることができる。尚、
図2(A)、(B)、(C)に示した高周波電流の方向
及び高周波電圧の極性は高周波の半周期毎に反転する。
As described above, the conductive wings, 4A and 4C, and 4B and 4D, which face each other, have the conductive insertion portions (3A).
And 3C, 3F and 3B, 3D and 3E),
They are electrically short-circuited and the potentials at both are always equal. The polarities of potentials applied to adjacent conductive wings are opposite to each other, and the potentials have the same absolute value. Therefore, a quadrupole electric field with good symmetry can be generated at an arbitrary position on the beam acceleration axis. still,
The direction of the high-frequency current and the polarity of the high-frequency voltage shown in FIGS. 2A, 2B, and 2C are inverted every half cycle of the high frequency.

【0023】更に、図示された例では、3つの共振セル
がビーム加速軸方向に配置されており、ビーム加速軸方
向の電場分布に2つの節を有する共振モードで励振され
る。この様な共振モードはビーム加速軸方向の群速度が
大きく、ビーム加速軸方向の電場安定度を高めることが
できる。仮に、ビーム負荷等が存在する場合でも、共振
セル間の高周波エネルギーの伝搬が容易であるため、ビ
ーム加速軸方向の電場平坦度が保たれることなる。
Further, in the illustrated example, three resonance cells are arranged in the beam acceleration axis direction, and are excited in a resonance mode having two nodes in the electric field distribution in the beam acceleration axis direction. In such a resonance mode, the group velocity in the beam acceleration axis direction is large, and the electric field stability in the beam acceleration axis direction can be increased. Even if a beam load or the like is present, high-frequency energy can easily be transmitted between the resonance cells, so that the electric field flatness in the beam acceleration axis direction is maintained.

【0024】導電性外筒部100内のビ−ム加速軸Bに
沿った方向の各導電性金属板2A,2D,2Eや導電性
金属板2B,2D,2Fに挟まれた空間には、複数のチ
ューナ7が設けられている。このチューナ7は共振セル
同志の結合共振回路を構成しており、チューナ7の突出
量を調整することにより、周波数補正を行うことができ
る。
In the space between the conductive metal plates 2A, 2D, 2E and the conductive metal plates 2B, 2D, 2F in the direction along the beam acceleration axis B in the conductive outer cylinder portion 100, A plurality of tuners 7 are provided. The tuner 7 forms a coupled resonance circuit of the resonance cells, and the frequency can be corrected by adjusting the protrusion amount of the tuner 7.

【0025】[0025]

【発明の効果】以上のように本発明によれば、TE11N
を使用することにより、対称性の良い4重極電場を発生
させることができると共に、群速度をあげ、ビーム加速
軸方向の電場の安定度を改善することができる。また、
電場の均一性に悪影響を及ぼすことなく、少数のチュー
ナにより周波数の補正を行うことができる。更に、本発
明によれば、導電性外筒部が長い場合にも、均一な4重
極電場を発生させることが極めて容易になる。
As described above, according to the present invention, TE 11N
Is used, a quadrupole electric field with good symmetry can be generated, the group velocity can be increased, and the stability of the electric field in the beam acceleration axis direction can be improved. Also,
The frequency can be corrected with a small number of tuners without adversely affecting the uniformity of the electric field. Further, according to the present invention, it is extremely easy to generate a uniform quadrupole electric field even when the conductive outer cylinder is long.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である高周波加速集束装置の
基本的な構成をその一部を破断して説明する斜視図であ
る。
FIG. 1 is a perspective view illustrating a basic configuration of a high-frequency acceleration focusing apparatus according to an embodiment of the present invention, with a part thereof cut away.

【図2】図1の各部における高周波電流の電束線を説明
するために示す図である。
FIG. 2 is a diagram shown for explaining electric flux lines of a high-frequency current in each part of FIG. 1;

【図3】従来の高周波加速集束装置の基本的な構成を、
その一部を破断して示す斜視図である。
FIG. 3 shows a basic configuration of a conventional high-frequency acceleration focusing device;
FIG.

【図4】図3に示す高周波加速集束装置の断面を説明す
るための図である。
FIG. 4 is a view for explaining a cross section of the high-frequency acceleration focusing apparatus shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1,100 導電性外筒部 2A〜2F 導電性金属板 3A〜3F 導電性介挿部 4A〜4D,40 電性翼部 7 チューナ 1,100 conductive outer cylinder part 2A to 2F conductive metal plate 3A to 3F conductive insertion part 4A to 4D, 40 conductive wing part 7 tuner

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ビーム加速軸に沿って通過孔を内側に規
定した空間を有する筒形の導電性外筒部と、前記導電性
外筒部内に、前記通過孔を挟んで互いに間隔を置いて配
置され、前記導電性外筒部に固定された導電性金属板
と、前記導電性金属板の間に、前記通過孔を囲むよう
に、位置付けられた導電性翼部と、前記各導電性金属板
と前記導電性翼部とを接続する導電性介挿部とにより構
成された共振セルを複数個、前記ビーム加速軸に沿って
配置する一方、前記各共振セルを励振し、前記各共振セ
ル内の前記通過孔を含む空間内に4重極電場を発生させ
高周波導入装置とを備え、前記高周波導入装置によ
り、前記ビーム加速軸の方向に少なくとも一つの節を形
成する共振モードで、前記複数の共振セルは励振される
ことを特徴とする高周波加速集束装置。
A cylindrical conductive outer cylindrical portion having a space defined inside a passage hole along a beam acceleration axis ;
In the outer cylinder part, they are spaced from each other with the passage hole
And a conductive metal plate fixed to the conductive outer cylinder portion, between the conductive metal plate and surrounding the passage hole.
A conductive wing portion positioned thereon, and each of the conductive metal plates
Structure by a conductive insertion member for connecting the conductive blade portion and
A plurality of formed resonance cells are arranged along the beam acceleration axis.
While arranging, the respective resonance cells are excited and the respective resonance cells are excited.
A quadrupole electric field in the space containing the passage hole in the
A plurality of resonance cells are excited in a resonance mode in which at least one node is formed in the direction of the beam acceleration axis by the high-frequency introduction device. .
【請求項2】 請求項1において、前記共振モードがT
11N(ここで、Nは自然数)であることを特徴とする
高周波加速集束装置。
2. The method according to claim 1, wherein the resonance mode is T
E 11N (where N is a natural number).
JP18576391A 1991-05-20 1991-07-01 High frequency acceleration focusing device Expired - Fee Related JP2946363B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18576391A JP2946363B2 (en) 1991-07-01 1991-07-01 High frequency acceleration focusing device
US07/885,641 US5334943A (en) 1991-05-20 1992-05-19 Linear accelerator operable in TE 11N mode
EP92108423A EP0514832B1 (en) 1991-05-20 1992-05-19 Linear accelerator operable in TE11N mode
DE69213321T DE69213321T2 (en) 1991-05-20 1992-05-19 Linear accelerator operated in a TE11N mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18576391A JP2946363B2 (en) 1991-07-01 1991-07-01 High frequency acceleration focusing device

Publications (2)

Publication Number Publication Date
JPH0513199A JPH0513199A (en) 1993-01-22
JP2946363B2 true JP2946363B2 (en) 1999-09-06

Family

ID=16176450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18576391A Expired - Fee Related JP2946363B2 (en) 1991-05-20 1991-07-01 High frequency acceleration focusing device

Country Status (1)

Country Link
JP (1) JP2946363B2 (en)

Also Published As

Publication number Publication date
JPH0513199A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US4596946A (en) Linear charged particle accelerator
EP0514585B1 (en) Charged particle accelerator
US4827192A (en) Output circuit for klystron and klystron with an output circuit of this type
US5334943A (en) Linear accelerator operable in TE 11N mode
JP2946363B2 (en) High frequency acceleration focusing device
US20050023984A1 (en) Multibeam klystron
US3010047A (en) Traveling-wave tube
US6326746B1 (en) High efficiency resonator for linear accelerator
US2404078A (en) Electron discharge device
US4567402A (en) Electron beam injection device for an ultra-high frequency radio electric wave generator
JP2692447B2 (en) Gas laser device
JPH0558240B2 (en)
US4866343A (en) Re-entrant double-staggered ladder circuit
JP2005505112A (en) Virtual cathode microwave generator
Dohler et al. Peniotron oscillator operating performance
JPS63272084A (en) Piezoelectric transformer
Dohler et al. Peniotron amplifier results
JP2893489B2 (en) High frequency acceleration focusing device
JP2662527B2 (en) High frequency quadrupole accelerator
JP2794534B2 (en) Undulator and free electron laser device
SU728684A1 (en) Accelerating system of linear ion accelerator
US5483130A (en) Structure for accelerating heavy ions with uniformly spaced quadrupole focusing (USQF)
JP3098856B2 (en) Variable energy 4-vane high-frequency quadrupole cavity and variable energy split-coaxial high-frequency quadrupole cavity
Odera et al. Field characteristics of an alvarez-type linac structure having chain-like electrode array
JPH0817597A (en) High-frequency quadrupole linear accelerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990602

LAPS Cancellation because of no payment of annual fees