JP2946127B2 - Battery and battery manufacturing method - Google Patents

Battery and battery manufacturing method

Info

Publication number
JP2946127B2
JP2946127B2 JP3160716A JP16071691A JP2946127B2 JP 2946127 B2 JP2946127 B2 JP 2946127B2 JP 3160716 A JP3160716 A JP 3160716A JP 16071691 A JP16071691 A JP 16071691A JP 2946127 B2 JP2946127 B2 JP 2946127B2
Authority
JP
Japan
Prior art keywords
battery
electrode plate
positive electrode
electrolyte
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3160716A
Other languages
Japanese (ja)
Other versions
JPH0513067A (en
Inventor
秀行 田合
敏彦 泉川
秀祐 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3160716A priority Critical patent/JP2946127B2/en
Publication of JPH0513067A publication Critical patent/JPH0513067A/en
Application granted granted Critical
Publication of JP2946127B2 publication Critical patent/JP2946127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ペレット状、筒状、ま
たはシート状など電池に組み合わせた際の状態に加工し
た極板を使用した電池およびその製造法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery using an electrode plate processed into a state of being combined with a battery, such as a pellet, a tube, or a sheet, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年の電子機器は、高集積化された半導
体の活用が多くなり、価格は低く、しかも軽薄短小化、
コードレス化が進んでいる。このような高性能電子機器
の市場ニーズの高まりを背景として、使用される電源も
極力小型の電池の利用にむけられている。とくに有機電
解液電池などのエネルギー密度が高く、動作温度範囲が
広く、しかも耐漏液性能に優れた電池は急速にその利用
範囲が拡大している。
2. Description of the Related Art In recent years, the use of highly integrated semiconductors has increased in recent years, and the cost has been low.
Cordless use is progressing. Against the background of the growing market needs for such high-performance electronic devices, the power supplies used are also being directed to using small batteries as much as possible. In particular, batteries having a high energy density, a wide operating temperature range, and excellent liquid leakage resistance, such as organic electrolyte batteries, are rapidly expanding their use range.

【0003】この有機電解液電池の一例として扁平形電
池について、図面を参照して以下に説明する。
A flat battery as an example of the organic electrolyte battery will be described below with reference to the drawings.

【0004】図2において、1は二酸化マンガンを主体
とする正極活物質を加圧成形してペレット状にした正極
板であり、正極缶2内に圧入されたものである。3はリ
チウムを主体とする負極活物質からなる負極板4を圧入
した負極缶、5は有機電解液を含浸し正負両極間に介在
するセパレータ、6は正極缶2と負極缶3との間に介在
しかつ外部に漏液しない様に液密に両者を密封する絶縁
パッキングである。
[0004] In FIG. 2, reference numeral 1 denotes a positive electrode plate formed by pressing a positive electrode active material mainly composed of manganese dioxide into a pellet shape, which is press-fitted into a positive electrode can 2. Reference numeral 3 denotes a negative electrode can having a negative electrode plate 4 made of a negative electrode active material mainly composed of lithium, 5 is a separator impregnated with an organic electrolyte and interposed between the positive and negative electrodes, and 6 is a positive electrode between the positive electrode can 2 and the negative electrode can 3. This is an insulating packing that intervenes and liquid-tightly seals both so as not to leak to the outside.

【0005】上記した構成の電池の生産において、電池
内の電解液が極板とくに正極板1には充分に吸収されな
ければならず、この電解液が極板に良く吸収された後に
正極缶2と負極缶3を絶縁パッキング6を両者間に介在
して嵌合する所謂封口工程がある。しかしながら、電解
液は成型された極板に吸収されにくく、この封口工程に
おいて、電解液が極板に充分に吸収されていない場合
は、電解液が電池内よりあふれて、電池の放電持続時間
が短かったり、電池の外観が汚れたりするなどの問題が
あった。このため、従来では電池内に電解液を注入した
後、電池を未封口の儘生産ラインにおいて貯溜してお
き、電池内の電解液が極板に充分に吸収されてから封口
工程に移行していた。従って極板に電解液を充分吸収さ
せるために生産ラインで封口工程前に電池を貯溜しなけ
ればならず、その貯溜時間のために電池の生産性を高め
ることができない問題点があった。
In the production of the battery having the above-described structure, the electrolyte in the battery must be sufficiently absorbed by the electrode plate, particularly the positive electrode plate 1, and after the electrolyte is well absorbed by the electrode plate, the positive electrode can 2 There is a so-called sealing step of fitting the battery pack and the negative electrode can 3 with the insulating packing 6 interposed therebetween. However, the electrolytic solution is hardly absorbed by the molded electrode plate, and in the sealing step, if the electrolytic solution is not sufficiently absorbed by the electrode plate, the electrolytic solution overflows from the inside of the battery, and the discharge duration of the battery is reduced. There were problems such as being short and the appearance of the battery being dirty. For this reason, conventionally, after the electrolyte is injected into the battery, the battery is stored in the production line without being sealed, and the electrolyte in the battery is sufficiently absorbed by the electrode plate, and then the process shifts to the sealing step. Was. Therefore, the batteries must be stored in the production line before the sealing step in order to allow the electrode plate to sufficiently absorb the electrolyte, and there is a problem that the productivity of the batteries cannot be increased due to the storage time.

【0006】[0006]

【発明が解決しようとする課題】前記するように、従来
は極板の電解液の吸収がよくないため、電池の生産性を
高めることができず、コスト高の原因にもなっていた。
As described above, conventionally, since the absorption of the electrolyte solution of the electrode plate is not good, the productivity of the battery cannot be increased, and the cost has been increased.

【0007】すなわち、電解液をよく吸収するように極
板は成形する必要がある。解決しようとする問題点は、
電池の生産性を高めることができる電解液吸収性のよい
極板を得るための尺度を明確にする点である。
That is, it is necessary to form the electrode plate so as to absorb the electrolyte well. The problem we are trying to solve is
It is a point to clarify a measure for obtaining an electrode plate having good electrolyte solution absorbability which can enhance battery productivity.

【0008】[0008]

【課題を解決するための手段】本発明は、電池内で使用
される形態に成形加工した極板の見かけ表面積の50%
を1,2ジメトキシエタン(以下DMEという)に接触
させた時に、その接触より1分後におけるDMEの吸収
量が極板1グラム当り40ミリグラムを下限とする吸収
性能をもった極板を電池に使用し、生産性の高い製造法
を確立したものである。
DISCLOSURE OF THE INVENTION The present invention provides an electrode plate formed into a form used in a battery by 50% of the apparent surface area.
Is brought into contact with 1,2-dimethoxyethane (hereinafter referred to as DME), and an electrode plate having an absorption capacity of a lower limit of 40 milligrams per gram of the electrode plate after 1 minute from the contact is used as a battery. It has been used to establish a highly productive manufacturing method.

【0009】[0009]

【作用】本発明による極板を用いた電池は、電解液が短
時間のうちに充分に極板に吸収されるため、生産ライン
を高速化しても封口工程における電解液の電池外溢れが
ないものである。
In the battery using the electrode plate according to the present invention, since the electrolyte is sufficiently absorbed in the electrode plate in a short time, even if the production line is speeded up, the electrolyte does not overflow from the battery in the closing step. Things.

【0010】[0010]

【実施例】本発明の一実施例を図を参照して以下に詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings.

【0011】電池の構造は図2に示すものと全く同一で
あるため説明は省略する。図1は本発明の電池製造法の
工程を説明するブロック図である。
The structure of the battery is exactly the same as that shown in FIG. FIG. 1 is a block diagram illustrating the steps of the battery manufacturing method of the present invention.

【0012】図1において第1工程は、ペレット状正極
板成形工程で、二酸化マンガンと結着剤を混合した粉末
をペレット状に成形した工程である。そして上記ペレッ
ト状正極板は、挾持体で挟んでDMEを入れた容器に、
1分間浸漬して引き上げた際に極板1グラム当り、40
ミリグラムのDMEを吸収していた。なお挾持体により
DMEを入れた容器中に浸漬した正極板の浸漬面積は全
体の50%であった。第2工程は前記ペレット状正極板
を正極缶に圧入する工程、第3工程は、上記正極缶に電
解液を注入する工程、第4工程は、上記正極缶を絶縁パ
ッキングを介して負極を収容した負極缶を嵌合させて両
者を液密に密封した封口工程である。以上のように本発
明の製造法は極板が電解液の吸収性能が良いために、従
来のように正極板を収容した正極缶に電解液を注入した
後、当該正極缶を未封口の儘貯溜しておくプール工程が
必要でないため、電解液注入工程の次に封口工程に移行
することができ、生産性の高いものである。
In FIG. 1, the first step is a step of forming a pellet-shaped positive electrode plate, in which a powder obtained by mixing manganese dioxide and a binder is formed into a pellet. And the above-mentioned pellet-shaped positive electrode plate is placed in a container in which
When immersed for 1 minute and pulled up, 40 g
Milligrams of DME had been absorbed. The immersion area of the positive electrode plate immersed in the container containing DME by the clamping body was 50% of the whole. The second step is a step of pressing the pellet-shaped positive electrode plate into a positive electrode can, the third step is a step of injecting an electrolytic solution into the positive electrode can, and the fourth step is a step of accommodating the negative electrode through the insulating packing of the positive electrode can. This is a sealing step in which the thus-formed negative electrode cans are fitted and both are sealed in a liquid-tight manner. As described above, according to the production method of the present invention, since the electrode plate has a good ability to absorb the electrolytic solution, the electrolyte solution is poured into the positive electrode can containing the positive electrode plate as in the related art, and the positive electrode can is left unsealed. Since there is no need for a pooling step for storing, it is possible to shift to the sealing step next to the electrolyte injection step, and the productivity is high.

【0013】次に扁平形電池を直径20mm、厚み3.2mm
で製作し、この扁平形電池にDMEの吸収量が異なる正
極板A,B,C,D,Eを夫々使用して他の電池要素を
組み合わせ、各100個を生産した。そして各正極板の
見かけ表面積の50%をDMEに接触した後1分経過後
における正極板1グラム当りのDMEの吸収量と電池の
封口工程において電池内より溢れた電解液量およびその
電池の各放電容量を表1に示した。
Next, a flat type battery was prepared with a diameter of 20 mm and a thickness of 3.2 mm.
The flat battery was manufactured using positive electrode plates A, B, C, D, and E having different DME absorption amounts, and combined with other battery elements to produce 100 flat batteries. After contacting 50% of the apparent surface area of each positive electrode plate with DME, the amount of DME absorbed per gram of the positive electrode plate after 1 minute, the amount of electrolyte overflowing from the inside of the battery in the battery sealing step, and the Table 1 shows the discharge capacity.

【0014】[0014]

【表1】 [Table 1]

【0015】表1により明らかなように、正極板D,E
は、その見かけ表面積の50%をDMEに接触させた時
に、その接触後1分後におけるDMEの吸収量が正極板
1グラム当り40mgを越えており、この正極板D,E
を用いた電池は、DMEの吸収量が正極板D,Eより少
ないB,A,Cを用いた電池よりも放電容量は大きく、
かつ高速生産ライン時の封口工程における電池外溢出電
解液量が皆無である点が異なり、正極板D,Eが生産性
においても、放電性能においても優れているものである
ことがわかる。そして、正極板Dは1000mgの正極
活物質を10トンの圧力で加圧し、厚みを1.75〜
1.77mmとしたものであり、従って極板密度は3.
03〜3.00g/cm 3 としたものである。また、正
極板Eは950mgの正極活物質を8トンの圧力で加圧
し、厚みを1.75〜1.77mmとしたものであり、
従って極板密度は2.88〜2.85g/cm 3 とした
ものである。また、DMEの吸収量が本実施例の正極板
D,Eに比較して少なく、本発明と異なる正極板A,
B,Cは次の通りである。すなわち、正極板Bは115
0mgの正極活物質を16トンの圧力で加圧し、厚みを
1.75〜1.77mmとしたものであり、従って極板
密度は3.59〜3.46g/cm 3 である。また、正
極板Aは1100mgの正極活物質を14トンの圧力で
加圧し、厚みを1.75〜1.77mmとしたものであ
り、従って極板密度は3.59〜3.46g/cm 3
ある。また、正極板Cは1050mgの正極活物質を1
2トンの圧力で加圧し、厚みを1.75〜1.77mm
としたものであり、従って極板密度は3.27〜3.1
5g/cm 3 である。 なお、上記正極板の正極活物質は
全て二酸化マンガン、導電剤となるケッチェンブラック
および結着剤となるポリフロロエチレンを重量比で9
0:5:5の比率で混合したものである。
As is clear from Table 1, the positive plates D, E
Indicates that when 50% of the apparent surface area was brought into contact with DME, the amount of DME absorbed one minute after the contact exceeded 40 mg per gram of the positive electrode plate.
Batteries using B, A, and C, which have less DME absorption than the positive plates D and E, have a larger discharge capacity,
In addition, the difference is that there is no amount of electrolyte overflowing out of the battery in the closing step at the time of the high-speed production line, and it can be seen that the positive electrodes D and E are excellent in both productivity and discharge performance. Then, the positive electrode plate D is a 1000 mg positive electrode.
The active material is pressurized with a pressure of 10 tons, and the thickness is 1.75 to
1.77 mm, so that the electrode plate density was 3.77 mm.
03 to 3.00 g / cm 3 . Also positive
The electrode plate E pressurizes 950 mg of the positive electrode active material at a pressure of 8 tons.
And the thickness is 1.75 to 1.77 mm,
Therefore, the electrode plate density was 2.88 to 2.85 g / cm 3 .
Things. The amount of DME absorbed by the positive electrode
Positive electrodes A, which are less than D and E and different from the present invention.
B and C are as follows. That is, the positive electrode plate B is 115
0 mg of the positive electrode active material is pressurized at a pressure of 16 tons to reduce the thickness.
1.75 to 1.77 mm
Density is 3.59~3.46g / cm 3. Also positive
The electrode plate A is obtained by applying 1100 mg of the positive electrode active material at a pressure of 14 tons.
Pressurized to a thickness of 1.75 to 1.77 mm
Therefore, the electrode density is 3.59-3.46 g / cm 3 .
is there. The positive electrode plate C contained 1050 mg of the positive electrode active material in one.
Pressurized with a pressure of 2 tons, thickness 1.75-1.77mm
Therefore, the electrode plate density was 3.27 to 3.1.
5 g / cm 3 . The positive electrode active material of the positive electrode plate is
All manganese dioxide, Ketjen black as a conductive agent
And polyfluoroethylene as a binder in a weight ratio of 9
It was mixed at a ratio of 0: 5: 5.

【0016】[0016]

【0017】[0017]

【0018】また、極板の形態はペレット状に限らず筒
状、棒状あるいはシート状であっても、表1と同様の結
果が得られた。
Further, the same results as in Table 1 were obtained when the form of the electrode plate was not limited to a pellet, but was a cylinder, rod or sheet.

【0019】[0019]

【発明の効果】本発明による極板を用いた電池は、封口
前に極板が電解液を吸収するために貯溜するような非能
率な生産ラインを必要とせず、上記目的のための貯溜時
間を少なくした高速運転生産ラインの封口工程において
も電解液の溢出がなく、放電性能の良い電池を高い生産
性をもって製造できるものである。
The battery using the electrode plate according to the present invention does not require an inefficient production line in which the electrode plate stores the electrolyte before absorbing the electrolyte, and the storage time for the above-mentioned purpose is not required. Thus, even in a closing step of a high-speed operation production line in which the number of cells is reduced, there is no overflow of the electrolyte and a battery having good discharge performance can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における電池製造法の工程を
示すブロック図
FIG. 1 is a block diagram showing steps of a battery manufacturing method according to one embodiment of the present invention.

【図2】本発明および従来の実施例における扁平形電池
の断面図。
FIG. 2 is a cross-sectional view of a flat battery according to the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 正極板 2 正極缶 3 負極缶 4 負極板 5 セパレータ 6 絶縁パッキング Reference Signs List 1 positive electrode plate 2 positive electrode can 3 negative electrode can 4 negative electrode plate 5 separator 6 insulating packing

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−145435(JP,A) 特開 平1−248471(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 - 4/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-145435 (JP, A) JP-A-1-248471 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/02-4/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電池内における形態に成形加工した極板の
見かけ表面積の50%を1,2ジメトキシエタンに接触
させた時に、その接触より1分経過後における1,2ジ
メトキシエタンの吸収量が、極板1グラム当り40ミリ
グラムを下限とする吸収性能をもった極板を使用した電
池。
(1) When 50% of an apparent surface area of an electrode plate formed into a form in a battery is brought into contact with 1,2-dimethoxyethane, the absorption amount of 1,2-dimethoxyethane after one minute from the contact is measured. A battery using an electrode plate having an absorption performance of a lower limit of 40 milligrams per gram of the electrode plate.
【請求項2】請求項1記載の極板を収容した未封口の電
池に、所定の電解液を注入し、当該未封口の電池を、極
板が電解液を吸収するために電池を未封口の儘貯溜する
時間を設定していない生産ラインの封口工程に直接移行
させる電池製造法。
2. A predetermined electrolyte is injected into an unsealed battery containing the electrode plate according to claim 1, and the battery is unsealed so that the electrode plate absorbs the electrolyte. A battery manufacturing method that directly shifts to the closing step of a production line in which the storage time is not set.
JP3160716A 1991-07-02 1991-07-02 Battery and battery manufacturing method Expired - Fee Related JP2946127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3160716A JP2946127B2 (en) 1991-07-02 1991-07-02 Battery and battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3160716A JP2946127B2 (en) 1991-07-02 1991-07-02 Battery and battery manufacturing method

Publications (2)

Publication Number Publication Date
JPH0513067A JPH0513067A (en) 1993-01-22
JP2946127B2 true JP2946127B2 (en) 1999-09-06

Family

ID=15720929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3160716A Expired - Fee Related JP2946127B2 (en) 1991-07-02 1991-07-02 Battery and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP2946127B2 (en)

Also Published As

Publication number Publication date
JPH0513067A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
TW512555B (en) Gel electrolyte and gel electrolyte cell
CN108493482A (en) Lithium ion battery and its at change method
CN101290992A (en) Nonaqueous electrolyte battery
JPH11283672A (en) Polymer solid electrolyte cell and its manufacture
JP3464612B2 (en) Manufacturing method of lithium secondary battery
JP2000133216A (en) Nonaqueous electrolyte battery and manufacture of same
CN102195029A (en) Lithium ion battery and cathode pole sheet thereof
JP2946127B2 (en) Battery and battery manufacturing method
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JP2002343337A (en) Method of infusion and draining of electrolytic solution for lithium secondary battery
JP4044295B2 (en) Batteries, electric double layer capacitors and methods for producing them
CN110611119B (en) Composite solid electrolyte and preparation method and application thereof
CN209388893U (en) Highly reliable inner series cylinder supercapacitor
JP2000182600A (en) Lithium battery
JPH06196364A (en) Manufacture of coin-shaped electric double layer capacitor
JPS5882472A (en) Lead storage battery and manufacture thereof
JPH10172601A (en) Cylindrical battery
CN1409419A (en) Alkaline accumulator and its producing method
JP4572429B2 (en) Cylindrical lithium secondary battery
JP3103781B2 (en) How to inject the battery
JP4121260B2 (en) Method for producing flat battery electrode
JP3086313B2 (en) Manganese dry cell
JPS5854559A (en) Manufacture of alkaline battery
JPH0261775B2 (en)
CN115692865A (en) Secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees