JP2944161B2 - Flow measurement device for hydraulic machinery - Google Patents

Flow measurement device for hydraulic machinery

Info

Publication number
JP2944161B2
JP2944161B2 JP2205144A JP20514490A JP2944161B2 JP 2944161 B2 JP2944161 B2 JP 2944161B2 JP 2205144 A JP2205144 A JP 2205144A JP 20514490 A JP20514490 A JP 20514490A JP 2944161 B2 JP2944161 B2 JP 2944161B2
Authority
JP
Japan
Prior art keywords
flow path
flow
flow rate
wall surface
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2205144A
Other languages
Japanese (ja)
Other versions
JPH0491373A (en
Inventor
光一郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2205144A priority Critical patent/JP2944161B2/en
Publication of JPH0491373A publication Critical patent/JPH0491373A/en
Application granted granted Critical
Publication of JP2944161B2 publication Critical patent/JP2944161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、水力機械における流量測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention] (Industrial application field) The present invention relates to a flow measuring device in a hydraulic machine.

(従来の技術) 水力機械として、代表的なカプラン水車の構成を第3
図の概略断面図および第4図のケーシング付近概略断面
図に示す。
(Conventional technology) As a hydraulic machine, the configuration of a typical Kaplan turbine is the third.
A schematic cross-sectional view of the figure and a schematic cross-sectional view of the vicinity of the casing of FIG. 4 are shown.

上流側から取り込んだ水は、鉄管1、ケーシング2を
通り、固定羽根3と可動式の案内羽根4によってランナ
ベーン5に導かれる。前記固定羽根3と前記案内羽根4
により導かれた水はランナベーン5を旋回させた後、吸
出し管6を通り、放水庭7へ流れ込む。
Water taken in from the upstream side passes through the iron pipe 1 and the casing 2, and is guided to the runner vanes 5 by the fixed vanes 3 and the movable guide vanes 4. The fixed blade 3 and the guide blade 4
After the water guided by the water is swirled by the runner vanes 5, the water flows into the water discharge garden 7 through the suction pipe 6.

ところで、前記構成のカプラン水車等のプロペラ水車
の流路は、低落差で大型構造の場合、前記鉄管1および
前記ケーシング2に掛る水圧が小さいことから、建設上
経済的な、コンクリート等の土木構造物で形成する場合
が多くなってきている。
By the way, in the case of a propeller turbine such as a Kaplan turbine having the above-described structure, the water pressure applied to the iron pipe 1 and the casing 2 is small in the case of a large structure with a low head. In many cases, it is formed by objects.

第5図及び第6図は、その一例で、コンクリートで形
成されたセミスパイラルケーシング8を有するカプラン
水車の例を示している。図中、第4図と同一符号は、同
一または相当部分を示し、10は、流路9の構造上の強度
を持たせるため、流路壁を上下方向に支持する支柱であ
る。
FIGS. 5 and 6 show an example of a Kaplan turbine having a semi-spiral casing 8 made of concrete. 4, the same reference numerals as those in FIG. 4 denote the same or corresponding parts, and reference numeral 10 denotes a column supporting the flow path wall in the vertical direction in order to impart structural strength to the flow path 9.

この様な水力機械における流量測定方法は、第3図の
ように上流側に鉄管1を有する場合は、その外側に超音
波送受信器を取り付け、超音波の伝播速度によって流量
を求める方法が行われている。この方法は、流量をデー
タとして、水力機械の運転状態の最適化や監視を目的と
する場合に有利な方法である。
In such a hydraulic machine, a method of measuring the flow rate is such that, when the iron pipe 1 is provided on the upstream side as shown in FIG. 3, an ultrasonic transceiver is attached outside the iron pipe 1, and the flow rate is determined by the propagation speed of the ultrasonic wave. ing. This method is advantageous when the flow rate is used as data to optimize and monitor the operating state of the hydraulic machine.

(発明が解決しようとする課題) 近年、水力機械の最適化や監視などを重点とした運転
が望まれており、セミスパイラルケーシングを有したカ
プラン水車でも簡便かつ信頼性の高い流量計測法の必要
性が高まっている。
(Problems to be Solved by the Invention) In recent years, there has been a demand for operation focusing on optimization and monitoring of hydraulic machines, and a simple and highly reliable flow measurement method is required even for a Kaplan turbine having a semi-spiral casing. Sex is growing.

しかし、セミスパイラルケーシング8を有する場合に
は、流路9の断面が四角形のコンクリート等で形成され
ているため、超音波を透過させるのに適当な組成ではな
く、さらに、超音波を反射することができる物質でない
ために、円形断面の鉄管1と同様な方法で超音波送受信
器を取り付けることは困難である。
However, when the semi-spiral casing 8 is provided, since the cross section of the flow path 9 is formed of square concrete or the like, the composition is not suitable for transmitting ultrasonic waves, and furthermore, the ultrasonic waves must be reflected. It is difficult to attach the ultrasonic transmitter / receiver in the same manner as the iron tube 1 having a circular cross-section because the material is not a material that can be used.

また、超音波法においては、流れ場を伝播する超音波
の時間差より流量を換算するが、流速分布を仮想して計
算するために、流れが仮想した流れ通りの場合は正確な
流量を導きだすことができるが、流速分布が上下に片寄
る場合は、ある一平面上の測定では正確な流量測定が出
来ないという問題もある。このため、上流側がコンクリ
ート等で形成されたカプラン水車の流量測定には、カレ
ントメータ法、ピトー管法等の流速計法が一般に用いら
れ、主に、現地効率試験時に実施されている。
In the ultrasonic method, the flow rate is converted from the time difference of the ultrasonic waves propagating in the flow field. However, in order to calculate the flow velocity distribution imaginarily, when the flow follows the virtual flow, an accurate flow rate is derived. However, when the flow velocity distribution is deviated vertically, there is also a problem that accurate flow measurement cannot be performed by measurement on a certain plane. For this reason, a flow meter method such as a current meter method or a pitot tube method is generally used for measuring the flow rate of a Kaplan turbine whose upstream side is made of concrete or the like, and is mainly carried out during on-site efficiency tests.

しかし、前記カレントメータ法、ピトー管法等の流速
計法は、短時間の測定には威力を発揮するが、計測器自
体を流路に挿入するために長時間の使用となる最適化や
監視には不向きで、信頼性に欠けるという問題がある。
However, the current meter method and the velocimeter method such as the pitot tube method are effective for short-time measurement, but are optimized or monitored for a long time to insert the measuring instrument itself into the flow path. Is unsuitable and lacks reliability.

本発明は、セミスパイラルケーシングを有するカプラ
ン水車等の水力機械において、簡便かつ信頼性の高い流
量計測装置を提供することを目的とする。
An object of the present invention is to provide a simple and highly reliable flow rate measuring device for a hydraulic machine such as a Kaplan turbine having a semi-spiral casing.

[発明の構成] (課題を解決するための手段) 本発明は、土木構造物の一部として構成される流路が
形成されている水力機械の流量測定装置において、水密
構造でその内部に流量測定用の超音波送受信器を移動可
能に内蔵した中空の装置を前記流路の壁面に設けた溝
に、また超音波反射板を前記流路の壁面に、それぞれ流
路内に突出しないように設置し、前記流路の一方側壁面
と前記流路の他方側壁面に、対向するように設置された
前記超音波送受信器と前記超音波反射板とにより、前記
流路の流量を測定するようにしたことを特徴とする。
[Constitution of the Invention] (Means for Solving the Problems) The present invention relates to a flow rate measuring device of a hydraulic machine in which a flow path constituted as a part of a civil engineering structure is formed, wherein the flow rate of the flow rate is increased in a watertight structure. A hollow device incorporating a movable ultrasonic transceiver for measurement is provided in a groove provided on the wall surface of the flow channel, and an ultrasonic reflector is provided on the wall surface of the flow channel so as not to protrude into the flow channel. Installed, on one side wall surface of the flow path and the other side wall surface of the flow path, the ultrasonic transceiver and the ultrasonic reflection plate installed so as to face each other, so as to measure the flow rate of the flow path. It is characterized by the following.

また、本発明は、土木構造物の一部として構成されか
つ支柱を有する流路が形成されている水力機械の流量測
定装置において、水密構造でその内部に流量測定用の超
音波送受信器を移動可能に内蔵した中空の装置を前記支
柱の壁面に設けた溝に、また超音波反射板を前記流路の
壁面に、それぞれ流路内に突出しないように対向して設
置すると共に、前記支柱と前記流路の一方側壁面及び前
記支柱と前記流路の他方側壁面に、それぞれ対向するよ
うにそれぞれ設置された前記超音波送受信器と前記超音
波反射板とにより、前記支柱と前記流路の一方側壁面と
の間の流量及び前記支柱と前記流路の他方側壁面との間
の流量を測定し、これら測定値から前記流路の全流量を
測定するようにしたことを特徴とする。
Further, the present invention relates to a flow rate measuring device of a hydraulic machine which is formed as a part of a civil engineering structure and has a flow path having a column, wherein an ultrasonic transceiver for flow rate measurement is moved inside the flow rate measuring device in a watertight structure. A hollow device incorporated as possible is provided in a groove provided on the wall surface of the support, and an ultrasonic reflection plate is provided on the wall surface of the flow passage, facing each other so as not to protrude into the flow passage. On the one side wall surface of the flow path and the other side wall surface of the support and the flow path, the ultrasonic transceiver and the ultrasonic reflection plate respectively installed so as to face each other, the support and the flow path of the flow path On the other hand, the flow rate between the side wall surface and the flow rate between the support and the other side wall surface of the flow path are measured, and the total flow rate of the flow path is measured from the measured values.

(作用) 本発明では、コンクリートなど土木構造物の一部とし
て構成される流路の壁面或いは支柱の壁面に溝を設け、
この溝に水密構造でその内部に流量測定用の超音波送受
信器を移動可能に内蔵した中空の装置を設置し、また対
向するように超音波反射板を前記流路の壁面に、それぞ
れ流路内に突出しないように設置している。
(Function) In the present invention, a groove is provided on a wall surface of a flow passage or a wall surface of a strut configured as a part of a civil engineering structure such as concrete,
A hollow device having a watertight structure and a movable ultrasonic transmitter / receiver for flow measurement built therein is installed in the groove, and an ultrasonic reflection plate is provided on the wall surface of the flow passage so as to face each other. It is installed so that it does not protrude inside.

このような、本発明の構成によれば、超音波送受信器
を内蔵した中空の装置を、流路内の上流側と下流側に、
一対または複数対備え、前記超音波送受信器から発せら
れた超音波を反射板で反射し、対となるもう一方の超音
波送受信器で受ける。また、逆経路でも同様に超音波の
授受を行う。この時、超音波の伝搬速度は、流体の流速
の影響を受けるため、それらの時間差が、伝搬経路の平
均流速に比例する。この場合、前記超音波送受信器の位
置を変えるなどすることにより流速分布をより詳しく計
測できる。このようにして求めた流速を、適切な係数を
用いて流量換算することにより流量が求まる。
According to the configuration of the present invention, a hollow device having a built-in ultrasonic transceiver is provided on the upstream side and the downstream side in the flow path.
One or a plurality of pairs are provided, and the ultrasonic waves emitted from the ultrasonic transceiver are reflected by the reflection plate and received by the other ultrasonic transceiver that is a pair. Also, transmission and reception of ultrasonic waves are performed similarly in the reverse path. At this time, since the propagation speed of the ultrasonic wave is affected by the flow velocity of the fluid, the time difference between them is proportional to the average flow velocity of the propagation path. In this case, the flow velocity distribution can be measured in more detail by changing the position of the ultrasonic transceiver. The flow rate is obtained by converting the flow rate thus obtained into a flow rate using an appropriate coefficient.

従って、コンクリートなど土木構造物の一部として構
成される流路の断面形状が、セミスパイラルケーシング
の上流側で四角形であっても、超音波送受信器の位置を
移動して複数箇所でそれぞれ流量測定を行うことで、経
路の全流量を、正確に求めることができる。
Therefore, even if the cross-sectional shape of the flow path formed as a part of the civil engineering structure such as concrete is rectangular on the upstream side of the semi-spiral casing, the position of the ultrasonic transceiver is moved and the flow rate is measured at each of a plurality of locations. By performing the above, the total flow rate of the route can be accurately obtained.

また、超音波送受信器は、流路の壁面或いは支柱の壁
面に設けられた溝に設置される水密構造の中空の装置内
に設けられるため、流速にさらされることがなく、長時
間の使用が可能になり、運転の最適化や監視ができる。
また、超音波送受信器は流路の外にあるため、流路内の
抜き水をすることなく取付、交換が可能となる。
In addition, since the ultrasonic transceiver is provided in a hollow device having a watertight structure installed in a groove provided in a wall surface of a channel or a wall surface of a column, the ultrasonic transceiver is not exposed to a flow velocity and can be used for a long time. It is possible to optimize and monitor operation.
Further, since the ultrasonic transceiver is outside the flow path, it can be mounted and replaced without draining water in the flow path.

また、土木構造物の一部として構成される流路が、支
柱を有するように形成されていた場合でも、支柱と流路
の一方側壁面との間の流量及び支柱と流路の他方側壁面
との間の流量を個別に測定し、これら測定値から前記流
路の全流量を測定することができる。
Further, even when the flow path configured as a part of the civil engineering structure is formed so as to have the support, the flow rate between the support and the one side wall of the flow path and the other side wall of the support and the flow path Can be individually measured, and from these measured values, the total flow rate of the flow path can be measured.

(実施例) 本発明の一実施例による水力機械の流量測定装置の構
成図を第1図に示す。
(Embodiment) FIG. 1 shows a configuration diagram of a flow measuring device for a hydraulic machine according to an embodiment of the present invention.

セミスパイラルケーシング8の上流側の流路9はコン
クリート等で構成されており、その流路形状は四角形と
なっている。また、流路9内には流路を補強するための
中空の支柱10が備え付けられており、その内部には支柱
で分けられた流路に面して、水密構造で2対の超音波送
受信器(11a,11b,12a,12b)を内蔵した中空の装置がそ
れぞれが取り付けてある。これら2対の装置が対向する
壁面には、超音波を反射しやすい反射板13が埋め込まれ
ている。
The flow path 9 on the upstream side of the semi-spiral casing 8 is made of concrete or the like, and has a square flow path shape. Further, a hollow column 10 for reinforcing the channel is provided in the channel 9, and inside the channel 9, two pairs of ultrasonic transmitting and receiving units are provided in a watertight structure facing the channel divided by the column. Each of the hollow devices incorporating the vessels (11a, 11b, 12a, 12b) is attached. A reflecting plate 13 that easily reflects ultrasonic waves is embedded in a wall surface facing the two pairs of devices.

このように、四角形の流路9に超音波送受信器(11a,
11b,12a,12b)を内蔵した中空の装置を流路9を補強す
る支柱10内に設置することにより、2つの経路での平均
流速V11,V12が求められ、設置部の断面積をAとする
と、流量Qは以下の式で求められる、 Q=A×(k1×V11+k2×v12) …(1) k1,k2は予め求められた重み係数で、流量分布が均一
ならば、どちらも1/2となり流量分布の偏りがあれば1/2
とならない。これらの値は相似模型により試験を実施し
て求めることができる。
Thus, the ultrasonic transceiver (11a, 11a,
11b, 12a, by placing a hollow device with a built-in 12b) in post 10 for reinforcing the flow path 9, the average of the two paths the flow velocity V 11, V 12 is determined, the sectional area of the installation portion Assuming that A, the flow rate Q is obtained by the following equation: Q = A × (k 1 × V 11 + k 2 × v 12 ) (1) k 1 and k 2 are weighting coefficients obtained in advance and the flow rate distribution If the distribution is uniform, both will be 1/2, and if there is a bias in the flow distribution, it will be 1/2.
Does not. These values can be determined by conducting tests using a similar model.

なお、超音波送受信器は2対に限ることなく、流路の
垂直方向に分けて複数対設けるようにしてもよい。この
場合、支柱10内部に垂直方向に中空装置を設け、超音波
送受信器を、その中空装置内でモータ等により垂直方向
に移動可能に設けるならば、2対の超音波送受信器で十
分である。超音波送受信機をこの様な配置構成とした場
合には、流量を更に精度良く求めることができる。ま
た、上記(1)式の重み係数k1,k2は、上下方向に設置
された場所のk1,k2となる。
Note that the number of ultrasonic transceivers is not limited to two, and a plurality of pairs may be provided in the vertical direction of the flow path. In this case, if a hollow device is provided in the column 10 in the vertical direction and the ultrasonic transceiver is provided so as to be vertically movable in the hollow device by a motor or the like, two pairs of ultrasonic transceivers are sufficient. . When the ultrasonic transceiver is configured as described above, the flow rate can be obtained with higher accuracy. Further, the weighting factors k 1 and k 2 in the above equation (1) are k 1 and k 2 at locations installed in the vertical direction.

このように、セミスパイラルケーシグの上流側の流路
がコンクリート等の構成物であっても、超音波送受信器
を内蔵した装置を、流路に突出することなく設置するこ
とにより、流れにさらされることなく長時間の使用が可
能で超音波法による流量測定ができ、流量データを用い
た水力機械の運転の最適化や監視を行うことができる。
Thus, even if the flow path on the upstream side of the semi-spiral casing is made of concrete or the like, the apparatus incorporating the ultrasonic transceiver is installed without protruding into the flow path, so that it is exposed to the flow. It can be used for a long time without being measured, can measure the flow rate by the ultrasonic method, and can optimize and monitor the operation of the hydraulic machine using the flow rate data.

第2図に本発明における他の実施例を示す。 FIG. 2 shows another embodiment of the present invention.

第2図は、流路の壁面に矩形の溝を設け、四角形の超
音波を透過しやすい材質で出来た中空支柱15の内部に超
音波送受信器14a,14bを内蔵した場合の説明図である。
FIG. 2 is an explanatory view of a case where a rectangular groove is provided in the wall surface of the flow path, and ultrasonic transmitters / receivers 14a and 14b are built in a hollow column 15 made of a material which is easy to transmit a rectangular ultrasonic wave. .

流路に支柱10がない場合でも、超音波送受信器(14a,
14b)を内蔵した四角形の中空支柱15に対向する壁面に
反射板13を埋め込むことにより流量測定が可能となる。
また、この中空支柱15内をモータ等により超音波送受信
器を上下に可動させるようにすれば、垂直方向の流路断
面の流速が得られ、正確な流量が測定できる。
Even if there is no support 10 in the flow path, the ultrasonic transceiver (14a,
The flow rate can be measured by embedding the reflector 13 on the wall surface facing the rectangular hollow column 15 having the built-in 14b).
In addition, if the ultrasonic transmitter / receiver is moved up and down in the hollow column 15 by a motor or the like, the flow velocity in the vertical flow path cross section can be obtained, and an accurate flow rate can be measured.

[発明の効果] 以上説明したように本発明によれば、正確な流量測定
が困難であった低落差のセミスパイラルケーシングを有
するカプラン水車において、正確な流量測定が可能で、
かつ流量データを用いた水力機械の運転の最適化や監視
が可能となる。
[Effects of the Invention] As described above, according to the present invention, it is possible to accurately measure a flow rate in a Kaplan turbine having a semi-spiral casing with a low head where accurate flow rate measurement has been difficult,
In addition, it is possible to optimize and monitor the operation of the hydraulic machine using the flow rate data.

特に、コンクリートなど土木構造物の一部として構成
される流路の断面形状が、セミスパイラルケーシングの
上流側で四角形であっても、超音波送受信器の位置を移
動して複数箇所でそれぞれ流量測定を行うことで、流路
の全流量を、正確に求めることができる。
In particular, even if the cross-sectional shape of the flow path configured as a part of civil engineering structure such as concrete is square on the upstream side of the semi-spiral casing, move the position of the ultrasonic transceiver and measure the flow rate at each of multiple locations By performing the above, the total flow rate of the flow path can be accurately obtained.

また、超音波送受信器は、流路の壁面或いは支柱の壁
面に設けられた溝に設置される水密構造の中空の装置内
に設けられるため、流速にさらされることがなく、長時
間の使用が可能になり、運転の最適化や監視ができる。
また、超音波送受信器は流路の外にあるため、流路内の
抜き水をすることなく取付、交換が可能となる。
In addition, since the ultrasonic transceiver is provided in a hollow device having a watertight structure installed in a groove provided in a wall surface of a channel or a wall surface of a column, the ultrasonic transceiver is not exposed to a flow velocity and can be used for a long time. It is possible to optimize and monitor operation.
Further, since the ultrasonic transceiver is outside the flow path, it can be mounted and replaced without draining water in the flow path.

また、土木構造物の一部として構成される流路が、支
柱を有するように形成されていた場合でも、支柱と流路
の一方側壁面との間の流量及び支柱と流路の他方側壁面
との間の流量を個別に測定し、これら測定値から前記流
路の全流量を測定することができる。
Further, even when the flow path configured as a part of the civil engineering structure is formed so as to have the support, the flow rate between the support and the one side wall of the flow path and the other side wall of the support and the flow path Can be individually measured, and from these measured values, the total flow rate of the flow path can be measured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す水力機械の平面断面
図、第2図は本発明の他の実施例を示す水力機械の平面
断面図、第3図および第4図は円形の鉄管を有するカプ
ラン水車の構成図、第5図および第6図はセミスパイラ
ルケーシングを有するカプラン水車の構成図である。 1……鉄管、2……ケーシング、3……固定羽根、4…
…案内羽根、5……ランナベーン、6……吸い出し管、
7……放水庭、8……セミスパイラルケーシング、9…
…流路、10……支柱、11a,11b……超音波送受信器、12
a,12b……超音波送受信器、13……反射板、14a,14b……
超音波送受信器、15……中空支柱。
FIG. 1 is a plan sectional view of a hydraulic machine showing one embodiment of the present invention, FIG. 2 is a plan sectional view of a hydraulic machine showing another embodiment of the present invention, and FIGS. 3 and 4 are circular iron tubes. FIG. 5 and FIG. 6 are configuration diagrams of a Kaplan turbine having a semi-spiral casing. 1 ... iron pipe, 2 ... casing, 3 ... fixed blades, 4 ...
... guide vanes, 5 ... runner vanes, 6 ... suction pipes,
7 ... water discharge garden, 8 ... semi-spiral casing, 9 ...
… Channels, 10… posts, 11a, 11b …… ultrasonic transceivers, 12
a, 12b …… Ultrasonic transmitter / receiver, 13 …… Reflector, 14a, 14b ……
Ultrasonic transmitter / receiver, 15 ... Hollow support.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】土木構造物の一部として構成される流路が
形成されている水力機械の流量測定装置において、 水密構造でその内部に流量測定用の超音波送受信器を移
動可能に内蔵した中空の装置を前記流路の壁面に設けた
溝に、また超音波反射板を前記流路の壁面に、それぞれ
流路内に突出しないように対向して設置すると共に、 前記流路の一方側壁面と前記流路の他方側壁面に、対向
するように設置された前記超音波送受信器と前記超音波
反射板とにより、前記流路の流量を測定するようにした ことを特徴とする水力機械の流量測定装置。
1. A flow rate measuring device for a hydraulic machine having a flow path formed as a part of a civil engineering structure, wherein an ultrasonic transmitter / receiver for flow rate measurement is movably built in a watertight structure. A hollow device is installed in a groove provided on the wall surface of the flow path, and an ultrasonic reflection plate is installed on the wall surface of the flow path so as not to protrude into the flow path, respectively, and one side of the flow path A hydraulic machine characterized in that the flow rate of the flow path is measured by the ultrasonic transceiver and the ultrasonic reflection plate provided so as to be opposed to a wall surface and the other side wall surface of the flow path. Flow measuring device.
【請求項2】土木構造物の一部として構成されかつ支柱
を有する流路が形成されている水力機械の流量測定装置
において、 水密構造でその内部に流量測定用の超音波送受信器を移
動可能に内蔵した中空の装置を前記支柱の壁面に設けた
溝に、また超音波反射板を前記流路の壁面に、それぞれ
流路内に突出しないように対向して設置すると共に、 前記支柱と前記流路の一方側壁面及び前記支柱と前記流
路の他方側壁面に、それぞれ対向するようにそれぞれ設
置された前記超音波送受信器と前記超音波反射板とによ
り、前記支柱と前記流路の一方側壁面との間の流量及び
前記支柱と前記流路の他方側壁面との間の流量を測定
し、これら測定値から前記流路の全流量を測定するよう
にした ことを特徴とする水力機械の流量測定装置。
2. A flow rate measuring device for a hydraulic machine which is formed as a part of a civil engineering structure and has a flow path having columns, wherein an ultrasonic transceiver for flow rate measurement can be moved inside the flow rate measuring device in a watertight structure. A hollow device built into the groove provided on the wall surface of the column, and an ultrasonic reflection plate is installed on the wall surface of the flow channel, facing each other so as not to protrude into the flow channel. One of the support and the flow path is provided by the ultrasonic transceiver and the ultrasonic reflection plate, which are respectively installed so as to face each other on the one side wall surface of the flow path and the other side wall of the support and the flow path. A hydraulic machine characterized by measuring a flow rate between a side wall surface and a flow rate between the support and the other side wall surface of the flow path, and measuring a total flow rate of the flow path from these measured values. Flow measuring device.
JP2205144A 1990-08-03 1990-08-03 Flow measurement device for hydraulic machinery Expired - Fee Related JP2944161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2205144A JP2944161B2 (en) 1990-08-03 1990-08-03 Flow measurement device for hydraulic machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2205144A JP2944161B2 (en) 1990-08-03 1990-08-03 Flow measurement device for hydraulic machinery

Publications (2)

Publication Number Publication Date
JPH0491373A JPH0491373A (en) 1992-03-24
JP2944161B2 true JP2944161B2 (en) 1999-08-30

Family

ID=16502153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2205144A Expired - Fee Related JP2944161B2 (en) 1990-08-03 1990-08-03 Flow measurement device for hydraulic machinery

Country Status (1)

Country Link
JP (1) JP2944161B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157759C1 (en) 2001-11-27 2003-01-23 Aloys Wobben Monitoring flow rate sensor involves comparing flow rate indicated by sensor with at least one operating parameter of system operated by medium such as wind power system
JP4567798B1 (en) 2009-06-04 2010-10-20 三菱電線工業株式会社 Sealing structure

Also Published As

Publication number Publication date
JPH0491373A (en) 1992-03-24

Similar Documents

Publication Publication Date Title
CN203672423U (en) Ultrasonic metering system with orifice plate flow meter device
CN206930321U (en) Non-full pipe ultrasonic flowmeter
CN107356297A (en) Plug-in type ultrasonic flowmeter, Flow Measuring System and method
CZ188195A3 (en) Flow meter
JPH054005B2 (en)
JP2011122831A (en) Ultrasonic flow rate measurement method and ultrasonic flow rate measurement device
CN107179106A (en) Plug-in type ultrasonic flowmeter, Flow Measuring System and method
JP2944161B2 (en) Flow measurement device for hydraulic machinery
CN104596601A (en) Ultrasonic flow meter sensor with eight sound channels
CN207147568U (en) Plug-in type ultrasonic flowmeter and Flow Measuring System
CN209745338U (en) Measuring tube for ultrasonic water meter
CN209559195U (en) A kind of automation leveling instrument based on masonry mechanized construction
CN111649791A (en) Device and method for measuring multi-fluid water flow on water surface
CN215261914U (en) Fluid measuring device
CN217132288U (en) Pipe section structure of high-temperature high-pressure ultrasonic flowmeter
JPH05180678A (en) Ultrasonic flow meter and method for measuring flow rate by it
CN117517707A (en) Novel ultrasonic wave reflection type flow velocity measurement device
JP2519437Y2 (en) Sewer pipe flow meter
CN117517706A (en) Processing method for obtaining flow velocity signal by using ultrasonic reflection type flow velocity measuring instrument
CN214951566U (en) Reflecting surface improved ultrasonic flowmeter
CN214843435U (en) Round tube type non-full tube flowmeter
CN216283723U (en) Arc-shaped and broken-line sound path ultrasonic gas meter flow passage device
Lemon et al. Developing guidelines for using the Acoustic Scintillation Flow Meter to measure turbine discharges in short intakes
CN208688600U (en) Ultrasonic flowmeter pipeline section
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees