JP2943303B2 - Image binarization method - Google Patents

Image binarization method

Info

Publication number
JP2943303B2
JP2943303B2 JP2269814A JP26981490A JP2943303B2 JP 2943303 B2 JP2943303 B2 JP 2943303B2 JP 2269814 A JP2269814 A JP 2269814A JP 26981490 A JP26981490 A JP 26981490A JP 2943303 B2 JP2943303 B2 JP 2943303B2
Authority
JP
Japan
Prior art keywords
threshold
image
density
threshold value
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2269814A
Other languages
Japanese (ja)
Other versions
JPH04148293A (en
Inventor
秀哉 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2269814A priority Critical patent/JP2943303B2/en
Publication of JPH04148293A publication Critical patent/JPH04148293A/en
Application granted granted Critical
Publication of JP2943303B2 publication Critical patent/JP2943303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Character Input (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、画像の2値化方式に関し、特にOCRの入力
イメージとしての白黒文字画像の2値化方式に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binarization method of an image, and more particularly, to a binarization method of a monochrome character image as an input image of an OCR.

〔従来の技術〕 従来の画像2値化方式としては、第3図に示すよう
に、画像の全域にわたり角画像の濃度値によるヒストグ
ラムをとり、背景と物体とに表れる頻度の山を区別しよ
うとするため、谷の部分に閾値を設定する方法があり、
この谷部の域値設定の方式としていくつかの例がある。
[Prior Art] As a conventional image binarization method, as shown in FIG. 3, a histogram based on the density value of a corner image is taken over the entire area of an image, and it is attempted to distinguish peaks of frequencies appearing in a background and an object. There is a method to set a threshold value in the valley part,
There are several examples of the method of setting the valley threshold.

簡単な例の代表としては、谷の極小点の濃度値をもっ
て閾値とする方法がある。(例えば、日径メニカル198
4.7.30.P−205) また、複雑な例として、背景と物体の頻度の山を確率
分布とみなし、2つのクラスに分離するクラスタリング
の問題として捕らえ、閾値を順次仮定しながら各閾値に
おけるクラス間分散を算出し、これを最大にする閾値を
最適点とする方法がある。(判別分析による方法・電子
技術総合研究所研究報告書818号「パターン認識におけ
る特微抽出の数理的研究」P−157) これら従来の方法では、背景と物体とを分離する閾値
を濃度分布の谷間に設定しようとするため、背景と物体
が両方共に適度な分散を持つ場合に分離性の良い閾値決
定がなされる。
As a representative of a simple example, there is a method in which a density value of a minimum point of a valley is used as a threshold value. (For example, Daily Diameter Medical 198
4.7.30.P-205) Also, as a complicated example, the peak of the frequency of the background and the object is regarded as a probability distribution, and it is considered as a clustering problem that separates into two classes. There is a method of calculating an inter-variance and setting a threshold value that maximizes the inter-variance as an optimum point. (Method by discriminant analysis, Electrotechnical Research Institute, Research Report No. 818, "Mathematical Research on Feature Extraction in Pattern Recognition", P-157) Since an attempt is made to set a valley, a threshold value with good separability is determined when both the background and the object have an appropriate variance.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前述した従来の画像の2値化方式では、次に述べるよ
うにOCR(文字認識装置)にとっては不都合な点があ
る。
The conventional image binarization method described above has disadvantages for an OCR (character recognition device) as described below.

まずOCRにおいては、通常OCR用紙と呼ばれる特殊な上
質紙や一般の上質紙を使用するため、背景濃度の分散は
もとより少ないと考えられ、また背景を白色として光学
系の基準レべルとすることが多く、背景の濃度分散を算
出しにくくなっている。さらに、ドロップアウトカラー
によって文字記入枠を予め印刷した用紙を用いることが
多いため、通常はこのドロップアウトカラーの濃度より
高い濃度に基準レベルを設定することが多い。
First, in OCR, special high-quality paper, which is usually called OCR paper, or general high-quality paper is used.Therefore, the variance in background density is considered to be minimal, and the background should be white and used as the reference level for optical systems. And it is difficult to calculate the density variance of the background. Further, since a sheet on which a character entry frame is printed in advance using a dropout color is often used, the reference level is usually set to a density higher than the density of the dropout color.

従って、OCRにおいて背景と文字との分離の問題より
も、むしろ文字の濃度分布範囲の中での最適閾値の決定
手段が問題である。すなわち、閾値を下げすぎると文字
画像の複雑に入り組んだ部分がつぶれ、反対に上げすぎ
ると文字画像の薄い部分が欠けてしまうことから、この
中間レベルを最適な閾値として決定する手段が必要であ
る。
Therefore, in OCR, rather than the problem of separation between the background and the character, the problem is how to determine the optimum threshold value in the density distribution range of the character. In other words, if the threshold is too low, the complicated part of the character image will be destroyed, and if it is too high, the thin part of the character image will be lost. Therefore, means for determining this intermediate level as the optimum threshold is necessary. .

この問題に対し、従来の画像の2値化方式では文字の
つぶれや欠けを意識しないため、背景と分離する最適閾
値として前記の中間レベルより低い点を選ぶ傾向があ
る。また、従来の後者の方式では各閾値毎にクラス間分
散を算出するのに要する計算量が膨大となるので、高速
に伝票を処理するためのOCRには不向きであった。
In order to solve this problem, the conventional image binarization method does not consider the collapse or lack of characters, and therefore tends to select a point lower than the above-mentioned intermediate level as the optimum threshold value for separating from the background. Further, the conventional latter method is not suitable for OCR for processing slips at high speed because the amount of calculation required to calculate the inter-class variance for each threshold becomes enormous.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の画像の2値化方式は、予め画像の濃淡の指標
となる基準値として定めた閾値である基底閾値により画
像を2値化する基底閾値2値化手段と、前記基底閾値以
上の濃度を持つ画像である黒点の数をカウントする計数
手段と、前記黒点の濃度を累計する累計手段と、を有
し、前記計数手段により得た計数値と前記累計手段との
比率から目標とする閾値を決定する閾値決定手段と、こ
の閾値決定手段により決定した閾値により再度画像を2
値化する決定閾値2値化手段とを有している。
The image binarization method according to the present invention includes: a base threshold binarizing means for binarizing an image by a base threshold which is a threshold previously determined as a reference value serving as an index of image density; Counting means for counting the number of black spots which are images having, and accumulating means for accumulating the density of the black spots, and a target threshold value based on a ratio between the count value obtained by the counting means and the accumulating means. And a threshold value determined by the threshold value determining means.
And a decision threshold binarizing means for making a value.

〔解決手段の原理と作用〕[Principle and operation of the solution]

次に本発明の画像の2値化方式の原理について述べ
る。
Next, the principle of the image binarization method of the present invention will be described.

前述のようにOCRにおいてはドロップアウトカラーを
背景とみなす濃度レベルを基準とするので、濃度分布の
観測結果は第4図のようになる。ここで、ある閾値を設
定したときに閾値以上となる点を黒点と呼ぶと、黒点数
は次式となり、閾値と黒点数の関係は第5図にように、
第4図を積分した形となる。
As described above, since the OCR is based on the density level at which the dropout color is regarded as the background, the observation result of the density distribution is as shown in FIG. Here, when a point that is equal to or larger than the threshold when a certain threshold is set is called a black point, the number of black points is represented by the following equation, and the relationship between the threshold and the number of black points is as shown in FIG.
FIG. 4 is an integrated form.

(黒点数)=∫(頻度) (1) 第5図において、A点は、文字イメージが非常に濃く
表れ、複雑な形の文字ではつぶれが生じている点と考え
られる。また、C点は文字イメージが薄くなり、欠けや
かすれが生じている点と考えられる。従って、文字つぶ
れと欠けの目出たないB点が目標とする閾値である。
(Number of black dots) = ∫ (frequency) (1) In FIG. 5, point A is considered to be a point where the character image appears very darkly and a complicated shape character is broken. Point C is considered to be a point where the character image becomes thin and chipping or blurring occurs. Therefore, the point B at which no character collapse or chipping appears is the target threshold.

ところで文字画像は、文字の複雑度や太さなどに千差
万別の差異があるため正規化する必要がある。そこで前
述の基準レベル付近に基底閾値(St)を定め(基準レベ
ルに等しくても構わない)、黒点数について正規化する
と、第6図に閾値と黒点比率の関係として示すように、
文字種によるバラツキは閾値方向のみの問題として捕ら
えることができる。
By the way, character images need to be normalized because there are various differences in the complexity and thickness of the characters. Then, a base threshold (St) is determined near the above-mentioned reference level (it may be equal to the reference level), and the number of black points is normalized. As shown in FIG. 6, the relationship between the threshold and the black point ratio is as follows.
The variation due to the character type can be regarded as a problem only in the threshold direction.

ここで、 (黒点比率)=(黒点数)/(基底閾値での黒点数) (2) 第6図において、Sa〜Sd点は各々のケースa〜dにお
ける最適閾値を示す。ここで最適閾値は、基底閾値St以
上の閾値領域における黒点比率の面積(第6図中の斜線
部面積)と相関があり、次式によって決定されると考え
られる。
Here, (black point ratio) = (number of black points) / (number of black points at base threshold) (2) In FIG. 6, points Sa to Sd indicate optimal thresholds in each of cases a to d. Here, the optimum threshold value has a correlation with the area of the black point ratio (the shaded area in FIG. 6) in the threshold region equal to or larger than the base threshold value St, and is considered to be determined by the following equation.

(最適閾値)=f(D) (3) 但し、Dは前記の黒点比率の面積で、 D=∫(黒点比率) =∫∫(頻度)/(基底閾値での黒点数) (4) である。ここで、 ∫(頻度)=(濃度)−(基底閾値) (5) であることに着目すると、 D=∫((濃度)−(基底閾値))/(基底閾値での
黒点数) (6) 以上述べてきた本方法の原理と、前述した構成手段と
のつながりは次のようになる。
(Optimum threshold) = f (D) (3) where D is the area of the black point ratio, and D = ∫ (black point ratio) = ∫∫ (frequency) / (number of black points at base threshold) (4) is there. Here, when attention is paid to ∫ (frequency) = (density) − (base threshold) (5), D = ∫ ((density) − (base threshold)) / (the number of black spots at the base threshold) (6) The connection between the principle of the method described above and the constituent means described above is as follows.

前述の基底閾値2値化手段は、各画素の濃度が基底閾
値より大きいか否かを判定する手段である。黒点計数手
段は、基底閾値より濃度の大きい画素数、すなわち基底
閾値での黒点数を求める手段である。また、濃度累積手
段は、(6)式の右辺分子である∫((濃度)−(基底
閾値))を算出する手段である。最後に、閾値決定手段
は、(6)式の計算を行いDを求め、(3)式の関係式
から最適閾値を決定する手段である。
The above-described base threshold binarization means is a means for determining whether or not the density of each pixel is higher than the base threshold. The black point counting means is means for calculating the number of pixels having a density higher than the base threshold, that is, the number of black points at the base threshold. Further, the concentration accumulating means is means for calculating 分子 ((concentration) − (base threshold value)) which is a numerator on the right side of the equation (6). Finally, the threshold value determining means is a means for calculating D by calculating the expression (6) and determining an optimum threshold value from the relational expression of the expression (3).

〔実施例〕〔Example〕

次に、本発明について、図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例の文字画像2値化方式の
ブロック図で、データの流れを図示している。光学系ス
キャナにより取り込まれた紙面の画像は多値画像記憶手
段1に蓄積されている。
FIG. 1 is a block diagram of a character image binarization system according to one embodiment of the present invention, and illustrates the flow of data. The image on the paper surface captured by the optical scanner is stored in the multi-value image storage unit 1.

第一段階として、多値画像記憶手段1から各画素の濃
度値を読みだし、基底閾値2値化手段2により黒点と判
断した画素の数を黒点係数手段3により求める。と同時
に、黒点と判断された画素について基底閾値を基準とす
る濃度値の総計を濃度累積手段4により求める。次に、
閾値決定手段5によって、濃度累積手段4で求めた濃度
累積値と黒点係数手段3で求めた黒点数との比率を算出
し、これから閾値を決定する。
As a first step, the density value of each pixel is read from the multi-valued image storage means 1, and the number of pixels determined as a black point by the base threshold binarization means 2 is obtained by the black point coefficient means 3. At the same time, the total of the density values based on the base threshold value for the pixel determined as the black point is obtained by the density accumulation means 4. next,
The threshold value determining means 5 calculates the ratio between the density accumulation value obtained by the density accumulating means 4 and the number of black spots obtained by the black point coefficient means 3, and determines the threshold value from this.

第2段階として、閾値決定手段5で決定した閾値にて
多値画像を2値化する決定閾値2値化手段6により、目
的とする2値画像を2値画像記憶手段7へ引き渡すこと
で最適2値化を終了する。
In the second stage, the target binary image is optimally transferred to the binary image storage unit 7 by the decision threshold binarization unit 6 for binarizing the multi-valued image with the threshold value determined by the threshold value determination unit 5. The binarization ends.

以上の説明その中で、濃度累積値と黒点数との比率か
ら閾値を決定する手法は特に言明していないが、最も簡
単な手法として1次近似することが考えられる。すなわ
ち、濃度累積値と黒点数との比率をDとし、最適閾値を
Sとすると S=αD+β (α,βは定数) (8) と近似する手法である。実際に、Dは前述のように第5
図における斜線部の面積を意味するので、SとDが1次
相関の関係に近いことは容易に推定される。この他の手
法として一般にn次近似や不連続直線近似、またはその
他の関数に近似することが考えられているが、実際の装
置に実現する場合はその装置の光学的特性により上記手
法を選べばよい。
In the above description, the method of determining the threshold value from the ratio between the cumulative density value and the number of black spots is not particularly stated, but a first-order approximation is considered as the simplest method. That is, assuming that the ratio between the cumulative density value and the number of black spots is D, and the optimal threshold is S, S = αD + β (α and β are constants) (8). In fact, D is the fifth as described above.
Since it means the area of the hatched portion in the figure, it is easily estimated that S and D are close to the linear correlation. As another method, it is generally considered to approximate to an nth-order approximation, a discontinuous linear approximation, or another function. Good.

さて次に、第2図に第1図に示す実施例を回路の要素
で構成された図で示す。構成要素は多値画像メモリ8、
基底閾値比較回路9、黒点数カウンタ10、濃度加算器1
1、閾値決定論理回路12、決定閾値比較回路13、2値画
像メモリ14である。これら構成要素の役割はそれぞれ第
1図における1〜7のブロックと同等である。第1段階
で閾値決定論理回路12までを起動し閾値を決定し、第2
段階で決定閾値比較回路13を起動いて目的とする2値画
像を生成するよう各回路を制御する。これらの構成要素
は全て既存の集積回路技術で実現されているものを利用
して実現することができる。
Next, FIG. 2 shows the embodiment shown in FIG. 1 in a diagram composed of circuit elements. The components are a multivalued image memory 8,
Base threshold comparing circuit 9, black point counter 10, density adder 1
1, a threshold decision logic circuit 12, a decision threshold comparison circuit 13, and a binary image memory 14. The role of these components is equivalent to the blocks 1 to 7 in FIG. 1, respectively. In the first stage, the operation up to the threshold determination logic circuit 12 is started and the threshold is determined.
At each stage, the decision threshold value comparison circuit 13 is activated to control each circuit so as to generate a target binary image. All of these components can be realized by using those realized by existing integrated circuit technology.

ここで、濃度加算器11は(濃度−基底閾値)の値を加
算するよう工夫する必要があるが、次のようにする方法
もある。すなわち光学系からのイメージを多値画像メモ
リ8に格納する際に定めた基準レベルを超過する濃度量
を改めて濃度として扱い、基底閾値を基準レベル(つま
りゼロ)と設定する。従って濃度加算器11は単純に新た
な濃度を加算するだけでよく、回路を簡単化できる。
Here, it is necessary to devise the density adder 11 to add the value of (density-base threshold), but there is also a method as follows. That is, the density amount exceeding the reference level determined when the image from the optical system is stored in the multi-valued image memory 8 is treated as the density again, and the base threshold value is set to the reference level (that is, zero). Therefore, the density adder 11 only needs to simply add a new density, and the circuit can be simplified.

さて、本実施例の文字画像2値化方式は、対象を文字
に代表して記述してきたが、本発明は、図形パターン等
の線画像を一般に対して適用することが可能であること
を言明しておく。
Now, in the character image binarization method of the present embodiment, an object has been described as representing characters, but it is stated that the present invention can be applied to general line images such as graphic patterns. Keep it.

ここでさらに、本発明の2値化方式と従来の閾値決定
方式とを併用した実施例を第7図に示す。光学的スキャ
ナ15によって入力した画像に対し、従来の閾値決定手段
16により背景と物体を分離する閾値を求め、この閾値を
濃度ゼロとするように濃度補正した多値画像を多値画像
記憶装置17に引き渡す。次に第1図に示す2値化方式に
よる2値化手段18により、多値画像を2値化して2値画
像記憶装置19に引き渡す。
Here, FIG. 7 shows an embodiment in which both the binarization method of the present invention and the conventional threshold value determination method are used. Conventional threshold determination means for the image input by the optical scanner 15
A threshold value for separating the background and the object is determined by 16, and the multivalued image whose density has been corrected so that the threshold value becomes zero is transferred to the multivalued image storage device 17. Next, the multi-valued image is binarized by the binarizing means 18 based on the binarizing method shown in FIG.

本発明の2値化方式は文字などの物体画像の濃度分布
の中で最適閾値を決定する方式であり、物体と背景との
分離に最適な閾値を決定しようとする従来の方式とは相
反するものではない。従って、物体と背景との分離に従
来方式を適用し、分離した物体に対して本発明の2値化
方式を適用する第7図の併用方式が考えられる。前に述
べたOCRの光学系が予めドロップアウトカラーを背景と
見なすため設定した基準レベルは、すなわち物体と背景
を分離する閾値を決めたことと同値である。
The binarization method of the present invention determines an optimal threshold value in the density distribution of an image of an object such as a character, and is inconsistent with a conventional method that determines an optimal threshold value for separating an object from a background. Not something. Accordingly, a combined method shown in FIG. 7 in which the conventional method is applied to the separation of the object and the background and the binarization method of the present invention is applied to the separated object is considered. The reference level set by the OCR optical system described above in order to regard the dropout color as the background is the same as that in which the threshold for separating the object and the background is determined.

〔発明の効果〕〔The invention's effect〕

以上説明してきたように、本発明の文字画像2値化方
式は、予め基底閾値を定め、基底閾値で2値化した際に
黒点となる画素数と黒点の濃度累積値とを求め、これら
の比率計算をすることにより、文字画像のつぶれと欠け
をなくす最適な閾値を決定することができる。従って、
結果的に文字認識の認識部の負担を軽くするほか、認識
精度を上げる効果がある。
As described above, in the character image binarization method of the present invention, a base threshold value is determined in advance, and the number of pixels that become a black point when the binarization is performed using the base threshold value and the black point density accumulation value are obtained. By performing the ratio calculation, it is possible to determine an optimum threshold value for eliminating the collapse and lack of the character image. Therefore,
As a result, the burden on the recognition unit for character recognition is reduced, and the recognition accuracy is increased.

また、実施例で述べたように論理回路による実現も容
易で、極めて高速に最適閾値を決定できるという効果が
ある。
Further, as described in the embodiment, it is easy to realize by a logic circuit, and there is an effect that the optimum threshold can be determined extremely quickly.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図はそれぞれ本発明の一実施例の画像
2値化方式のブロック図および回路図、第3図は画像の
濃度と頻度の相関図、第4図は基準レベル以上の文字画
像の濃度と頻度の相関図、第5図は文字画像の閾値と黒
点数の相関図、第6図は種々の文字画像の閾値と黒点比
率との相関図、第7図は従来の閾値決定方式と併用した
本発明の他の実施例の画像2値化回路のブロック図であ
る。 1……多値画像記憶手段、2……基底閾値2値化手段、
3……黒点計数手段、4……濃度累積手段、5……閾値
決定手段、6……決定閾値2値化手段、7……2値画像
記憶手段、8……多値画像メモリ、9……基底閾値比較
回路、10……黒点数カウンタ、11……濃度加算器、12…
…閾値決定論理回路、13……決定閾値比較回路、14……
2値画像メモリ、15……光学的スキャナ、16……従来の
閾値決定手段、17……多値画像記憶装置、18……2値化
手段、19……2値画像記憶装置。
1 and 2 are a block diagram and a circuit diagram, respectively, of an image binarization system according to an embodiment of the present invention. FIG. 3 is a correlation diagram between image density and frequency. FIG. FIG. 5 is a correlation diagram between the threshold value of a character image and the number of black dots, FIG. 6 is a correlation diagram between the threshold values of various character images and the black point ratio, and FIG. 7 is a conventional threshold value determination. FIG. 11 is a block diagram of an image binarization circuit according to another embodiment of the present invention, which is used in combination with a system. 1... Multi-valued image storage means, 2...
3 black point counting means 4 density accumulation means 5 threshold value determination means 6 decision threshold binarization means 7 binary image storage means 8 multi-value image memory 9 ... Base threshold comparison circuit, 10 ... Spot number counter, 11 ... Density adder, 12 ...
… Threshold decision logic circuit, 13… decision threshold comparison circuit, 14…
Binary image memory, 15: Optical scanner, 16: Conventional threshold value determining means, 17: Multi-value image storage device, 18: Binarization means, 19: Binary image storage device.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G06K 9/18 - 9/44 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G06K 9/18-9/44

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予め画像の濃淡の指標となる基準値として
定めた閾値である基底閾値により画像を2値化する基底
閾値2値化手段と、前記基底閾値以上の濃度を持つ画素
である黒点の数をカウントする計数手段と、前記黒点の
濃度を累計する累計手段と、を有し、前記計数手段によ
り得た計数値と前記累計手段との比率から目標とする閾
値を決定する閾値決定手段と、この閾値決定手段により
決定した閾値により再度画像を2値化する決定閾値2値
化手段とを含むことを特徴とする画像の2値化方式。
1. A base threshold binarizing means for binarizing an image with a base threshold which is a threshold previously determined as a reference value serving as an index of shading of an image, and a black point as a pixel having a density equal to or higher than the base threshold Counting means for counting the number of black dots, and accumulating means for accumulating the density of the black spot, and threshold value determining means for determining a target threshold value from a ratio between the count value obtained by the counting means and the accumulating means. And a decision threshold binarizing means for binarizing the image again with the threshold value determined by the threshold value determining means.
JP2269814A 1990-10-08 1990-10-08 Image binarization method Expired - Fee Related JP2943303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269814A JP2943303B2 (en) 1990-10-08 1990-10-08 Image binarization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269814A JP2943303B2 (en) 1990-10-08 1990-10-08 Image binarization method

Publications (2)

Publication Number Publication Date
JPH04148293A JPH04148293A (en) 1992-05-21
JP2943303B2 true JP2943303B2 (en) 1999-08-30

Family

ID=17477547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269814A Expired - Fee Related JP2943303B2 (en) 1990-10-08 1990-10-08 Image binarization method

Country Status (1)

Country Link
JP (1) JP2943303B2 (en)

Also Published As

Publication number Publication date
JPH04148293A (en) 1992-05-21

Similar Documents

Publication Publication Date Title
US5784500A (en) Image binarization apparatus and method of it
JP3904840B2 (en) Ruled line extraction device for extracting ruled lines from multi-valued images
JP2940936B2 (en) Tablespace identification method
EP1310912A2 (en) Image processing method, apparatus and system
US20070154112A1 (en) Image processing apparatus, image processing method, and computer program
Shridhar et al. Recognition of license plate images: issues and perspectives
CN109815762B (en) Method and storage medium for remotely identifying two-dimensional code
WO1991017519A1 (en) Row-by-row segmentation and thresholding for optical character recognition
US10896312B2 (en) Method for processing images of fingerprints
JPH08305795A (en) Character recognizing method
JP2943303B2 (en) Image binarization method
JP4409713B2 (en) Document image recognition apparatus and recording medium
JPH0863549A (en) Vehicle number recognition device, binarization device and picture processor
JP2548386B2 (en) License plate usage code recognition method
Gabarra et al. Combining global and local threshold to binarize document of images
JPH10302074A (en) Device for detecting position of number plate
JP3422896B2 (en) Image recognition method and apparatus
JP2548385B2 (en) License plate code recognition method
JPH0916715A (en) Character recognition system and method therefor
JP3142950B2 (en) Line segment recognition method
JPH09231376A (en) Number plate detecting system
Anarim et al. Decision based directional edge detector
Ariki et al. Telop and flip frame detection and character extraction from TV news articles
JPH05166009A (en) Method and device for segmentation/recognition of character
JP3756660B2 (en) Image recognition method, apparatus and recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees