JP2939886B2 - Manufacturing method of lightweight ceramic body molding - Google Patents

Manufacturing method of lightweight ceramic body molding

Info

Publication number
JP2939886B2
JP2939886B2 JP63284180A JP28418088A JP2939886B2 JP 2939886 B2 JP2939886 B2 JP 2939886B2 JP 63284180 A JP63284180 A JP 63284180A JP 28418088 A JP28418088 A JP 28418088A JP 2939886 B2 JP2939886 B2 JP 2939886B2
Authority
JP
Japan
Prior art keywords
copolymer
emulsion
weight
parts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63284180A
Other languages
Japanese (ja)
Other versions
JPH02133380A (en
Inventor
直行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP63284180A priority Critical patent/JP2939886B2/en
Publication of JPH02133380A publication Critical patent/JPH02133380A/en
Application granted granted Critical
Publication of JP2939886B2 publication Critical patent/JP2939886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】[Industrial applications]

本発明は、天井材、壁材、タイル等の建材、または玩
具として有用な軽量陶磁器素地成型体の製造方法に関す
る。
The present invention relates to a method for producing a lightweight ceramic body molded body useful as a building material such as a ceiling material, a wall material, a tile, or a toy.

【従来の技術】[Prior art]

軽量建材としては軽量コンクリートが知られており、
この軽量コンクリートは断熱性に優れているものであ
る。一方、軽量の陶磁器を製造する場合、陶磁器用素地
粉末に樹脂発泡体小片と水を混合し、これを土練りして
成形した陶磁器生素地を焼成しても、樹脂が燃焼して逸
散した有孔陶磁器しか得られない(特開昭62−162665号
公報)。 また、陶磁器用素地粉末に、パーライトやひる石等の
無機軽量骨材と水を混合し、これを土練りし、成形した
陶磁器生素地を焼成して軽量陶磁器を得ることも考えら
れるが、生地が一定した陶磁器を得ることができない。
Lightweight concrete is known as a lightweight building material,
This lightweight concrete is excellent in heat insulation. On the other hand, in the case of manufacturing a lightweight ceramic, the resin was burned and dissipated by mixing a resin foam small piece and water with the ceramic base powder, kneading the clay, and firing the molded ceramic base. Only perforated porcelain can be obtained (JP-A-62-162665). It is also conceivable to obtain a lightweight ceramic by mixing an inorganic lightweight aggregate such as pearlite and vermiculite and water with the ceramic base powder, kneading the mixture, and firing the molded green ceramic base. Can't get a consistent pottery.

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明者は、樹脂発泡体小片に代えて樹脂水性エマル
ジョンを用い軽量陶磁器を製造しようと試みたところ、
比重が1.8以上のものしか得られなかった。これは、陶
磁器生素地が形状を十分に保つ強度であるためには、陶
磁器用素地粉末に対するエマルジョン配合量、言い換え
れば水の使用量が制限されるからである。 また、本発明者は、陶磁器用素地粉末(陶土)に樹脂
水性エマルジョンを配合してスラリーを得、このスラリ
ーを凝固させて含水成形物を得、これを乾燥して軽量陶
磁器生素地を製造しようとしたところ、添付図面の第2
図に示すように、樹脂エマルジョンの比重(およそ1.0
2)と陶磁器用素地粉末の比重(2.1〜4.2)の違いによ
り、樹脂エマルジョンの上層1と水槽(中間層)2及び
沈降した陶磁器用素地粉末の下層3の三層に分離してし
まった。 そこで、本発明の目的は、比重が1.5以下、好ましく
は1以下の軽量陶磁器素地成型体の製造方法を提供する
ことにある。本発明においては均一な混合スラリーを得
るために、特定のアニオン性樹脂水性エマルジョンを用
い、かつ、エマルジョン破壊剤を陶土、水、アニオン性
樹脂水性エマルジョンの混合スラリーに加えてエマルジ
ョンを破壊し、陶土粉末上にエマルジョン樹脂粒子を凝
集・付着させて含水成形体を得、これを脱型、乾燥する
ことにより比重が1.5以下、好ましくは1以下の軽量陶
磁器素地成型体を得るものである。
The present inventor tried to produce lightweight ceramics using a resin aqueous emulsion instead of resin foam pieces,
Only those with a specific gravity of 1.8 or more were obtained. This is because, in order for the ceramic green body to have sufficient strength to maintain its shape, the amount of the emulsion to be mixed with the ceramic body powder, in other words, the amount of water used is limited. Further, the inventor of the present invention intends to produce a lightweight ceramic green body by mixing a resin aqueous emulsion with a ceramic body powder (porcelain clay) to obtain a slurry, coagulating the slurry to obtain a water-containing molded product, and drying this. And the second of the attached drawings
As shown in the figure, the specific gravity of the resin emulsion (approximately 1.0
Due to the difference in specific gravity (2.1 to 4.2) between 2) and the ceramic body powder, the resin emulsion was separated into three layers: an upper layer 1, a water tank (intermediate layer) 2, and a lower layer 3 of the sedimented ceramic body powder. Accordingly, an object of the present invention is to provide a method for producing a lightweight ceramic body molded body having a specific gravity of 1.5 or less, preferably 1 or less. In the present invention, in order to obtain a uniform mixed slurry, a specific anionic resin aqueous emulsion is used, and an emulsion breaking agent is added to a mixed slurry of porcelain clay, water and an anionic resin aqueous emulsion to break the emulsion, A water-containing molded body is obtained by aggregating and adhering the emulsion resin particles onto the powder, and the molded body is removed and dried to obtain a lightweight ceramic body molded body having a specific gravity of 1.5 or less, preferably 1 or less.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本発明の特徴とする軽量
陶磁器素地成型体の製造方法は、陶磁器用素地粉末
(A)を100重量部、アニオン性共重合体水性エマルジ
ョン(B)を共重合体の固形分量で3〜50重量部、水中
でイオンを発生する無機化合物(C)を15〜150重量
部、水(D)を適量含有する混合液を、該混合液の液温
を(B)成分の水性エマルジョン中の共重合体のガラス
転移点(Tg)よりも高く、該転移点+45℃以下の温度に
保って、(C)成分の化合物より派生したイオンとアニ
オン性界面活性剤とによりキレートを形成し、このキレ
ートの形成により(B)成分のエマルジョン共重合体の
粒子を凝集させて、粉末(A)と水を保持した成型体を
作り、次いで、該成型体を乾燥するものである。 次ぎに、上記構成における各成分及び軽量陶磁器素地
成型体の製造について説明する。 [陶磁器用素地粉末] (A)成分の陶磁器用素地粉末、いわゆる陶土として
はカオリン族、モンモリロナイト族、雲母族滑石、パイ
ロフィライト、ジャモン石、泥石族等の粘土類、けい
石、ろう石、素地粉末等の非可塑性原料等の一般陶磁器
素地の他、ガラスフリット、アルミナ質、窒化珪素質、
マグネシア質、ジルコニア質、ベリリア質、トリア質、
スピネル質、コージェライト、リシャ質、鉄カンラン−
ジャモン岩、ステアタイト、酸化チタン、チタン酸バリ
ウム、セルシャン、フェライト等の特殊陶磁器素地が用
いられる。 [アニオン性共重合体水性エマルジョン] (B)成分のアニオン性共重合体水性エマルジョンは
カルシウムイオンまたはマグネシウムイオンによりキレ
ート化合物を作るアニオン性界面活性剤を用いて、ビニ
ル単量体を乳化重合して得られる共重合体水性エマルジ
ョンであって、該共重合体中のカルボキシル基濃度が0
〜0.3重量%であるアニオン性共重合耐水性エマルジョ
ンである。 但し、共重合体100重量部に対するアニオン性界面活
性剤の使用量は固型分量で0.6〜2.5重量部である。 ここで、共重合体中のカルボキシル基濃度は共重合体
を形成したビニルモノマーの総重量に対し、その共重合
体に占めるα,β−不飽和酸に基づく構成ユニットの重
量%をもって示す。α,β−不飽和酸としては、アクリ
ル酸、メタクリル酸、フマル酸、イタコン酸、クロトン
酸、無水マレイン酸等が用いられる。α,β−不飽和酸
がアクリル酸、イタコン酸、フマル酸、無水マレイン酸
のように共重合体粒子の表面に多くのカルボキシル基が
存在する共重合体を与えるものであるときは、カルボキ
シル基濃度が0.1重量%未満となるように、また、メタ
クリル酸のように共重合体粒子の内部に多くのカルボキ
シル基が存在するような共重合体を与えるときは、カル
ボキシル基濃度が0.3重量%以下となるように乳化重合
を用いるα,β−不飽和酸の使用量を加減する。 (C)成分のカルシウム化合物又はマグネシウム化合
物より発生するCa++、Mg++はアニオン性界面活性剤と反
応してキレート化合物を生成するが、カルボキシル基を
有するエマルジョンの共重合体粒子も、これらイオンを
捕捉してキレートを形成する。したがって、前記アニオ
ン性界面活性剤とのキレート反応を遅らせたり、(c)
成分が石膏のときは、石膏の水和硬化反応をも遅らす原
因となるので、(B)成分分のアニオン性共重合体水性
エマルジョンの樹脂は、カルボキシル基が粒子表面に出
来るかぎり存在しないか、酸基を有していないものであ
ることが好ましい。ヤむを得ず、ビニル単量体としてア
クリル酸、メタクリル酸、イタコン酸、フマル酸、無水
マレイン酸、クロトン酸等のα,β−不飽和カルボン酸
を用いるときは、共重合体中のカルボキシル基濃度が前
述の濃度以下となるように用いる。この濃度を超える
と、CaやMgが水性エマルジョンの樹脂に食われる量が多
く、混合スラリーの凝固に要する時間が長くなる。 (C)成分より発生するCa++やMg++、または(A)成
分中のCa++やMg++は、乳化剤のアンモニアイオンやK+
Na+、Li+等の金属イオンとイオン交換しキレート化によ
り、例えば乳化剤は親水性の低下した有機スルホン酸カ
ルシウム塩又は有機カルボン酸カルシウム塩となり、そ
の界面活性能力を下げてエマルジョンが破壊され、共重
合体粒子は凝集、凝固し、(A)成分の陶磁器用素地粉
末等の固体粉末等に付着し、含水陶磁器生素地成型体を
形成する。かかるアニオン性の乳化剤としては、ラウリ
ン酸スルホン酸ソーダー、ステアリン酸ソーダー、ポリ
オキシエチレンアルキルエーテル硫酸エステルソーダ
ー、ポリオキシエチレンアルキルフエニルエーテルスル
ホン酸ソーダー、アルカンスルホン酸ソーダー、アルキ
ルベンゼンスルホン酸ソーダー等の有機スルホン酸ソー
ダー塩;脂肪族石鹸、脂肪酸サルコシド、ロジン酸石鹸
等の脂肪酸金属塩;これらのNa+の代わりにK+、NH4 +
アルカノールアミンイオンを有する硫酸エステル型アニ
オン性界面活性剤もしくは脂肪酸誘導体が利用できる。 これらアニオン性乳化剤は、得られる水性エマルジョ
ンの共重合体100重量部に対し、固型分量で0.6〜2.5重
量部の割合で用いる。これより多い場合、乳化剤の破壊
作用が小さく期待される共重合体粒子の凝集が部分的又
は全く生じなくなると共に、石膏の水和硬化反応も阻害
される。また、少ない場合は共重合体水性エマルジョン
の重合安定性、貯蔵安定性が低く、かつ共重合体粒子の
凝集が速く、陶磁器用素地粉末との混和安定性に問題が
ある。即ち、0.6重量部未満では共重合体粒子の凝集物
の発生や凝集の速度が速く、陶磁器用素地粉末と共重合
体水性エマルジョンと水の均一混合した陶磁器用素地成
型体を得ることができない。また、その前にエマルジョ
ンの乳化重合も安定して行なうことができない。2.5重
量部を超えると、エマルジョンの共重合体粒子の凝集、
凝固に時間を要すると共に、エマルジョンの共重合体の
構成部分によっては、第3図に示すように共重合体水性
エマルジョンの一部が含水陶磁器生素地成型体の下層11
と分離した上層12を形成し、アニオン性共重合体水性エ
マルジョンが有効に利用されない。アニオン性乳化剤と
一緒にポリオキシエチレンアルキルエーテル、ポリオキ
シエチレンアルキルフェニルエーテル、ポリオキシエチ
レン化ヒマシ油等のノニオン性界面活性剤を併用しても
よい。 このノニオン乳化剤は、Ca++、Mg++等による凝集作用
を受けず、共重合樹脂粒子をCa++、Mg++より守り安定化
させる力を有する。また、樹脂エマルジョンの重合時に
安定で効果的で、かつ、陶磁器用素地粉末及び(C)成
分の無機化合物の分散剤として有効である。しかしなが
ら、2%を超えて用いた場合、樹脂エマルジョンの一部
を凝集し得なくなるため、出来るかぎり少ないほうがよ
い。このため、(B)成分の共重合体粒子に対して0〜
2%の範囲で重合時または、重合後にノニオン乳化剤を
配合するのが好ましい。アニオン性共重合体を与えるビ
ニル単量体としては、アクリル酸アルキルエステル、メ
タクリル酸アルキルエステル(これらアルキル基の炭素
数は1〜8);2−ヒドロキシエチルアクリレート、2−
ヒドロキシプロピルアクリレート及びこれらのメタクリ
レート相当物;アクリルアミド、メタクリルアミド、塩
化ビニル、塩化ビニリデン、エチレン、アクリロニトリ
ル、メタクリル酸メチル等のエステル類、酢酸ビニル、
スチレン、アクリル酸、メタクリル酸、イタコン酸、フ
マル酸、クロトン酸、無水マレイン酸等が利用でき、こ
れらビニル単量体の2種以上を選択し、得られる水性エ
マルジョンの共重合体粒子のガラス転移点が好ましくは
−30℃〜+30℃となるようにすると共に、共重合体中の
カルボキシル基の量が前記した量の範囲となるようにビ
ニル単量体を選択する。なお、ビニルスルホン酸ナトリ
ウム等の如く反応性乳化剤と呼ばれるものは、アニオン
であればアニオン性乳化剤として取扱う。そして、乳化
重合は通常の方法で行なわれ、得られる共重合体水性エ
マルジョン中の樹脂固形分濃度は20〜65重量%、共重合
体粒子の粒径は0.03〜3ミクロンが一般である。 このアニオン性共重合体水性エマルジョンの使用量
は、共重合体を構成するビニル単量体の種類により大き
く左右されるが、一般に(A)成分の陶磁器用素地粉末
100重量部に対し、共重合体の固形分量で3〜50重量部
である。3重量部未満では、比重が1.5以下の軽量陶磁
器素地成型体を得ることができないし、また、混合スラ
リーの安定性に欠ける。50重量部を超えると、エマルジ
ョン樹脂を凝集させるに必要な(C)成分の無機化合物
の使用量が多量となり、得られる製品の陶磁器的な性格
が損なわれる。 (B)成分のエマルジョン(A)成分の陶磁器用素地
粉末に対する使用量は、上述したようにエマルジョンの
共重合体を構成するビニル単量体の種類により大きく左
右され、一般に酸基、水酸基、アミド基等の官能基のあ
るものの方が、これら官能基を有していない共重合体よ
りもその使用量の上限値が低くなる傾向がある。 [水中でカルシウムイオン又はマグネシウムイオンを発
生する無機化合物] 水中でCa++、Mg++を発生する(C)成分のカルシウム
化合物やマグネシウム化合物としては、カルシウムやマ
グネシウムの硫酸塩、酸化物、炭酸物、水酸化物、塩化
物等が用いられる。具体的には、石膏、酸化カルシウ
ム、酸化マグネシウム等が用いられる。そして、これら
化合物はエマルジョンを破壊するのに十分な量を用いる
ものであって、特に、石膏と酸化マグネシウムはそれ自
体水和硬化性を有するので好ましい。アニオン性乳化剤
とキレート化合物を形成するものとして明ばんのような
Al+++を水中で発生するものであるが、これはエマルジ
ョンの破壊が急激であり、均一な組織の陶磁器生素地成
型体を得ることができない。 [水] (D)成分の水は、(C)成分が石膏であるときは水
和硬化反応に寄与するが、一番の目的は、エマルジョン
の凝集が行われるまでの陶土、樹脂粒子及び(C)成分
の無機化合物の分散媒の役目を果すことである。また、
水は目的の比重の軽量陶磁器素地成型体を得るための調
製剤でもある。 [任意成分] その他、発泡シラスバルーン、発泡ガラス骨材等の軽
量骨材、酸化チタン、クレイ等の体質顔料、酸化鉄、酸
化クロム等の着色剤等を配合してもよい。 [軽量陶磁器素地成型体の製造] 軽量陶磁器素地成型体を製造するには、添付図面の第
1図(イ)に示すように(A)成分の陶磁器用素地粉末
(陶土)と、(B)成分のアニオン性共重合体水性エマ
ルジョンと(D)成分の水を型内で均一に分散混合し、
次いで、同図(ロ)に示すように(C)成分の石膏のよ
うなエマルジョン破壊剤を加え、撹拌下で均一な混合ス
ラリーとし、同図(ハ)に示すようにエマルジョンが破
壊され共重合体粒子が陶土に付着し始めたら撹拌器を型
より取り出し、エマルジョンの共重合体粒子の陶土への
凝集と付着を完成させて含水陶磁器生素地成型体を得
る。この場合、凝集に要する時間は20〜180分であり、
また、凝集の温度は(B)成分のエマルジョンの共重合
体粒子のガラス転移点(Tg)よりも高く、かつ「Tg+45
℃」以下の温度とする。 この液温は水の温度又は混合液の加温によってもよ
い。当然のことながら(C)成分の無機化合物が石膏の
場合は反応により発熱し、自動的に上昇する。 (C)成分の例えば石膏の混合時の液温は、本発明に
おいては重要なフアクターであり、(B)成分の水性エ
マルジョン共重合体粒子の融着力が有効に活用される。
このため、液温を共重合体のTgよりも高く、かつ、該Tg
+45℃高い温度以下の範囲にする。Tg未満の温度では共
重合体粒子の融着力を示さないし、また、Tgより低い温
度では、エマルジョン中の共重合体粒子がCa++等による
凝集作用を受けても、エマルジョン中の共重合体粒子同
士並びに共重合体粒子と陶土や各種添加成分との付着力
(造膜力)が期待できず、(A)、(B)、(C)の各
成分の混合液からの陶土及び(C)成分の沈降が進み、
水の分離が大きく生じることになる。但し、(C)成分
混合時前、液温がTg未満であっても(C)成分の混合
後、時間の経過とともに石膏の水和反応が進むにしたが
って発熱することにより混合液の液温が上昇し、Tgを超
えることがあるが、それまで、分離を生じないように液
を撹拌して均一な混合液としておく必要があるため、実
用的でない。 次に、「Tg+45℃」より高い温度の場合、(B)成分
の共重合体粒子が余りにも軟化しているため、混合する
と共重合体の小粒子が直ちに凝集すると同時に、共重合
体粒子の融着が起り、混合の瞬間に共重合体粒子、陶
土、石膏の凝結が生じてガム状物が形成されたり、また
は液の著しい増粘を起し、目的の均一な密度の軽量陶磁
器素地成型体が得られない。混合液の水和硬化反応の温
度は、好ましくはTg+(10〜30)℃がよい。Tgの測定は
条件により差が出やすいが、本発明ではデュポン社製示
差熱分析機1090型を用い、昇温速度10℃/分にて測定し
た。 (C)成分の石膏は、混合と同時に水和反応が始ま
り、Ca++が現われる。石膏からのCa++により、エマルジ
ョン中のエマルジョン化機能を司るアニオン性乳化剤の
金属イオンまたはアンモニウムイオンが置換され、乳化
剤は疎水塩となってその乳化機能を低下または消失さ
せ、エマルジョンの共重合体粒子を凝集させると同時
に、共重合体粒子同士及び陶土、石膏粒子が結びつき、
混合スラリーの粘度の上昇が起って凝固し、含水陶磁器
生素地成型体が得られる。なお、このエマルジョンの共
重合体粒子の凝集、凝固の際、過剰の水は分離され、上
澄液となることもある。そして、第1図(ニ)に示すよ
うに凝固した含水陶磁器生素地成型体は型より取り出さ
れ、同図(ホ)に示すように乾燥されて比重が0.4〜1.
5、好ましくは0.5〜0.8の軽量陶磁器素地成型体とな
る。次いで、同図(ヘ)に示すように軽量陶磁器素地成
型体の表面に釉薬が塗布、施釉され、1000〜1400℃の高
温に焼成されることによって比重が0.34〜1.6の軽量陶
磁器が得られる。
In order to achieve the above object, a method for producing a light-weight ceramic body molded product characterized by the present invention is a method for manufacturing a lightweight ceramic body powder (A) by using 100 parts by weight of an anionic copolymer aqueous emulsion (B). A mixed solution containing 3 to 50 parts by weight in terms of solid content, 15 to 150 parts by weight of an inorganic compound (C) which generates ions in water, and an appropriate amount of water (D) was heated to a temperature of (B). The temperature is higher than the glass transition point (Tg) of the copolymer in the aqueous emulsion of the component, and is maintained at a temperature not higher than + 45 ° C. by the ion derived from the compound of the component (C) and the anionic surfactant. A chelate is formed, the emulsion copolymer particles of the component (B) are aggregated by the formation of the chelate to form a molded body holding the powder (A) and water, and then the molded body is dried. is there. Next, the production of each component and the lightweight ceramic body molded article in the above configuration will be described. [Powder for ceramics] The powder for ceramics of the component (A), which is a clay such as kaolin, montmorillonite, mica, talc, pyrophyllite, jamonite, mudstone, silica, and wax In addition to general ceramic base such as non-plastic raw materials such as base powder, glass frit, alumina, silicon nitride,
Magnesia, zirconia, beryllia, thoria,
Spinel, Cordierite, Lisha, Iron lantern
Special ceramic bodies such as jammonite, steatite, titanium oxide, barium titanate, celsian, and ferrite are used. [Aqueous emulsion of anionic copolymer] The aqueous emulsion of anionic copolymer (B) is obtained by emulsion-polymerizing a vinyl monomer using an anionic surfactant which forms a chelate compound with calcium ions or magnesium ions. An aqueous copolymer emulsion obtained, wherein the carboxyl group concentration in the copolymer is 0%.
0.30.3% by weight of an anionic copolymerized water-resistant emulsion. However, the amount of the anionic surfactant used per 100 parts by weight of the copolymer is 0.6 to 2.5 parts by weight in solid form. Here, the carboxyl group concentration in the copolymer is represented by the weight% of the constituent unit based on α, β-unsaturated acid in the copolymer with respect to the total weight of the vinyl monomer forming the copolymer. As the α, β-unsaturated acid, acrylic acid, methacrylic acid, fumaric acid, itaconic acid, crotonic acid, maleic anhydride and the like are used. When the α, β-unsaturated acid is one that gives a copolymer having many carboxyl groups on the surface of the copolymer particles, such as acrylic acid, itaconic acid, fumaric acid, and maleic anhydride, When giving a copolymer having a concentration of less than 0.1% by weight and a copolymer having many carboxyl groups inside the copolymer particles such as methacrylic acid, the carboxyl group concentration is not more than 0.3% by weight. The amount of the α, β-unsaturated acid using emulsion polymerization is adjusted so as to obtain the following. (C) Ca ++ and Mg ++ generated from the calcium compound or the magnesium compound of the component react with an anionic surfactant to form a chelate compound, and copolymer particles of an emulsion having a carboxyl group are also used. It traps ions to form chelates. Therefore, the chelating reaction with the anionic surfactant is delayed, or (c)
When the component is gypsum, it causes the hydration-hardening reaction of the gypsum to be delayed. Therefore, the resin of the aqueous emulsion of the anionic copolymer for the component (B) should contain carboxyl groups as little as possible on the particle surface. It is preferable that the compound does not have an acid group. When α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic anhydride and crotonic acid are used as the vinyl monomer, the carboxyl group in the copolymer The base concentration is used so as to be lower than the above-mentioned concentration. If this concentration is exceeded, a large amount of Ca or Mg is eaten by the resin of the aqueous emulsion, and the time required for coagulation of the mixed slurry becomes long. (C) Ca ++ and Mg ++ generated from components, or (A) Ca ++ and Mg ++ in the component, ammonia emulsifiers ions and K +,
By chelating by ion exchange with metal ions such as Na + and Li + , for example, the emulsifier becomes an organic calcium sulfonate or a calcium organic carboxylate having a reduced hydrophilicity, the surface activity of the emulsifier is reduced, and the emulsion is destroyed. The copolymer particles agglomerate and coagulate, and adhere to solid powders such as the ceramic body powder of the component (A) to form a water-containing ceramic green body. Examples of such anionic emulsifiers include organic acids such as sodium laurate sulfonate, sodium stearate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfonate, sodium alkane sulfonate, and sodium alkylbenzene sulfonate. sulfonic acid soda salt, aliphatic soaps, fatty acid sarcosides, fatty acid metal salts such as rosin acid soap; these Na + in place of K +, NH 4 +,
A sulfate ester type anionic surfactant having an alkanolamine ion or a fatty acid derivative can be used. These anionic emulsifiers are used in a proportion of 0.6 to 2.5 parts by weight in solid content based on 100 parts by weight of the copolymer of the obtained aqueous emulsion. If the amount is larger than this, coagulation of the copolymer particles, which is expected to have a small destruction effect of the emulsifier, will not occur partially or at all, and the hydration hardening reaction of gypsum will be inhibited. On the other hand, when the amount is small, the polymerization stability and storage stability of the copolymer aqueous emulsion are low, and the aggregation of the copolymer particles is fast, so that there is a problem in the mixing stability with the ceramic base powder. That is, if the amount is less than 0.6 parts by weight, the rate of generation and agglomeration of the aggregates of the copolymer particles is high, and it is not possible to obtain a ceramic body molded body in which the ceramic base powder, the copolymer aqueous emulsion and water are uniformly mixed. Before that, the emulsion polymerization of the emulsion cannot be carried out stably. If it exceeds 2.5 parts by weight, aggregation of the copolymer particles of the emulsion,
In addition to the time required for coagulation, depending on the constituent parts of the copolymer of the emulsion, as shown in FIG.
An upper layer 12 is formed separately from the aqueous solution, and the aqueous emulsion of the anionic copolymer is not effectively used. A nonionic surfactant such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, or polyoxyethylated castor oil may be used in combination with the anionic emulsifier. This nonionic emulsifier has the ability to protect and stabilize the copolymer resin particles from Ca ++ and Mg ++ without being subjected to a coagulation action by Ca ++ , Mg ++ or the like. Further, it is stable and effective at the time of polymerization of the resin emulsion, and is effective as a dispersant for the base powder for ceramics and the inorganic compound as the component (C). However, if it is used in excess of 2%, a part of the resin emulsion cannot be aggregated, so that it is better to use as little as possible. Therefore, 0 to the copolymer particles of the component (B).
It is preferable to mix a nonionic emulsifier during or after polymerization in the range of 2%. Examples of the vinyl monomer that gives an anionic copolymer include alkyl acrylate and alkyl methacrylate (the alkyl group has 1 to 8 carbon atoms); 2-hydroxyethyl acrylate,
Hydroxypropyl acrylate and their methacrylate equivalents; acrylamide, methacrylamide, vinyl chloride, vinylidene chloride, ethylene, acrylonitrile, esters such as methyl methacrylate, vinyl acetate,
Styrene, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, maleic anhydride, etc. can be used. Two or more of these vinyl monomers are selected, and the glass transition of the copolymer particles of the obtained aqueous emulsion is obtained. The point is preferably −30 ° C. to + 30 ° C., and the vinyl monomer is selected such that the amount of carboxyl groups in the copolymer falls within the range described above. In addition, what is called a reactive emulsifier, such as sodium vinyl sulfonate, is handled as an anionic emulsifier if it is an anion. Emulsion polymerization is carried out in a usual manner, and the resulting resin aqueous emulsion generally has a resin solids concentration of 20 to 65% by weight and a copolymer particle diameter of 0.03 to 3 microns. The amount of the aqueous anionic copolymer aqueous emulsion greatly depends on the type of the vinyl monomer constituting the copolymer. Generally, the component (A) is a ceramic base powder.
It is 3 to 50 parts by weight based on 100 parts by weight of the solid content of the copolymer. If the amount is less than 3 parts by weight, it is not possible to obtain a lightweight ceramic base material having a specific gravity of 1.5 or less, and the mixed slurry lacks stability. If the amount exceeds 50 parts by weight, the amount of the inorganic compound (C) required for coagulating the emulsion resin becomes large, and the ceramic properties of the obtained product are impaired. Emulsion of component (B) The amount of component (A) to be used with respect to the ceramic base powder depends largely on the type of the vinyl monomer constituting the copolymer of the emulsion as described above, and is generally an acid group, a hydroxyl group or an amide. Those having a functional group such as a group tend to have a lower upper limit of the amount used than a copolymer having no such functional group. [Inorganic compounds that generate calcium ions or magnesium ions in water] As the calcium compounds and magnesium compounds of component (C) that generate Ca ++ and Mg ++ in water, sulfates, oxides, and carbonates of calcium and magnesium are used. Substances, hydroxides, chlorides and the like are used. Specifically, gypsum, calcium oxide, magnesium oxide and the like are used. These compounds are used in an amount sufficient to destroy the emulsion. Particularly, gypsum and magnesium oxide are preferred because they themselves have hydration-hardening properties. Alum-like as forming chelate compound with anionic emulsifier
Although Al +++ is generated in water, the emulsion is rapidly destroyed, and it is not possible to obtain a ceramic green body having a uniform structure. [Water] The water of the component (D) contributes to the hydration hardening reaction when the component (C) is gypsum, but the main purpose is to make the clay, resin particles and ( It serves as a dispersion medium for the inorganic compound as the component (C). Also,
Water is also a preparation agent for obtaining a lightweight ceramic body molded article having a desired specific gravity. [Optional Components] In addition, lightweight aggregates such as foamed shirasu balloons and foamed glass aggregates, extenders such as titanium oxide and clay, and coloring agents such as iron oxide and chromium oxide may be blended. [Manufacture of Light-Weight Ceramic Body Molded Body] In order to manufacture a light-weight ceramic body molded body, as shown in FIG. 1 (a) of the accompanying drawings, (A) component ceramic body powder (porcelain clay) and (B) The anionic copolymer aqueous emulsion of the component and the water of the component (D) are uniformly dispersed and mixed in a mold,
Next, as shown in FIG. 2 (b), an emulsion-disintegrating agent such as gypsum of the component (C) is added to form a uniform mixed slurry under stirring, and as shown in FIG. When the coalesced particles start to adhere to the clay, the stirrer is taken out of the mold, and the aggregation and adhesion of the copolymer particles of the emulsion to the clay are completed to obtain a molded body of hydrated ceramic green body. In this case, the time required for aggregation is 20-180 minutes,
Further, the aggregation temperature is higher than the glass transition point (Tg) of the copolymer particles of the emulsion of the component (B) and "Tg + 45".
° C ”or lower. This liquid temperature may be the temperature of water or the heating of the mixture. As a matter of course, when the inorganic compound of the component (C) is gypsum, the reaction generates heat and rises automatically. The liquid temperature of the component (C) at the time of mixing gypsum, for example, is an important factor in the present invention, and the fusion force of the aqueous emulsion copolymer particles of the component (B) is effectively utilized.
Therefore, the liquid temperature is higher than the Tg of the copolymer, and the Tg
Keep the temperature below + 45 ° C. At a temperature lower than Tg, the cohesive force of the copolymer particles is not exhibited, and at a temperature lower than Tg, even if the copolymer particles in the emulsion are subjected to an aggregating action by Ca ++ or the like, the copolymer in the emulsion is not affected. Adhesive force (film-forming power) between the particles and between the copolymer particles and the clay and the various additional components cannot be expected, and the clay (C) and (C) from the mixture of the components (A), (B) and (C) cannot be expected. ) The sedimentation of the components proceeds,
Large separation of water will occur. However, even before the component (C) is mixed, even if the liquid temperature is lower than Tg, after the component (C) is mixed, heat is generated as the hydration reaction of the gypsum proceeds with the lapse of time, so that the liquid temperature of the mixed solution becomes Although it may rise and exceed Tg, it is impractical because it is necessary to stir the liquid so as not to cause separation to obtain a uniform mixed liquid. Next, when the temperature is higher than “Tg + 45 ° C.”, since the copolymer particles of the component (B) are too soft, the small particles of the copolymer are immediately aggregated when mixed, and at the same time, Cohesion of the copolymer particles, clay and gypsum occurs at the moment of fusion, resulting in the formation of a gum or a significant thickening of the liquid. I can't get my body. The temperature of the hydration hardening reaction of the mixed solution is preferably Tg + (10 to 30) ° C. Although the difference in Tg tends to be different depending on the conditions, in the present invention, the Tg was measured at a heating rate of 10 ° C./min using a model 1090 differential thermal analyzer manufactured by DuPont. In the gypsum of the component (C), the hydration reaction starts at the same time as the mixing, and Ca ++ appears. Ca ++ from gypsum replaces the metal or ammonium ions of the anionic emulsifier that controls the emulsification function in the emulsion, and the emulsifier becomes a hydrophobic salt to reduce or eliminate its emulsification function, and the emulsion copolymer At the same time as aggregating the particles, the copolymer particles and the clay, gypsum particles are linked,
The viscosity of the mixed slurry rises and solidifies to obtain a hydrous ceramic green body. During the coagulation and coagulation of the copolymer particles of this emulsion, excess water may be separated and become a supernatant. Then, the water-containing porcelain green body molded body solidified as shown in FIG. 1 (d) is taken out of the mold and dried as shown in FIG. 1 (e) to have a specific gravity of 0.4 to 1.
5, preferably 0.5 to 0.8 lightweight ceramic body molding. Next, as shown in FIG. 6F, a glaze is applied to the surface of the lightweight ceramic body molded body, glazed, and fired at a high temperature of 1000 to 1400 ° C., thereby obtaining a lightweight ceramic having a specific gravity of 0.34 to 1.6.

【実 施 例】【Example】

以下、実施例により本発明を更に詳細に説明する。な
お、例中の部及び%は特に例記しない限りは重量基準で
ある。 先ず、水性樹脂エマルジョンの製造例について説明す
る。 製造例1 温度調節器、いかり形撹拌器、還流冷却器、供給容
器、温度計及び窒素導入管を備えた反応容器内に、下記
の原料を装入した。 水 200部 エチレンオキシド20モルと反応させたp−ノニルフェ
ノールの硫酸半エステルのナトリウム塩(アニオン性乳
化剤a)の35%水溶液 3.9部 次いで、反応容器内を窒素ガスで置換した後、次に示
す供給物Iの10%を加え、混合物を90℃に加熱した。 供給物I 水 200部 前記アニオン性乳化剤の35%水溶液 19部 スチレン 192部 アクリル酸n−ブチル 194部 アクリルアミド 14部 更に、85部の水に2.5部の過硫酸カリウムを溶解した
もの(供給物II)の10%を反応容器内に装入後、残りの
供給物I全て及び供給物IIの90%を3.5時間かけて反応
容器内に供給し、供給終了後、2時間、同温度に保って
供給物Iを重合させて、−COOH含量が0重量%のアニオ
ン性樹脂水性エマルジョン(Tg+17℃)を得た。 製造例2〜15 ビニル単量体の種類、乳化剤の種類、量を表1のよう
に変化させて、同表に示す物性の共重合体粒子の水性エ
マルジョンを得た。なお、ノニオ性乳化剤は反応容器内
に最初に投入した。 実施例1 長石10重量部、粘土60重量部、けい石30重量部及び水
残余よりなる分散陶土スラリー310重量部(固型分33
%)に、製造例1で得たアニオン性アクリル系共重合体
水性エマルジョン(固型分濃度約50重量%)40重量部及
び水100重量部を撹拌混合し、均一な混合スラリーとし
た。この混合スラリーの入った型内にα−石膏150重量
部を25℃で加え、約30分後発熱が見受けられたので撹拌
器を取り出し、更に90分間放置して凝固を完成させたと
ころ、型内は一層であった。 型より含水陶磁器生素地成型体を取り出し、45℃の恒
温室で12時間かけて成型体の乾燥を行ない、直径が70m
m、比重が0.75、圧縮強度が約0.8kg/cm2の円柱状軽量陶
磁器素地成型体を得た。 実施例2〜11、比較例1〜4 製造例1のエマルジョンの代わりに製造例2〜15で得
たエマルジョンを用いる他は同様にして後記表2に示す
軽量陶磁器素地成型体を得た。 実施例12〜15、比較例5〜6 破壊剤としてα−石膏の代わりに、β−石膏、CaO、M
gO、Al2SO4・16H2Oを用いる他は、または破壊剤を用い
ない他は実施例1と同様にして成型を行なった。得られ
た成型物の物性は後記表3に示す。 実施例16〜21 実施例1において、各成分の混合比、温度を後記表4
のように変更する他は同様にして同表に示す物性の軽量
陶磁器素地成型体を得た。 応用例 市販の鉛釉100重量部に水70重量部を加え、ボールミ
ルで粉砕混合(固形分約58%、pH9.3)した。この分散
釉薬液100重量部に、製造例2で得たアニオン性樹脂水
性エマルジョン(固形分50重量%、pH6.0)を10重量部
配合し、生釉とした。この生釉を実施例1〜11で得た軽
量陶磁器素地成型体の表面に吹きつけ塗装し、150℃で
予備乾燥した後、この生釉層の表面に転写紙上に印刷し
た絵柄層を水スライド法により転写し、この絵付けした
成型体を1250℃で第二焼成(釉焼)して絵付けした軽量
陶磁器を得た。 これらの軽量陶磁器の比重は施釉前の軽量陶磁器素地
成型体の比重と同等か、若干低い程度であった。また、
軽量陶磁器の絵柄は、釉の崩れやピンホールもなく、輪
郭のすっきりした良好なものであった。
Hereinafter, the present invention will be described in more detail with reference to examples. The parts and percentages in the examples are on a weight basis unless otherwise specified. First, a production example of the aqueous resin emulsion will be described. Production Example 1 The following materials were charged into a reaction vessel equipped with a temperature controller, a squirrel stirrer, a reflux condenser, a supply vessel, a thermometer, and a nitrogen inlet tube. 200 parts of water 35% aqueous solution of sodium salt of sulfuric acid half ester of p-nonylphenol (anionic emulsifier a) reacted with 20 mol of ethylene oxide 3.9 parts Then, the inside of the reaction vessel is replaced with nitrogen gas, and 10% of I was added and the mixture was heated to 90 ° C. Feed I water 200 parts 35% aqueous solution of the anionic emulsifier 19 parts Styrene 192 parts N-butyl acrylate 194 parts Acrylamide 14 parts Further, 2.5 parts of potassium persulfate dissolved in 85 parts of water (Feed II) ) Is charged into the reaction vessel, and all the remaining feed I and 90% of the feed II are fed into the reaction vessel over 3.5 hours. After the feed is completed, the temperature is maintained at the same temperature for 2 hours. Feed I was polymerized to give an aqueous anionic resin emulsion (Tg + 17 ° C.) having a —COOH content of 0% by weight. Production Examples 2 to 15 The aqueous emulsion of the copolymer particles having the physical properties shown in the table was obtained by changing the type of the vinyl monomer and the type and amount of the emulsifier as shown in Table 1. The nonionic emulsifier was initially charged in the reaction vessel. Example 1 310 parts by weight of a dispersed clay slurry composed of 10 parts by weight of feldspar, 60 parts by weight of clay, 30 parts by weight of silica, and water residue (solid fraction 33
%), 40 parts by weight of the aqueous emulsion of the anionic acrylic copolymer (solid content: about 50% by weight) obtained in Production Example 1 and 100 parts by weight of water were stirred and mixed to obtain a uniform mixed slurry. 150 parts by weight of α-gypsum was added to the mold containing the mixed slurry at 25 ° C., and after about 30 minutes, heat generation was observed, so the stirrer was taken out and left for 90 minutes to complete coagulation. Inside was one layer. Take out the hydrated ceramic green body from the mold and dry it in a 45 ° C constant temperature room for 12 hours.
m, a specific gravity of 0.75, and a compressive strength of about 0.8 kg / cm 2 were obtained. Examples 2 to 11 and Comparative Examples 1 to 4 Lightweight ceramic body moldings shown in Table 2 below were obtained in the same manner except that the emulsions of Production Examples 2 to 15 were used instead of the emulsion of Production Example 1. Examples 12-15, Comparative Examples 5-6 Instead of α-gypsum as a breaking agent, β-gypsum, CaO, M
Molding was performed in the same manner as in Example 1 except that gO and Al 2 SO 4 .16H 2 O were used, or that no breaking agent was used. The physical properties of the obtained molded product are shown in Table 3 below. Examples 16 to 21 In Example 1, the mixing ratio of each component and the temperature were set forth in Table 4 below.
A light-weight ceramic body molded article having the physical properties shown in the same table was obtained in the same manner except for the following changes. Application Example 70 parts by weight of water was added to 100 parts by weight of a commercially available lead glaze, and the mixture was ground and mixed by a ball mill (solid content: about 58%, pH 9.3). 10 parts by weight of the aqueous anionic resin emulsion (solid content 50% by weight, pH 6.0) obtained in Production Example 2 was blended with 100 parts by weight of the dispersed glaze liquid to obtain a raw glaze. This raw glaze was spray-painted on the surface of the lightweight ceramic body formed body obtained in Examples 1 to 11, and after pre-drying at 150 ° C., the pattern layer printed on the transfer paper on the surface of this raw glaze layer was water slide. Transferred by the method, the painted body was second fired (glazed) at 1250 ° C. to obtain a painted lightweight ceramic. The specific gravity of these lightweight ceramics was equal to or slightly lower than the specific gravity of the lightweight ceramic body before molding. Also,
The pattern of the lightweight porcelain was clear and good with no glaze collapse or pinholes.

【発明の効果】【The invention's effect】

本発明は上記の如くであって、特定のアニオン性共重
合体水性エマルジョンを用いることによって均一な混合
スラリーを得ることができ、層分離がなくて強度に優れ
ている比重が1.5以下の軽量陶磁器素地成型体を製造で
きるものである。
The present invention is as described above, a uniform mixed slurry can be obtained by using a specific anionic copolymer aqueous emulsion, there is no layer separation, and the strength is excellent. It can manufacture a green body.

【図面の簡単な説明】[Brief description of the drawings]

第1図は軽量陶磁器を製造する工程を示すフローチャー
ト、第2図は陶土と樹脂エマルジョンと水の混合液を静
置したときの分離層の状態を示す断面図、第3図は陶土
と樹脂エマルジョンと水と破壊剤の混合液を静置したと
きの分離層の状態を示す断面図である。
FIG. 1 is a flowchart showing a process for manufacturing a lightweight ceramic, FIG. 2 is a sectional view showing a state of a separation layer when a mixture of clay, resin emulsion and water is allowed to stand, and FIG. 3 is clay and resin emulsion. FIG. 4 is a cross-sectional view showing a state of a separation layer when a mixed solution of water, water, and a breaking agent is allowed to stand.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陶磁器用素地粉末(A)を100重量部、ア
ニオン性共重合体水性エマルジョン(B)を共重合体の
固形分量で3〜50重量部、水中でイオンを発生する無機
化合物(C)を15〜150重量部、水(D)を適量含有す
る混合液を、該混合液の液温を(B)成分の水性エマル
ジョン中の共重合体のガラス転移点(Tg)よりも高く、
該転移点+45℃以下の温度に保って、(C)成分の化合
物より派生したイオンとアニオン性界面活性剤とにより
キレートを形成し、このキレートの形成により(B)成
分のエマルジョン共重合体の粒子を凝集させて、粉末
(A)と水を保持した成型体を作り、次いで、該成型体
を乾燥することを特徴とする軽量陶磁器素地成型体の製
造方法。
1. A ceramic base powder (A) of 100 parts by weight, an anionic copolymer aqueous emulsion (B) of 3 to 50 parts by weight in terms of a solid content of a copolymer, an inorganic compound which generates ions in water ( A mixed solution containing 15 to 150 parts by weight of C) and an appropriate amount of water (D) is heated at a temperature higher than the glass transition point (Tg) of the copolymer in the aqueous emulsion of the component (B). ,
While maintaining the temperature at the transition point + 45 ° C. or lower, a chelate is formed by the ion derived from the compound of the component (C) and the anionic surfactant, and the formation of the chelate allows the emulsion copolymer of the component (B) to be formed. A method for producing a lightweight ceramic body molded body, comprising agglomerating particles to form a molded body holding the powder (A) and water, and then drying the molded body.
JP63284180A 1988-11-10 1988-11-10 Manufacturing method of lightweight ceramic body molding Expired - Fee Related JP2939886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284180A JP2939886B2 (en) 1988-11-10 1988-11-10 Manufacturing method of lightweight ceramic body molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284180A JP2939886B2 (en) 1988-11-10 1988-11-10 Manufacturing method of lightweight ceramic body molding

Publications (2)

Publication Number Publication Date
JPH02133380A JPH02133380A (en) 1990-05-22
JP2939886B2 true JP2939886B2 (en) 1999-08-25

Family

ID=17675213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284180A Expired - Fee Related JP2939886B2 (en) 1988-11-10 1988-11-10 Manufacturing method of lightweight ceramic body molding

Country Status (1)

Country Link
JP (1) JP2939886B2 (en)

Also Published As

Publication number Publication date
JPH02133380A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
TW200424006A (en) Dispersants
JP2019532002A (en) Plasticizer for geopolymer
JPH04288335A (en) Aqueous polymer dispersion liquid
JPH0930853A (en) Method for preparing polymer-modified inorganic constructionmaterial, additive for inorganic construction material, inorganic construction material, aqueous polymer dispersion,method for preparing the dispersion and polymer powder
JP2002187754A (en) Use of powdery composition for making construction composition hydrophobic
EP1090890B1 (en) Method for preparing ceramic compositions
JPH08245728A (en) Redispersible powdery core/shell polymer, its production, and its use
JP2939886B2 (en) Manufacturing method of lightweight ceramic body molding
JP2774815B2 (en) Manufacturing method of lightweight gypsum / cement mortar molding
US3748156A (en) Refractory laminate based on positive sols and polyfunctional organicand inorganic acids and salts
JPH0516463B2 (en)
JP2774810B2 (en) Ceramic base composition and method for producing ceramic green body molded article using the same
JP2640765B2 (en) Method for producing polymer cement mortar composition and cured product thereof
JP3985042B2 (en) Ultralight ceramic foam and manufacturing method thereof
JP2000143925A (en) Use of polymer for masonry
JPH08319146A (en) Liquid composition and production of high-strength inorganic material using the same
JPS60171260A (en) Hydraulic inorganic composition
JPH10245463A (en) Aqueous composition
JP2855451B2 (en) Manufacturing method of ceramics
TWI814777B (en) Long chain acrylic ester modified vinyl ester polymers
JPS63307175A (en) Production of light-weight molded gypsum
JP4574143B2 (en) Admixtures and joints for hydraulic materials
JPH051234B2 (en)
JPS60127256A (en) Plaster composition
JPH01308891A (en) Graze composition and method for painting with said composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees