JP2936933B2 - Limit current type nitrogen oxide sensor - Google Patents

Limit current type nitrogen oxide sensor

Info

Publication number
JP2936933B2
JP2936933B2 JP5001596A JP159693A JP2936933B2 JP 2936933 B2 JP2936933 B2 JP 2936933B2 JP 5001596 A JP5001596 A JP 5001596A JP 159693 A JP159693 A JP 159693A JP 2936933 B2 JP2936933 B2 JP 2936933B2
Authority
JP
Japan
Prior art keywords
electrode film
solid electrolyte
oxygen
electrolyte plate
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5001596A
Other languages
Japanese (ja)
Other versions
JPH06201644A (en
Inventor
邦弘 鶴田
彪 長井
研二 田畑
孝裕 梅田
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5001596A priority Critical patent/JP2936933B2/en
Publication of JPH06201644A publication Critical patent/JPH06201644A/en
Application granted granted Critical
Publication of JP2936933B2 publication Critical patent/JP2936933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気中の窒素酸化物と
酸素の濃度を同時に計測する限界電流式窒素酸化物セン
サに関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a limiting current type nitrogen oxide sensor for simultaneously measuring nitrogen oxide and oxygen concentrations in air.

【0002】[0002]

【従来の技術】空気中の酸素濃度を計測できる従来の限
界電流式センサの断面斜視図を図5に示す。1は酸素イ
オン伝導性固体電解質板であり、対となる白金電極膜3
aと3b(記載せず)が両面に対で形成されている。こ
の固体電解質板1の片側上部にカソード側電極膜3aを
囲み、始端と終端がお互いに間隔を有するように配置さ
れた螺旋型スペーサ4が配置されている。そして螺旋型
スペーサ4の上部にシール板5を配置して、酸素拡散孔
6が螺旋型スペーサ4の相対向する隔壁と固体電解質板
1とシール板5で囲まれる螺旋型の空間で形成されてい
る。一方、シール板5の上部には加熱部7が配置されセ
ンサ素子を加熱している。電極膜3aと3bはリード線
(記載せず)により直流電圧源(記載せず)と接続され
ており、直流電圧が印加されている。酸素は酸素拡散孔
6を経由してカソード側電極膜3aへ拡散し、電場によ
り低電圧でも簡単に酸素イオンに変化し酸素イオン伝導
性固体電解質板をアノード電極膜3bに向かって移動
し、アノード電極膜3bで電子を奪われて再び酸素にな
り空気中に拡散する挙動を示す。一方、窒素酸化物も酸
素拡散孔6を経由してカソード側電極膜3aへ拡散し、
直流電圧により高電圧側で電気分解して酸素と窒素に分
解する。そして生成物の酸素はさらに酸素イオンに変化
し酸素イオン伝導性固体電解質板1をアノード電極膜3
bに向かって移動し、アノード電極膜3bで電子を奪わ
れて再び酸素になり空気中に拡散する挙動を示す。
2. Description of the Related Art FIG. 5 is a sectional perspective view of a conventional limiting current type sensor capable of measuring the oxygen concentration in air. Reference numeral 1 denotes an oxygen ion conductive solid electrolyte plate, and a platinum electrode film 3 serving as a pair.
a and 3b (not shown) are formed in pairs on both sides. A helical spacer 4 surrounding the cathode-side electrode film 3a and having a start end and an end spaced from each other is disposed on one upper side of the solid electrolyte plate 1. Then, a seal plate 5 is disposed above the spiral spacer 4, and oxygen diffusion holes 6 are formed in a spiral space surrounded by the opposing partition walls of the spiral spacer 4, the solid electrolyte plate 1, and the seal plate 5. I have. On the other hand, a heating section 7 is disposed above the seal plate 5 to heat the sensor element. The electrode films 3a and 3b are connected to a DC voltage source (not shown) by lead wires (not shown), and a DC voltage is applied. Oxygen diffuses through the oxygen diffusion holes 6 to the cathode-side electrode film 3a, easily changes to oxygen ions even at a low voltage by an electric field, and moves the oxygen ion conductive solid electrolyte plate toward the anode electrode film 3b. Electrons are deprived by the electrode film 3b, become oxygen again, and diffuse into the air. On the other hand, nitrogen oxides also diffuse into the cathode-side electrode film 3a through the oxygen diffusion holes 6,
It is electrolyzed on the high voltage side by DC voltage and decomposed into oxygen and nitrogen. The product oxygen is further changed to oxygen ions, and the oxygen ion conductive solid electrolyte plate 1 is placed on the anode electrode film 3.
b, the electrons are removed by the anode electrode film 3b, become oxygen again, and diffuse into the air.

【0003】また、銅系超伝導金属酸化物は、電気抵抗
が非常に小さいとともに窒素酸化物を選択的に吸着する
ことが最近知られつつある。
In addition, it has recently been known that copper-based superconducting metal oxides have very low electric resistance and selectively adsorb nitrogen oxides.

【0004】[0004]

【発明が解決しようとする課題】図6に、動作温度45
0℃での従来構成の白金電極におけるヘリウム中の各ガ
ス濃度における電圧電流特性を示す。一酸化窒素(N
O)や二酸化窒素(NO2)は、0.5V前後から分解
を開始して2.0V前後から限界電流が得られ始め、さ
らに2.2V前後になると電子伝導の影響で限界電流が
得られない。この窒素酸化物の分解電流は、窒素酸化物
が電気分解することで発生する電流が小さいため限界電
流が高電圧側で得られることとなるが、あまり高電圧に
なると電子伝導が顕著になるため限界電流が得られなく
なる弊害がある。そのため動作温度が低いと平坦な限界
電流が得られにくく一酸化窒素の濃度が正確に測定でき
ない。そこでこのことを回避して明確な限界電流を得て
一酸化窒素の濃度を正確に測定するためにセンサの動作
温度を上昇させているが、このことはセンサの寿命を短
くする課題がある。
FIG. 6 shows an operating temperature of 45.
5 shows voltage-current characteristics of a platinum electrode having a conventional configuration at 0 ° C. for various gas concentrations in helium. Nitric oxide (N
O) and nitrogen dioxide (NO 2 ) start to decompose at about 0.5 V, and a limit current starts to be obtained at about 2.0 V. At about 2.2 V, a limit current is obtained due to electron conduction. Absent. As for the decomposition current of this nitrogen oxide, the current generated by electrolysis of the nitrogen oxide is small, so that the limit current is obtained on the high voltage side, but when the voltage is too high, the electron conduction becomes remarkable. There is an adverse effect that a limit current cannot be obtained. Therefore, when the operating temperature is low, a flat limit current is hardly obtained, and the concentration of nitric oxide cannot be measured accurately. To avoid this, the operating temperature of the sensor is raised in order to obtain a clear limit current and accurately measure the concentration of nitric oxide. However, this has the problem of shortening the life of the sensor.

【0005】本発明はかかる従来の問題点を解消するも
ので、センサの動作温度を上昇させることなく低い動作
温度で窒素酸化物の濃度を正確に測定するものである。
The present invention solves such a conventional problem, and is intended to accurately measure the concentration of nitrogen oxide at a low operating temperature without increasing the operating temperature of the sensor.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明の限界電流式窒素酸化物センサは、対となる第
1電極膜および第2電極膜を両面に2対形成した酸素イ
オン伝導性固体電解質板と、前記固体電解質板の片側の
2個のカソード電極膜を各々囲み始端と終端がお互いに
間隔を有するように配置された2個の螺旋型スペーサ
と、前記螺旋型スペーサの相対向する隔壁と前記固体電
解質板とで囲まれる第1酸素拡散孔および第2酸素拡散
孔を内部に形成するために前記螺旋型スペーサの上部に
配置したシール板とで構成され、前記第1電極膜のカソ
ード電極膜が貴金属と銅系超伝導金属酸化物の混合物か
らなり前記第2電極膜のカソード電極膜が貴金属からな
る構成とした。
In order to solve the above-mentioned problems, a limiting current type nitrogen oxide sensor according to the present invention comprises an oxygen ion conductor having two pairs of a first electrode film and a second electrode film formed on both surfaces. A solid electrolyte plate, two helical spacers each surrounding two cathode electrode films on one side of the solid electrolyte plate and arranged so that a start end and an end are spaced from each other; A sealing plate disposed above the helical spacer to form therein first oxygen diffusion holes and second oxygen diffusion holes surrounded by the solid electrolyte plate, and the first electrode The cathode electrode film of the film was made of a mixture of a noble metal and a copper-based superconducting metal oxide, and the cathode electrode film of the second electrode film was made of a noble metal.

【0007】また、両面に対となる第1電極膜を形成し
た第1酸素イオン伝導性固体電解質板と、前記固体電解
質板の片側の電極膜を囲み始端と終端がお互いに間隔を
有するように配置された螺旋型スペーサと、前記螺旋型
スペーサの上部に配置されており両面に対となる第2電
極膜を形成した第2酸素イオン伝導性固体電解質板とで
構成され、前記第1電極膜のカソード電極膜が貴金属と
銅系超伝導金属酸化物の混合物からなり、前記第2電極
膜のカソード電極膜が貴金属からなる構成とした。
Further, a first oxygen ion conductive solid electrolyte plate having a pair of first electrode films formed on both surfaces thereof, and a first end and a second end surrounding the electrode film on one side of the solid electrolyte plate are spaced from each other. The first electrode film, comprising: a spiral spacer disposed thereon; and a second oxygen ion conductive solid electrolyte plate disposed on the spiral spacer and having a pair of second electrode films formed on both surfaces thereof. Is made of a mixture of a noble metal and a copper-based superconducting metal oxide, and the cathode electrode film of the second electrode film is made of a noble metal.

【0008】[0008]

【作用】上記構成により、窒素酸化物は第1酸素拡散孔
を経由して、貴金属と銅系超伝導金属酸化物の混合物か
らなるカソード側第1電極膜へ拡散する。そしてカソー
ド側第1電極膜において銅系超伝導金属酸化物により吸
着され、さらに貴金属と直流電圧により簡単に分解して
酸素イオンに変化し酸素イオン伝導性固体電解質板をア
ノード電極膜に向かって移動する。そのため、第1酸素
拡散孔において低印加電圧から窒素酸化物に関する限界
電流が得られる。一方、第2酸素拡散孔においては貴金
属からなる第2電極膜において酸素の限界電流が得られ
る。従って、センサの動作温度を上昇させることなく低
い動作温度で一酸化窒素と酸素の濃度を2つの電極を用
いて同時に正確に測定できる。
With the above arrangement, the nitrogen oxide diffuses through the first oxygen diffusion holes into the first cathode electrode film made of a mixture of a noble metal and a copper-based superconducting metal oxide. Then, it is adsorbed by the copper-based superconducting metal oxide on the cathode-side first electrode film, and is easily decomposed by the noble metal and the DC voltage to change into oxygen ions, and the oxygen ion-conductive solid electrolyte plate moves toward the anode electrode film. I do. Therefore, a critical current relating to nitrogen oxide can be obtained from the low applied voltage in the first oxygen diffusion hole. On the other hand, in the second oxygen diffusion hole, a limiting current of oxygen is obtained in the second electrode film made of a noble metal. Therefore, the concentration of nitric oxide and oxygen can be simultaneously and accurately measured using the two electrodes at a low operating temperature without increasing the operating temperature of the sensor.

【0009】また上記構成により、窒素酸化物は酸素拡
散孔を経由して、貴金属と銅系超伝導金属酸化物の混合
物からなるカソード側第1電極膜へ拡散する。そしてカ
ソード側第1電極膜において銅系超伝導金属酸化物によ
り吸着され、さらに貴金属と直流電圧により簡単に分解
して酸素イオンに変化し酸素イオン伝導性固体電解質板
をアノード電極膜に向かて移動する。そのため、第1電
極膜において低印加電圧から窒素酸化物に関する限界電
流が得られる。一方、貴金属からなる第2電極膜におい
て酸素の限界電流が得られる。従って、センサの動作温
度を上昇させることなく低い動作温度で一酸化窒素と酸
素の濃度を2つの電極を用いて同時に正確に測定でき
る。
[0009] Further, with the above configuration, the nitrogen oxide diffuses into the cathode-side first electrode film made of a mixture of a noble metal and a copper-based superconducting metal oxide through the oxygen diffusion holes. Then, it is adsorbed by the copper-based superconducting metal oxide on the cathode-side first electrode film, and is further easily decomposed by the noble metal and the DC voltage to change into oxygen ions, and the oxygen ion-conductive solid electrolyte plate is moved toward the anode electrode film. Moving. Therefore, a limit current regarding nitrogen oxide can be obtained from the low applied voltage in the first electrode film. On the other hand, a limiting current of oxygen is obtained in the second electrode film made of a noble metal. Therefore, the concentration of nitric oxide and oxygen can be simultaneously and accurately measured using the two electrodes at a low operating temperature without increasing the operating temperature of the sensor.

【0010】[0010]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、発明の第1の実施例である限界電
流式窒素酸化物センサの断面斜視図である。図1におい
て、1は酸素イオン伝導性固体電解質板であり、対とな
る第1電極膜2aと2b(記載せず)および第2電極膜
3aと3b(記載せず)が両面に2対形成されている。
この固体電解質板1の片側上部にカソード側第1電極膜
2aおよびカソード側第2電極膜3aを各々囲み、始端
と終端がお互いに間隔を有するように配置された第1螺
旋型スペーサ4a−1および第2螺旋型スペーサ4a−
2が配置されている。そして螺旋型スペーサ4a−1、
4a−2の上部にシール板5を配置した。そのため、第
1酸素拡散孔6a−1および第2酸素拡散孔6a−2が
螺旋型スペーサ4a−1、4a−2の相対向する隔壁と
固体電解質板1とシール板5で囲まれる螺旋型の空間で
形成されている。一方、シール板5の上部には加熱部7
が配置されセンサ素子を加熱している。カソード側第1
電極膜2aは貴金属と銅系超伝導金属酸化物の混合物か
らなり、カソード側第2電極膜3aは貴金属からなる。
FIG. 1 is a sectional perspective view of a limiting current type nitrogen oxide sensor according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an oxygen ion conductive solid electrolyte plate, and two pairs of first electrode films 2a and 2b (not shown) and second electrode films 3a and 3b (not shown) are formed on both surfaces. Have been.
A first helical spacer 4a-1 surrounding the cathode-side first electrode film 2a and the cathode-side second electrode film 3a on one side of the upper part of the solid electrolyte plate 1 and having a start end and an end spaced from each other. And the second helical spacer 4a-
2 are arranged. And the spiral spacer 4a-1,
The seal plate 5 was arranged on the upper part of 4a-2. Therefore, the first oxygen diffusion hole 6a-1 and the second oxygen diffusion hole 6a-2 are surrounded by the partition walls of the spiral spacers 4a-1 and 4a-2, the solid electrolyte plate 1, and the seal plate 5 in a spiral shape. The space is formed. On the other hand, a heating unit 7 is provided above the seal plate 5.
Are arranged to heat the sensor element. Cathode side first
The electrode film 2a is made of a mixture of a noble metal and a copper-based superconducting metal oxide, and the cathode-side second electrode film 3a is made of a noble metal.

【0012】次に具体的実験例にもとづいて説明する。
図1の限界電流式窒素酸化物センサにおいて固体電解質
板1としてZrO2、Y23(Y238mol%添加)、第
1電極膜2a、2bとして白金とYBa2Cu37系超
伝導金属酸化物の混合物、第2電極膜3a、3bとして
白金、螺旋型スペーサ4a−1、4a−2として硝子
(熱膨脹係数はZrO2、Y23と概略同一であり、所
定粒径の耐熱性粒子を微量含有)、シール板5としてフ
ォルステライト、加熱部7として白金ヒータを用いた。
製法について説明する。まず白金とYBa2Cu37
超伝導金属酸化物を3:1の重量比で混合し、酸化銅系
硝子フリットや有機溶剤を添加して第1電極膜2a、2
bのペーストを試作した。次に、第1電極膜2a、2b
および第2電極膜3a、3bを固体電解質板1の上に、
さらに螺旋型スペーサ4a−1、4a−2を固体電解質
板1の上に厚膜印刷技術および焼成技術を用いて形成し
た。一方、シール板5の上には加熱部7を厚膜印刷技術
および焼成技術を用いて形成した。次に、固体電解質板
1上の螺旋型スペーサ4a−1、4a−2とシール板5
とを積層し加熱溶融することで酸素拡散孔6a−1、6
a−2を形成した。そしてリード線(記載せず)を取り
つけて完成である。完成品素子の寸法は12×12×
0.9mmである。
Next, a description will be given based on specific experimental examples.
In the limiting current type nitrogen oxide sensor of FIG. 1, ZrO 2 and Y 2 O 3 (8 mol% addition of Y 2 O 3 ) are used as the solid electrolyte plate 1, and platinum and YBa 2 Cu 3 O 7 are used as the first electrode films 2a and 2b. A mixture of a superconducting metal oxide, platinum as the second electrode films 3a and 3b, and glass as the helical spacers 4a-1 and 4a-2 (the thermal expansion coefficients are substantially the same as those of ZrO 2 and Y 2 O 3 , and a predetermined particle size. , Forsterite as the seal plate 5 and a platinum heater as the heating unit 7.
The production method will be described. First, platinum and a YBa 2 Cu 3 O 7 -based superconducting metal oxide are mixed at a weight ratio of 3: 1, and a copper oxide-based glass frit or an organic solvent is added to the first electrode film 2 a, 2.
The paste of b was made as a trial. Next, the first electrode films 2a, 2b
And the second electrode films 3a, 3b on the solid electrolyte plate 1,
Further, spiral spacers 4a-1 and 4a-2 were formed on the solid electrolyte plate 1 by using a thick film printing technique and a baking technique. On the other hand, the heating section 7 was formed on the seal plate 5 by using a thick film printing technique and a baking technique. Next, the spiral spacers 4a-1, 4a-2 on the solid electrolyte plate 1 and the seal plate 5
And melted by heating to form oxygen diffusion holes 6a-1, 6a.
a-2 was formed. Then, lead wires (not shown) are attached to complete the process. The dimensions of the finished device are 12 × 12 ×
0.9 mm.

【0013】図2に、動作温度450℃での酸素2.5
%と二酸化窒素(NO2)5.0%における電圧電流特
性を示す。白金とYBa2Cu37系超伝導金属酸化物
(略称でYBC吸着材)の混合物からなるカソード側第
1電極膜2aを有する酸素拡散孔6a−1(第1酸素拡
散孔)は、二酸化窒素の限界電流が1.5V〜2.25
V前後で得られている。一方、白金からなるカソード側
第2電極膜3aを有する酸素拡散孔6a−2(第2酸素
拡散孔)は、酸素の限界電流が0.75V〜1.25V
前後で得られ、この2つの限界電流から酸素と二酸化窒
素の計測が可能となった。また、この実施例において二
酸化窒素の限界電流が1.5V〜2.25V前後で得ら
れることは、従来の白金電極における2.0V〜2.2
5Vに比較して低電圧側にシフトしており、YBa2
37系超伝導金属酸化物の吸着効果によりものであ
る。
FIG. 2 shows oxygen 2.5 at an operating temperature of 450 ° C.
% And nitrogen dioxide (NO 2 ) 5.0%. The oxygen diffusion holes 6a-1 (first oxygen diffusion holes) having the cathode-side first electrode film 2a made of a mixture of platinum and a YBa 2 Cu 3 O 7 -based superconducting metal oxide (abbreviated as YBC adsorbent) The limit current of nitrogen is 1.5V to 2.25
It is obtained around V. On the other hand, the oxygen diffusion hole 6a-2 (second oxygen diffusion hole) having the cathode-side second electrode film 3a made of platinum has a limiting current of oxygen of 0.75V to 1.25V.
Obtained before and after, and it became possible to measure oxygen and nitrogen dioxide from these two limit currents. Further, the fact that the limit current of nitrogen dioxide can be obtained at around 1.5 V to 2.25 V in this embodiment means that the conventional platinum electrode has a limit current of 2.0 V to 2.2 V.
It is shifted to a lower voltage side compared to 5V, and YBa 2 C
This is due to the adsorption effect of the u 3 O 7 -based superconducting metal oxide.

【0014】なお、第1電極膜における2.25V以上
の電流挙動は電子伝導のため、第2電極膜における1.
25V以上の電流挙動は二酸化窒素の分解電流のためで
あり、これら影響のため限界電流が得られなかった。
Since the current behavior of 2.25 V or more in the first electrode film is electron conduction, the current behavior in the second electrode film is not less than 1.25 V.
The current behavior of 25 V or more is due to the decomposition current of nitrogen dioxide, and no limit current was obtained due to these effects.

【0015】また、白金とYBa2Cu37伝導金属酸
化物との混合比であるが、PtをYBa2Cu37に対
して99〜0.1倍の範囲で混合しても効果が得られ
た。この混合割合は、Ptが多いと酸素の吸着特性に優
れ、YBa2Cu37が多いと窒素酸化物の吸着特性に
優れることの相関で決められると推定される。
The mixing ratio of platinum to YBa 2 Cu 3 O 7 conductive metal oxide is effective even if Pt is mixed in a range of 99 to 0.1 times that of YBa 2 Cu 3 O 7 . was gotten. It is presumed that this mixing ratio is determined by the correlation that when the amount of Pt is large, the oxygen adsorption characteristics are excellent, and when the amount of YBa 2 Cu 3 O 7 is large, the nitrogen oxide adsorption characteristics are excellent.

【0016】図3は、本発明の第2の実施例である限界
電流式窒素酸化物センサの断面斜視図である。図3にお
いて、1a−1は第1の酸素イオン伝導性固体電解質板
であり、対となる第1電極膜2aと2b(記載せず)が
形成されている。この第1固体電解質板1a−1の片側
上部にカソード側第1電極膜2aを囲み、始端と終端が
お互いに間隔を有するように配置された螺旋型スペーサ
4が配置されている。一方、1a−2は第2酸素イオン
伝導性固体電解質板であり、対となる第2電極膜3a
(記載せず)と3bが形成されている。そして螺旋型ス
ペーサ4の上部に第2の酸素イオン伝導性固体電解質板
1a−2を配置し、酸素拡散孔6が螺旋型スペーサ4の
相対向する隔壁と第1固体電解質板1a−1と第2固体
電解質板1a−2で囲まれる螺旋型の空間で形成されて
いる。そのため、第1電極膜2a、2bと第2電極膜3
a、3bで1個の酸素拡散孔6を共有している。第1カ
ソード側電極膜2aは貴金属と銅系超伝導金属酸化物の
混合物からなり、第2カソード側電極膜3aは貴金属か
らなる。
FIG. 3 is a sectional perspective view of a limiting current type nitrogen oxide sensor according to a second embodiment of the present invention. In FIG. 3, reference numeral 1a-1 denotes a first oxygen ion conductive solid electrolyte plate, on which a pair of first electrode films 2a and 2b (not shown) are formed. A helical spacer 4 surrounding the cathode-side first electrode film 2a and having a start end and an end spaced from each other is disposed above one side of the first solid electrolyte plate 1a-1. On the other hand, reference numeral 1a-2 denotes a second oxygen ion conductive solid electrolyte plate, and a pair of second electrode films 3a.
(Not shown) and 3b are formed. Then, a second oxygen ion conductive solid electrolyte plate 1a-2 is disposed on the upper part of the spiral spacer 4, and the oxygen diffusion holes 6 are arranged opposite to the partition wall of the spiral spacer 4, the first solid electrolyte plate 1a-1 and the second solid electrolyte plate 1a-1. It is formed of a spiral space surrounded by two solid electrolyte plates 1a-2. Therefore, the first electrode films 2a and 2b and the second electrode film 3
a, 3b share one oxygen diffusion hole 6. The first cathode-side electrode film 2a is made of a mixture of a noble metal and a copper-based superconducting metal oxide, and the second cathode-side electrode film 3a is made of a noble metal.

【0017】次に具体的実験例にもとづいて説明する。
図3の限界電流式窒素酸化物センサにおいて固体電解質
板1a−1および1a−2としてZrO2、Y23(Y2
38mol%添加)、第1電極膜2a、2bとして白金と
GaBa2Cu37系超伝導金属酸化物の混合物、第2
電極膜3a、3bとして白金、螺旋型スペーサ4として
硝子(熱膨脹係数はZrO2、Y23と概略同一であ
り、所定粒径の耐熱性粒子を微量含有)を用いた。製法
について説明する。まず白金とGaBa2Cu3 7系超
伝導金属酸化物を3:1の重量比で混合し、酸化銅系硝
子フリットや有機溶剤を添加して第1電極膜2a、2b
のペーストを試作した。次に、電極膜2a、2bを第1
固体電解質板1a−1の上に、第2電極膜3a、3bを
第2固体電解質板1a−2の上に厚膜印刷技術および焼
成技術を用いて各々形成した。さらに螺旋型スペーサ4
を第1固体電解質板1a−1の上に厚膜印刷技術および
焼成技術を用いて形成した。最後に第1固体電解質板1
a−1の上に第2固体電解質板1a−2とを積層し加熱
溶融することで酸素拡散孔6を形成した。そしてリード
線(記載せず)を取りつけて完成である。完成品素子の
寸法は12×12×0.9mmである。
Next, a description will be given based on specific experimental examples.
The solid electrolyte in the limiting current type nitrogen oxide sensor of FIG.
ZrO as plates 1a-1 and 1a-2Two, YTwoOThree(YTwo
OThree8 mol%), and platinum as the first electrode films 2a and 2b.
GaBaTwoCuThreeO7Of superconducting metal oxides, second
Platinum for the electrode films 3a and 3b, and for the spiral spacer 4
Glass (Coefficient of thermal expansion is ZrOTwo, YTwoOThreeIs almost identical to
And a small amount of heat-resistant particles having a predetermined particle size). Manufacturing method
Will be described. First, platinum and GaBaTwoCuThreeO 7System
A conductive metal oxide is mixed at a weight ratio of 3: 1 and copper oxide-based
The first electrode films 2a, 2b
Was made as a prototype. Next, the electrode films 2a and 2b are
The second electrode films 3a and 3b are formed on the solid electrolyte plate 1a-1.
Thick film printing technology and printing on the second solid electrolyte plate 1a-2.
Each was formed using a forming technique. Furthermore, spiral spacer 4
Thick film printing technology on the first solid electrolyte plate 1a-1 and
It was formed using a firing technique. Finally, the first solid electrolyte plate 1
A second solid electrolyte plate 1a-2 is laminated on a-1 and heated.
The oxygen diffusion holes 6 were formed by melting. And lead
Attach a line (not shown) to complete. Completed element
The dimensions are 12 × 12 × 0.9 mm.

【0018】図4に、動作温度450℃での酸素2.5
%と二酸化窒素(NO2 )5.0%における電圧電流特
性を示す。白金とGaBa2Cu37系超伝導金属酸化
物(略称でGBC吸着材)の混合物からなるカソ−ド側
第1電極膜2aは、二酸化窒素の限界電流が1.5V〜
2.25V前後で得られている。一方、白金からなるカ
ソ−ド側第2電極膜3aは、酸素の限界電流が0.75
V〜1.25V前後で得られ、この2つの限界電流から
酸素と二酸化窒素の計測が可能となった。また、この実
施例において二酸化窒素の限界電流が1.5V〜2.2
5V前後で得られることは、従来の白金電極における
2.0V〜2.25Vに比較して低電圧側にシフトして
おり、GaBa2Cu37系超伝導金属酸化物の吸着効
果によりものである。
FIG. 4 shows oxygen 2.5 at an operating temperature of 450 ° C.
% And nitrogen dioxide (NO 2 ) 5.0%. Platinum and GaBa 2 Cu 3 O 7-based superconducting metal oxide consists of a mixture of (GBC adsorbent in abbreviation) cathode - the first electrode layer 2a de side, limiting current of nitrogen dioxide 1.5V~
It is obtained around 2.25V. On the other hand, the cathode-side second electrode film 3a made of platinum has a limiting current of oxygen of 0.75.
V was obtained at about 1.25 V, and oxygen and nitrogen dioxide could be measured from these two limit currents. In this embodiment, the limit current of nitrogen dioxide is 1.5 V to 2.2.
What is obtained at about 5 V is shifted to a lower voltage side as compared with 2.0 V to 2.25 V in the conventional platinum electrode, and is due to the adsorption effect of the GaBa 2 Cu 3 O 7 -based superconducting metal oxide. It is.

【0019】なお、第1電極膜における2.25V以上
の電流挙動は電子伝導のため、第2電極膜における1.
25V以上の電流挙動は二酸化窒素の分解電流のためで
あり、これら影響のため限界電流が得られなかった。
Since the current behavior of 2.25 V or more in the first electrode film is electron conduction, the current behavior in the second electrode film is not less than 1.25 V.
The current behavior of 25 V or more is due to the decomposition current of nitrogen dioxide, and no limit current was obtained due to these effects.

【0020】また、白金とGaBa2Cu37系超伝導
金属酸化物との混合比であるが、PtをGaBa2Cu3
7に対して99〜0.1倍の範囲で混合しても効果が
得られた。この割合は、Ptが多いと酸素の吸着特性に
優れ、GaBa2Cu37多いと窒素酸化物の吸着特性
に優れることの相関で決められると推定される。
The mixing ratio of platinum to GaBa 2 Cu 3 O 7 -based superconducting metal oxide is such that Pt is GaBa 2 Cu 3
Be mixed with respect to O 7 in the range of 99 to 0.1 fold effect was obtained. It is presumed that this ratio is determined by the correlation that when the content of Pt is large, the oxygen adsorption property is excellent, and when the content of GaBa 2 Cu 3 O 7 is large, the nitrogen oxide adsorption property is excellent.

【0021】銅系超伝導金属酸化物として、YBa2
37およびGaBa2Cu37以外にBa2CuO3.5
やLaCuO4、BizCaSr2Cu210、Tl2Ca
BaCu29、BaCu35、YaBaCuO5、Ba
Cu35も検討したが同様な効果が得られ、低電圧側か
ら二酸化窒素の限界電流が観察された。また、白金との
混合割合も白金を銅系超伝導金属酸化物に対して99〜
0.1倍の範囲で混合すると良好な特性が得られた。
As a copper-based superconducting metal oxide, YBa 2 C
u 3 O 7 and GaBa 2 Cu 3 O 7 Ba 2 CuO 3.5 in addition
And LaCuO 4 , BizCaSr 2 Cu 2 O 10 , Tl 2 Ca
BaCu 2 O 9 , BaCu 3 O 5 , YaBaCuO 5 , Ba
Although Cu 3 O 5 was also examined, a similar effect was obtained, and a limiting current of nitrogen dioxide was observed from the low voltage side. Further, the mixing ratio of platinum to copper-based superconducting metal oxide is 99 to
Good characteristics were obtained by mixing in a range of 0.1 times.

【0022】[0022]

【発明の効果】以上のように本発明の限界電流式窒素酸
化物センサによれば、次の効果が得られる。
As described above, according to the limiting current type nitrogen oxide sensor of the present invention, the following effects can be obtained.

【0023】(1)対となる第1電極膜および第2電極
膜を両面に2対形成した酸素イオン伝導性固体電解質板
と、固体電解質板の片側の2個のカソ−ド電極膜を各々
囲み始端と終端がお互いに間隔を有するように配置され
た2個の螺旋型スペ−サと、螺旋型スペーサの相対向す
る隔壁と固体電解質板とで囲まれる第1酸素拡散孔およ
び第2酸素拡散孔を内部に形成するために螺旋型スペー
サの上部に配置したシール板とで構成され、第1電極膜
のカソ−ド電極膜が貴金属と銅系超伝導金属酸化物の混
合物からなり、第2電極膜のカソ−ド電極膜が貴金属か
らなる。窒素酸化物は第1酸素拡散孔を経由して拡散
し、カソ−ド側第1電極膜において銅系超伝導金属酸化
物により吸着され、さらに貴金属と直流電圧により分解
して酸素イオンに変化し、酸素イオン伝導性固体電解質
板をアノ−ド電極膜に向かって移動する。そのため、第
1酸素拡散孔において低印加電圧から窒素酸化物に関す
る限界電流が得られる。一方、第2酸素拡散孔において
は貴金属からなる第2電極膜において酸素の限界電流が
得られる。従って、センサの動作温度を上昇させること
なく低い動作温度で一酸化窒素と酸素の濃度を同時に測
定できる。
(1) An oxygen ion conductive solid electrolyte plate in which two pairs of a first electrode film and a second electrode film are formed on both surfaces, and two cathode electrode films on one side of the solid electrolyte plate, respectively. A first oxygen diffusion hole and a second oxygen surrounded by two spiral spacers arranged so that the enclosing start end and the end end are spaced from each other, and opposing partition walls of the spiral spacer and the solid electrolyte plate. A cathode plate disposed above the helical spacer to form a diffusion hole therein, wherein the cathode electrode film of the first electrode film comprises a mixture of a noble metal and a copper-based superconducting metal oxide; The cathode electrode film of the two-electrode film is made of a noble metal. The nitrogen oxides diffuse through the first oxygen diffusion holes, are adsorbed by the copper-based superconducting metal oxide in the cathode-side first electrode film, and further decompose with the noble metal by a DC voltage to change into oxygen ions. Then, the oxygen ion conductive solid electrolyte plate is moved toward the anode electrode film. Therefore, a critical current relating to nitrogen oxide can be obtained from the low applied voltage in the first oxygen diffusion hole. On the other hand, in the second oxygen diffusion hole, a limiting current of oxygen is obtained in the second electrode film made of a noble metal. Therefore, the concentrations of nitric oxide and oxygen can be measured simultaneously at a low operating temperature without increasing the operating temperature of the sensor.

【0024】(2)両面に対となる第1電極膜を形成し
た第1酸素イオン伝導性固体電解質板と、固体電解質板
の片側の電極膜を囲み始端と終端がお互いに間隔を有す
るように配置された螺旋型スペーサと、螺旋型スペーサ
の上部に配置されており両面に対となる第2電極膜を形
成した第2酸素イオン伝導性固体電解質板とで構成さ
れ、第1電極膜のカソ−ド電極膜が貴金属と銅系超伝導
金属酸化物の混合物からなり第2電極膜のカソ−ド電極
膜が貴金属からなる。窒素酸化物は酸素拡散孔を経由し
て拡散しカソ−ド側第1電極膜において銅系超伝導金属
酸化物により吸着され、さらに貴金属と直流電圧により
分解して酸素イオンに変化し酸素イオン伝導性固体電解
質板をアノ−ド電極膜に向かて移動する。そのため、第
1電極膜において低印加電圧から窒素酸化物に関する限
界電流が得られる。一方、貴金属からなる第2電極膜に
おいては酸素の限界電流が得られる。従って、センサの
動作温度を上昇させることなく低い動作温度で一酸化窒
素と酸素の濃度を同時に正確に測定できる。
(2) A first oxygen ion-conductive solid electrolyte plate having a pair of first electrode films formed on both surfaces, and an electrode film on one side of the solid electrolyte plate is surrounded so that the start end and the end are spaced from each other. And a second oxygen ion conductive solid electrolyte plate which is disposed above the spiral spacer and has a pair of second electrode films formed on both sides thereof. The cathode electrode film is made of a mixture of a noble metal and a copper-based superconducting metal oxide, and the cathode electrode film of the second electrode film is made of a noble metal. Nitrogen oxide diffuses through the oxygen diffusion holes and is adsorbed by the copper-based superconducting metal oxide in the cathode-side first electrode film, and further decomposes with the noble metal by a DC voltage to change into oxygen ions, thereby causing oxygen ion conduction. The conductive solid electrolyte plate is moved toward the anode electrode film. Therefore, a limit current regarding nitrogen oxide can be obtained from the low applied voltage in the first electrode film. On the other hand, in the second electrode film made of a noble metal, a limiting current of oxygen is obtained. Therefore, the concentrations of nitric oxide and oxygen can be simultaneously and accurately measured at a low operating temperature without increasing the operating temperature of the sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例である限界電流式窒素酸
化物センサの断面斜視図
FIG. 1 is a sectional perspective view of a limiting current type nitrogen oxide sensor according to a first embodiment of the present invention.

【図2】図1の限界電流式窒素酸化物センサの効果特性
FIG. 2 is an effect characteristic diagram of the limiting current type nitrogen oxide sensor of FIG.

【図3】本発明の第2の実施例である限界電流式窒素酸
化物センサの断面斜視図
FIG. 3 is a sectional perspective view of a limiting current type nitrogen oxide sensor according to a second embodiment of the present invention.

【図4】図3の限界電流式窒素酸化物センサの効果特性
4 is an effect characteristic diagram of the limiting current type nitrogen oxide sensor of FIG.

【図5】従来の限界電流式窒素酸化物センサの断面斜視
FIG. 5 is a sectional perspective view of a conventional limiting current type nitrogen oxide sensor.

【図6】従来の限界電流式窒素酸化物センサの効果特性
FIG. 6 is an effect characteristic diagram of a conventional limiting current type nitrogen oxide sensor.

【符号の説明】[Explanation of symbols]

1 酸素イオン伝導性固体電解質板 1a−1 第1酸素イオン伝導性固体電解質板 1a−2 第2酸素イオン伝導性固体電解質板 2a カソ−ド側第1電極膜 3a カソ−ド側第2電極膜 3b アノ−ド側第2電極膜 4 螺旋型スペーサ 4a−1 第1螺旋型スペーサ 4a−2 第2螺旋型スペーサ 5 シール板 6 酸素拡散孔 6a−1 第1酸素拡散孔 6a−2 第2酸素拡散孔 DESCRIPTION OF SYMBOLS 1 Oxygen ion conductive solid electrolyte board 1a-1 1st oxygen ion conductive solid electrolyte board 1a-2 2nd oxygen ion conductive solid electrolyte board 2a Cathode side 1st electrode film 3a Cathode side 2nd electrode film 3b Anode-side second electrode film 4 Spiral spacer 4a-1 First spiral spacer 4a-2 Second spiral spacer 5 Seal plate 6 Oxygen diffusion hole 6a-1 First oxygen diffusion hole 6a-2 Secondary oxygen Diffusion hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅田 孝裕 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 黄地 謙三 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−160344(JP,A) 特表 平6−511560(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 27/416 G01N 27/41 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takahiro Umeda 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-6-160344 (JP, A) JP-A-6-511560 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 27/416 G01N 27/41

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対となる第1電極膜および第2電極膜を両
面に2対形成した酸素イオン伝導性固体電解質板と、前
記固体電解質板の片側の2個のカソード電極膜を各々囲
み始端と終端がお互いに間隔を有するように配置された
2個の螺旋型スペーサと、前記螺旋型スペーサの相対向
する隔壁と前記固体電解質板とで囲まれる第1酸素拡散
孔および第2酸素拡散孔を内部に形成するために前記螺
旋型スペーサの上部に配置したシール板とで構成され、
前記第1電極膜のカソード電極膜が貴金属と銅系超伝導
金属酸化物の混合物からなり、前記第2電極膜のカソー
ド電極膜が貴金属からなる限界電流式窒素酸化物セン
サ。
1. An oxygen ion-conductive solid electrolyte plate having two pairs of a first electrode film and a second electrode film formed on both surfaces thereof, and two cathode electrode films on one side of the solid electrolyte plate, each surrounding a starting end. And two helical spacers whose ends are spaced from each other, first oxygen diffusion holes and second oxygen diffusion holes surrounded by opposing partitions of the helical spacer and the solid electrolyte plate. A seal plate disposed above the helical spacer to form the inside,
A limiting current type nitrogen oxide sensor, wherein the cathode electrode film of the first electrode film is made of a mixture of a noble metal and a copper-based superconducting metal oxide, and the cathode electrode film of the second electrode film is made of a noble metal.
【請求項2】両面に対となる第1電極膜を形成した第1
酸素イオン伝導性固体電解質板と、前記固体電解質板の
片側の電極膜を囲み始端と終端がお互いに間隔を有する
ように配置された螺旋型スペーサと、前記螺旋型スペー
サの上部に配置されており両面に対となる第2電極膜を
形成した第2酸素イオン伝導性固体電解質板とで構成さ
れ、前記第1電極膜のカソード電極膜が貴金属と銅系超
伝導金属酸化物の混合物からなり、前記第2電極膜のカ
ソード電極膜が貴金属からなる限界電流式窒素酸化物セ
ンサ。
2. A first electrode having a pair of first electrode films formed on both surfaces.
An oxygen ion conductive solid electrolyte plate, a helical spacer surrounding the electrode film on one side of the solid electrolyte plate, and a start end and an end arranged so as to be spaced from each other, and are disposed above the helical spacer. A second oxygen ion conductive solid electrolyte plate having a pair of second electrode films formed on both surfaces, wherein the cathode electrode film of the first electrode film is made of a mixture of a noble metal and a copper-based superconducting metal oxide; A limiting current type nitrogen oxide sensor wherein the cathode electrode film of the second electrode film is made of a noble metal.
JP5001596A 1993-01-08 1993-01-08 Limit current type nitrogen oxide sensor Expired - Fee Related JP2936933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001596A JP2936933B2 (en) 1993-01-08 1993-01-08 Limit current type nitrogen oxide sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001596A JP2936933B2 (en) 1993-01-08 1993-01-08 Limit current type nitrogen oxide sensor

Publications (2)

Publication Number Publication Date
JPH06201644A JPH06201644A (en) 1994-07-22
JP2936933B2 true JP2936933B2 (en) 1999-08-23

Family

ID=11505888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001596A Expired - Fee Related JP2936933B2 (en) 1993-01-08 1993-01-08 Limit current type nitrogen oxide sensor

Country Status (1)

Country Link
JP (1) JP2936933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930636A1 (en) * 1999-07-02 2001-01-18 Bosch Gmbh Robert Electrochemical gas sensor and method for determining gas components
DE10048240B4 (en) * 2000-09-29 2007-02-08 Robert Bosch Gmbh Gas sensor element and method for determining the concentration of a gas component in a gas mixture

Also Published As

Publication number Publication date
JPH06201644A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
JP3314426B2 (en) Oxygen sensor
US5516410A (en) Planar sensor element having a solid electrolyte substrate
JPS57137850A (en) Oxygen concentration measuring element
JP2938514B2 (en) Gas sensor
JP2936933B2 (en) Limit current type nitrogen oxide sensor
JPS59163558A (en) Electrochemical apparatus
JPS5965758A (en) Electrochemical device and cell
JPH0829387A (en) Electrochemical element and nitrogen oxide concentration measuring apparatus
JP3067439B2 (en) Limit current type nitrogen oxide sensor
Yamaji et al. Comparison between La0. 9Ba0. 1Ga0. 8Mg0. 2O2. 85 and La0. 9Sr0. 1Ga0. 8Mg0. 2O2. 85 as SOFCs electrolytes
JPH07140099A (en) Electrochemical apparatus
US3527689A (en) Solid electrolyte cell construction
JP3154276B2 (en) Electrochemical element
JP2918990B2 (en) Gas sensor
JP2993340B2 (en) Gas sensor
JP2970290B2 (en) Electrochemical element
JP3256618B2 (en) Solid electrolyte type gas sensor element
JP3037358B2 (en) Manufacturing method of oxide superconductor and oxide superconductor laminate
JP2003149195A (en) Gas sensor
JPH0941177A (en) Electrochemical element, electrochemical treatment using the same and device for electrochemical treatment
Sato et al. Electrical properties of La2S3-doped calcium sulfide solid electrolyte
JPH07294483A (en) Electrochemical element and manufacture thereof
JP2003270201A (en) Gas sensor
JP3048914B2 (en) Electrochemical device
JPH06148115A (en) Gas sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees