JP2936368B2 - Manufacturing method of metal thin film - Google Patents

Manufacturing method of metal thin film

Info

Publication number
JP2936368B2
JP2936368B2 JP4170059A JP17005992A JP2936368B2 JP 2936368 B2 JP2936368 B2 JP 2936368B2 JP 4170059 A JP4170059 A JP 4170059A JP 17005992 A JP17005992 A JP 17005992A JP 2936368 B2 JP2936368 B2 JP 2936368B2
Authority
JP
Japan
Prior art keywords
thin film
metal
metal thin
deposited
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4170059A
Other languages
Japanese (ja)
Other versions
JPH05339780A (en
Inventor
紘征 金児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4170059A priority Critical patent/JP2936368B2/en
Publication of JPH05339780A publication Critical patent/JPH05339780A/en
Application granted granted Critical
Publication of JP2936368B2 publication Critical patent/JP2936368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】プリント基板などの電子機器用材
料として、銅箔を始めとし各種の金属薄膜が用いられれ
ている。本発明は有機液体と目的金属の電解質溶液との
二液相界面を利用して金属薄膜を連続的に製造する方法
に関する。
BACKGROUND OF THE INVENTION Various metal thin films including copper foil are used as materials for electronic devices such as printed circuit boards. The present invention relates to a method for continuously producing a metal thin film using a two-liquid phase interface between an organic liquid and an electrolyte solution of a target metal.

【0002】[0002]

【従来技術とその課題】従来、プリント基板などの電子
機器材料用銅箔としては一般に電解銅箔が用いられてお
り、この銅箔は、銅電解液中に回転面の下半部が浸漬し
た回転ドラムを陰極として用い、ドラム面に銅を電着さ
せ、該ドラムを回転させつつ銅箔を剥ぎ取る方法によっ
て製造されている。ところが、この方法では、ドラム面
に電着した銅箔を剥離する必要があり、電着銅のドラム
面への付着力が不均一であると電着銅の剥離が円滑に行
なわれず、巻取りの際に銅箔が破断し、または剥離残し
を生じ、ドラムが電解液中に回転した次サイクルの電解
に支障を生じる。また、この方法によって得られる銅箔
の膜厚は10〜40μm程度であり、約1μm程度の極薄の
銅箔はドラムの電着面から剥離する際に破断し易く、こ
の方法によって製造するのは難しい。
2. Description of the Related Art Conventionally, an electrolytic copper foil is generally used as a copper foil for electronic equipment materials such as printed circuit boards, and the lower half of a rotating surface is immersed in a copper electrolytic solution. It is manufactured by a method in which a rotating drum is used as a cathode, copper is electrodeposited on the drum surface, and a copper foil is peeled off while rotating the drum. However, in this method, it is necessary to peel off the copper foil electrodeposited on the drum surface, and if the adhesion of the electrodeposited copper to the drum surface is not uniform, the electrodeposited copper is not peeled off smoothly, and is wound up. In this case, the copper foil is broken or peeling remains, which hinders electrolysis in the next cycle in which the drum rotates in the electrolytic solution. The thickness of the copper foil obtained by this method is about 10 to 40 μm, and the extremely thin copper foil of about 1 μm is easily broken when peeled from the electrodeposited surface of the drum. Is difficult.

【0003】本発明は従来方法の上記課題を解決した金
属薄膜の製造方法を提供することを目的とする。金属塩
水溶液の電解については、有機液体/金属塩水溶液界面
に点電極を接触させて電解を行なうと、この界面で木の
葉状に薄く金属が析出することが知られており、その形
態から析出金属は金属葉と称されている(日本金属学会
会報第30巻第12号第985 頁〜第992 頁)。本発明はこの
有機液体/金属塩水溶液界面に金属を薄く析出させる方
法を利用し、これを更に発展させ、有機液体/金属塩水
溶液界面に金属薄膜を連続的に析出させる方法を確立し
たものであって、本発明の方法によれば、製造設備が簡
単で数ミクロン以下の金属薄膜を容易に得ることができ
る。
An object of the present invention is to provide a method for producing a metal thin film which solves the above problems of the conventional method. With respect to electrolysis of a metal salt aqueous solution, it is known that when a point electrode is brought into contact with an organic liquid / metal salt aqueous solution interface and electrolysis is performed, a thin metal is deposited like a leaf at this interface. Are referred to as metal leaves (The Japan Institute of Metals, Vol. 30, No. 12, pp. 985-992). The present invention utilizes the method of depositing a thin metal at the interface between the organic liquid and the aqueous solution of the metal salt, and further develops the method to establish a method for continuously depositing a thin metal film at the interface between the organic liquid and the aqueous solution of the metal salt. Thus, according to the method of the present invention, the production equipment is simple and a metal thin film of several microns or less can be easily obtained.

【0004】[0004]

【課題の解決手段】本発明によれば、目的金属の電解質
溶液と該電解質溶液よりも比重の大きい非電解質の有機
液体によって形成した二液相界面にカソードを設置して
電解を行ない、該カソード先端に析出し成長する目的金
属薄膜とアノードとの距離を制御して目的金属の薄膜を
連続的に析出させることを特徴とする金属薄膜の製造方
法が提供される。また、その具体的な態様として、析出
する目的金属薄膜の先端とアノードとの距離を一定に保
つように該目的金属薄膜を巻取りながら電解することを
特徴とす方法、または析出する目的金属薄膜の先端とア
ノードとの距離を一定に保つようにアノードを移動して
電解することを特徴とする方法が提供される。
According to the present invention, a cathode is installed at a two liquid phase interface formed by an electrolyte solution of a target metal and a non-electrolyte organic liquid having a higher specific gravity than the electrolyte solution to perform electrolysis. There is provided a method for producing a metal thin film, characterized in that the distance between an anode and a target metal thin film that is deposited and grown on the tip is controlled to continuously deposit a thin film of the target metal. Further, as a specific embodiment thereof, a method characterized in that electrolysis is performed while winding the target metal thin film so as to keep the distance between the tip of the target metal thin film to be deposited and the anode constant, or the target metal thin film to be deposited And performing electrolysis by moving the anode such that the distance between the tip of the anode and the anode is kept constant.

【0005】本発明は、電解質溶液を形成する金属につ
いて適用することができ、具体的には、亜鉛、鉄、コバ
ルト、金、銀、銅、カドミウム、アンチモン、ニッケ
ル、錫などの金属塩水溶液に適用できる。これらの金属
塩水溶液としては、上記金属の硫酸塩、硝酸塩、塩酸
塩、酢酸塩、アンモニウム塩など通常の金属塩電解で用
いる水溶液であれば良い。
The present invention can be applied to a metal forming an electrolyte solution. Specifically, the present invention is applied to an aqueous solution of a metal salt such as zinc, iron, cobalt, gold, silver, copper, cadmium, antimony, nickel and tin. Applicable. The aqueous solution of these metal salts may be any aqueous solution used for ordinary metal salt electrolysis, such as sulfates, nitrates, hydrochlorides, acetates and ammonium salts of the above metals.

【0006】目的金属の電解質溶液に対して二液界面を
形成する非電解質の有機液体としては、該電解質溶液よ
りも比重の大きいものが用いられる。電解槽内におい
て、下側に非電解質の有機液体、その上側に目的金属の
電解質溶液を供給し、該有機液体の液面を目的金属の電
解質溶液によって覆うことにより、下側の有機液体の蒸
発を抑えることができ、作業環境の悪化を防止すること
ができる。また該電解質溶液の補給も容易になる。な
お、該有機液体は、目的金属の電解質溶液と明瞭に二液
界面を形成できることが必要であり、この目的に適うも
のとして、互いに溶解せず、かつ該電解質溶液/有機液
体の界面張力の大きいもの、または析出する金属とその
電解質溶液および有機液との3相界面の接触角の大きい
ものが好ましい。また、電解質溶液として金属塩の水溶
液を用いる場合には、予め金属塩水溶液に空気ないし酸
素を吹き込んでおくと界面張力が大きくなるので好まし
い。通常の金属塩水溶液に対する好適な有機液体の例と
しては、四塩化炭素、(C4 9 3 NまたはC8 16
Oなどが挙げられる。上記有機液体の液量は目的金属の
電解質溶液と充分な二液界面を形成し、かつ析出した金
属薄膜を該有機液体を通過して引き出せる程度であれば
良い。
As the non-electrolyte organic liquid which forms a two-liquid interface with the electrolyte solution of the target metal, one having a specific gravity higher than that of the electrolyte solution is used. In the electrolysis tank, a non-electrolyte organic liquid is supplied on the lower side, and an electrolyte solution of the target metal is supplied on the upper side, and the liquid surface of the organic liquid is covered with the electrolyte solution of the target metal, thereby evaporating the lower organic liquid. And the working environment can be prevented from deteriorating. Also, replenishment of the electrolyte solution is facilitated. It is necessary that the organic liquid is capable of clearly forming a two-liquid interface with the electrolyte solution of the target metal. For this purpose, the organic liquid does not dissolve in each other and has a large interfacial tension between the electrolyte solution and the organic liquid. Those having a large contact angle at the three-phase interface between the deposited metal and its electrolyte solution and organic liquid are preferred. When an aqueous solution of a metal salt is used as the electrolyte solution, it is preferable to blow air or oxygen into the aqueous solution of the metal salt in advance because the interfacial tension increases. Examples of suitable organic liquids for normal aqueous metal salts include carbon tetrachloride, (C 4 F 9 ) 3 N or C 8 F 16
O and the like. The amount of the organic liquid may be such that it forms a sufficient two-liquid interface with the electrolyte solution of the target metal and that the deposited metal thin film can be pulled out through the organic liquid.

【0007】金属薄膜の析出状態は目的金属の電解質溶
液の液温によって大きく影響されるので、液温を一定に
保つため、外周を恒温水で囲んだ恒温電解槽を用いるの
が好ましい。一例として、硫酸亜鉛水溶液を用いて亜鉛
を電析する場合、液温は20〜40℃の範囲に保持する
のが良い。液温が低く過ぎると目的の金属薄膜の成長が
遅く、しかも金属薄膜の表面に針状の析出物が多く付着
する。一方、液温が高いと金属薄膜の成長が早く制御し
難い。また、多くの場合、電解中に液温が±2℃以上変
動すると金属薄膜の成長が不均一になる。
Since the deposition state of the metal thin film is greatly affected by the temperature of the electrolyte solution of the target metal, it is preferable to use a constant temperature electrolytic bath whose outer periphery is surrounded by constant temperature water in order to keep the solution temperature constant. As an example, when zinc is electrodeposited using an aqueous solution of zinc sulfate, the liquid temperature is preferably kept in the range of 20 to 40 ° C. If the liquid temperature is too low, the growth of the target metal thin film is slow, and moreover, many needle-like precipitates adhere to the surface of the metal thin film. On the other hand, when the liquid temperature is high, the growth of the metal thin film is difficult to control quickly. In many cases, if the liquid temperature fluctuates by ± 2 ° C. or more during electrolysis, the growth of the metal thin film becomes uneven.

【0008】アノードには不溶性電極が用いられるが目
的金属と同一の金属でもよい。カソードには目的金属と
同一の金属または白金、アルミニウム、黒鉛などの良導
電性材料が用いられる。なお、カソードに析出した金属
薄膜を巻取りながら電解する場合には、巻取りが容易な
薄膜状のカソードを用いるのが好ましい。具体的には、
硫酸亜鉛水溶液の電解によって亜鉛薄膜を製造する場合
には、アノードとして亜鉛板を用い、カソードとしてア
ルミニウム薄膜が好適に用いられる。また銅薄膜の製造
においては、アノードとして銅板、カソードとしてアル
ミニウム薄膜が好適に用いられる。
Although an insoluble electrode is used for the anode, the same metal as the target metal may be used. For the cathode, the same metal as the target metal or a highly conductive material such as platinum, aluminum, or graphite is used. When electrolysis is performed while winding the metal thin film deposited on the cathode, it is preferable to use a thin-film cathode that can be easily wound. In particular,
When a zinc thin film is produced by electrolysis of an aqueous solution of zinc sulfate, a zinc plate is preferably used as an anode and an aluminum thin film is suitably used as a cathode. In the production of a copper thin film, a copper plate is suitably used as an anode and an aluminum thin film is suitably used as a cathode.

【0009】カソードは上記有機液体と目的金属の電解
質溶液との二液相界面に置かれる。電解条件は有機液体
および上記電解質溶液の種類、これらの液温および濃度
などに基づいて適宜定められる。なお、電流密度が高い
と膜厚が不均一になり、電流密度が低いほど薄膜が得ら
れる。但し電流密度が低過ぎると金属薄膜が成長しな
い。
The cathode is located at the two liquid phase interface between the organic liquid and the electrolyte solution of the target metal. The electrolysis conditions are appropriately determined based on the type of the organic liquid and the above-mentioned electrolyte solution, their liquid temperature and concentration, and the like. When the current density is high, the film thickness becomes non-uniform, and when the current density is low, a thin film can be obtained. However, if the current density is too low, the metal thin film does not grow.

【0010】上記電解によりカソードの先端に目的の金
属薄膜が析出し、アノードに向って成長する。目的金属
の析出に伴い、該析出金属薄膜またはアノードを相対的
に移動して該析出金属薄膜の成長端とアノードとの間の
距離が一定になるように電解を継続すると、析出した金
属薄膜が順次カソードとなって連続的に目的金属の薄膜
が成長する。析出した金属薄膜とアノードとの距離を一
定に保持して電解を行なう方法としては、金属薄膜の成
長速度に対応して該金属薄膜を順次巻取る方法、または
アノードを移動して金属薄膜を帯状に長く成長させる方
法などが行なわれる。
[0010] By the above-mentioned electrolysis, a target metal thin film is deposited on the tip of the cathode and grows toward the anode. When the target metal is deposited, the deposited metal thin film or the anode is relatively moved to continue the electrolysis so that the distance between the growth end of the deposited metal thin film and the anode becomes constant. The thin film of the target metal grows continuously as a cathode. As a method of performing electrolysis while maintaining a constant distance between the deposited metal thin film and the anode, a method of sequentially winding the metal thin film in accordance with the growth rate of the metal thin film, or a method of moving the anode to form a strip of the metal thin film. For example, a method of growing a long time is performed.

【0011】析出金属薄膜を巻取る方法によれば、比較
的小型の電解槽を用いても帯状に長い金属薄膜を製造で
きる利点がある。この場合に、析出した目的金属の薄膜
は非電解質の有機液体を通じて引き出す必要があるの
で、電解槽の内側部に、有機液体の液面で目的金属の電
解質溶液を遮断する遮断板を設け、この部分から析出し
た金属薄膜を引き上げるようにすると良い。一方、アノ
ードを移動する方法は、細長い電解槽を必要とする制約
はあるが、アノードの移動によって金属水溶液の濃度分
極が解消される利点がある。
According to the method of winding the deposited metal thin film, there is an advantage that a strip-shaped long metal thin film can be manufactured even if a relatively small electrolytic cell is used. In this case, the deposited thin film of the target metal needs to be drawn out through the non-electrolyte organic liquid.Therefore, on the inner side of the electrolytic cell, a shut-off plate for shutting off the target metal electrolyte solution at the liquid level of the organic liquid is provided. It is preferable to pull up the metal thin film deposited from the portion. On the other hand, the method of moving the anode has a restriction that an elongated electrolytic cell is required, but has the advantage of eliminating the concentration polarization of the aqueous metal solution by moving the anode.

【0012】析出した金属薄膜は有機液体の表面張力に
よって2液相界面に保持され、界面に沿って成長する。
そのまま長時間電解を継続すると、電解質溶液の濃度分
極により目的金属の析出が止るが、この段階で一度電解
を中断し、再度、通電すれば再び目的金属が析出する。
なお、界面を乱さないように金属塩水溶液を静かに撹拌
して金属塩の濃度を均一化して通電すれば連続的に目的
金属が析出する。濃度分極を解消する他の方法として、
金属塩水溶液を電解槽内を循環するように連続的に供給
しても良い。
The deposited metal thin film is held at the interface between the two liquid phases by the surface tension of the organic liquid, and grows along the interface.
If the electrolysis is continued for a long period of time, the deposition of the target metal is stopped by the concentration polarization of the electrolyte solution. However, at this stage, the electrolysis is interrupted once, and the current is deposited again when the electricity is supplied again.
If the metal salt aqueous solution is gently stirred so as not to disturb the interface, the concentration of the metal salt is made uniform, and the current is supplied, the target metal is continuously deposited. As another method of eliminating concentration polarization,
The aqueous metal salt solution may be continuously supplied so as to circulate in the electrolytic cell.

【0013】上記方法によって製造された金属薄膜の有
機液体側に接触する面は金属光沢を有し、その上側の水
溶液側に接触する面は暗灰色を呈する。また電解条件を
制御することにより金属の結晶面を特定の方位に配向さ
せることができる。例えば、亜鉛の場合には、(001) 面
が一定方位に揃った薄膜が得られる。さらに電解条件を
調節することにより、金属薄膜の膜厚を制御することが
でき、約1〜5μmの膜厚の金属薄膜を得ることができ
る。なお、電析初期には貴な金属が析出し易く、その後
は高純度の金属薄膜が析出し成長するので、電解終了
後、カソード近傍の貴な不純物金属が集中した部分を取
り除くことにより、高純度の金属薄膜を得ることができ
る。因みに、従来のカソード表面に目的金属を電着させ
る方法では、電解初期の不純物の多い部分の表面に順次
目的金属が層状に電着するので不純物の濃集部分を分離
除去するのは極めて困難であるが、本方法では容易に不
純物の濃集部分を除去できる実用上大きな利点を有す
る。
The surface contacting the organic liquid side of the metal thin film produced by the above method has a metallic luster, and the surface contacting the aqueous solution above it has a dark gray color. Further, by controlling the electrolysis conditions, the crystal plane of the metal can be oriented in a specific direction. For example, in the case of zinc, a thin film having a (001) plane aligned in a certain direction can be obtained. Further, by adjusting the electrolysis conditions, the thickness of the metal thin film can be controlled, and a metal thin film having a thickness of about 1 to 5 μm can be obtained. In the early stage of electrodeposition, noble metals are easily deposited, and then a high-purity metal thin film is deposited and grown. A metal thin film having a high purity can be obtained. Incidentally, in the conventional method of electrodepositing the target metal on the cathode surface, the target metal is sequentially electrodeposited in layers on the surface of the impurity-rich portion at the initial stage of electrolysis, so that it is extremely difficult to separate and remove the concentrated portion of the impurity. However, this method has a practically great advantage that a concentrated portion of impurities can be easily removed.

【0014】[0014]

【実施例】本発明を実施例に基づいて具体的に説明す
る。なお本発明は以下の実施例に限定されない。 実施例1 図1に示すように、恒温水の流路10を外周に備え、内
側部に仕切板11を有する恒温電解槽12を用い、該電
解槽12に有機液体13[(C4 9 3 N]を入れ、
仕切板11で区切られた一方の液面を硫酸亜鉛水溶液(亜
鉛濃度:3mol/l)14で覆い二液相界面を形成した。この
界面にカソードとなるアルミニウム薄膜(膜厚:15μm
)20の先端21を浮かべ、他端を巻取機(図示せ
ず)に取付けた。このアルミニウム薄膜先端21の前方
に一定間隙を隔てアノードとなる金属亜鉛板30を垂直
に装入した。液温を30℃に保持し、ガルバノスタット
を用い50mAで上記アルミニウム薄膜をカソード分極し
たところ、アルミニウム薄膜の先端に亜鉛薄膜が析出
し、3mm/ 分の速度でアノードの金属亜鉛板に向って成
長した。析出した亜鉛薄膜先端と金属亜鉛板との距離を
5mmに保つように巻取機でカソードのアルミニウム薄膜
および析出亜鉛薄膜を巻取りながら電解を継続して亜鉛
を連続的に析出させ、(001) 面が一定方位に配向した厚
さ約1μの亜鉛薄膜を得た。
EXAMPLES The present invention will be specifically described based on examples. The present invention is not limited to the following embodiments. Example 1 As shown in FIG. 1, a constant temperature water flow path 10 was provided on the outer periphery, and a constant temperature electrolytic tank 12 having a partition plate 11 inside was used. An organic liquid 13 [(C 4 F 9) was used in the electrolytic tank 12. ) 3 N]
One liquid surface partitioned by the partition plate 11 was covered with an aqueous solution of zinc sulfate (zinc concentration: 3 mol / l) 14 to form a two liquid phase interface. An aluminum thin film (thickness: 15 μm) serving as a cathode
) The tip 21 of 20 was floated, and the other end was attached to a winder (not shown). A metal zinc plate 30 serving as an anode was vertically inserted in front of the aluminum thin film tip 21 with a certain gap therebetween. When the above aluminum thin film was cathodically polarized at 50 mA using a galvanostat while maintaining the liquid temperature at 30 ° C., a zinc thin film was deposited on the tip of the aluminum thin film and grew toward the anode metal zinc plate at a rate of 3 mm / min. did. While winding the aluminum thin film of the cathode and the deposited zinc thin film with a winder so as to keep the distance between the tip of the deposited zinc thin film and the metallic zinc plate at 5 mm, the electrolysis is continued to continuously deposit zinc, and the (001) A zinc thin film having a thickness of about 1 μm and having a plane oriented in a certain direction was obtained.

【0015】実施例2 銅板をアノードとし、銅箔をカソードに用いた以外は実
施例1と同一の電解装置を用い、四塩化炭素を入れ、少
量の塩化アンモニウムを添加した硫酸銅水溶液(銅濃
度: 0.5mol・dm-3)に30分間空気を吹き込んだ後に、
該硫酸銅水溶液を四塩化炭素の上側に供給し、電流密度
50mAで実施例1と同様に電解し、硫酸銅水溶液と四塩化
炭素との界面に厚さ約1μm の銅薄膜を連続的に析出さ
せた。
Example 2 Using the same electrolytic apparatus as in Example 1 except that a copper plate was used as an anode and a copper foil was used as a cathode, an aqueous copper sulfate solution containing copper tetrachloride and a small amount of ammonium chloride (copper concentration) was used. : 0.5mol ・ dm -3 ) after blowing air for 30 minutes
The copper sulfate aqueous solution was supplied to the upper side of carbon tetrachloride, and the current density was increased.
Electrolysis was performed at 50 mA in the same manner as in Example 1, and a copper thin film having a thickness of about 1 μm was continuously deposited on the interface between the aqueous solution of copper sulfate and carbon tetrachloride.

【0016】[0016]

【発明の効果】本発明によれば、数ミクロン程度の膜厚
が均一で結晶面の揃った金属薄膜を容易に製造すること
ができる。また本発明の方法は、従来の電解方法のよう
なカソード面に析出させた目的金属を剥離するものとは
異なり、二液相界面に目的の金属薄膜を析出成長させ、
これを順次巻取ることにより連続的に金属薄膜を製造す
るので、剥離作業の必要がなく、製造が極めて容易であ
る。さらに、不純物の濃集したカソード近傍部分の薄膜
を簡単に除去できるので高純度の金属薄膜を容易に得る
ことができる。また本発明の方法では、有機液体が目的
金属の電解質溶液によって覆われるので、有機液体の蒸
発による作業環境の悪化を生じることがない。さらに目
的金属の電解質溶液の補給が容易である。
According to the present invention, it is possible to easily produce a metal thin film having a thickness of about several microns and having a uniform crystal plane. Also, the method of the present invention is different from the conventional electrolytic method in which the target metal deposited on the cathode surface is peeled off, and the target metal thin film is deposited and grown on the two liquid phase interface,
Since the metal thin film is continuously manufactured by winding the film sequentially, there is no need for a peeling operation, and the manufacture is extremely easy. Furthermore, since the thin film near the cathode where impurities are concentrated can be easily removed, a high-purity metal thin film can be easily obtained. In the method of the present invention, since the organic liquid is covered with the target metal electrolyte solution, the working environment does not deteriorate due to the evaporation of the organic liquid. Further, it is easy to replenish the electrolyte solution of the target metal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に用いた電解装置の概略断面
FIG. 1 is a schematic sectional view of an electrolytic device used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10−恒温水流路 11−仕切板 12−電解槽 13−(C4 9 3 N 14−硫酸亜鉛水溶液 20−アルミニウム薄膜 21−アルミニウム薄膜先端 30−亜鉛アノード10 thermostatic water passage 11 partition plate 12 electrolyzer 13- (C 4 F 9) 3 N 14- aqueous zinc sulfate solution 20-aluminum thin film 21 aluminum thin tip 30- zinc anode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C25D 1/04 C25C 1/00 301 C25C 7/06 301 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C25D 1/04 C25C 1/00 301 C25C 7/06 301

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 目的金属の電解質溶液と該電解質溶液よ
りも比重の大きい非電解質の有機液体によって形成した
二液相界面にカソードを設置して電解を行ない、該カソ
ード先端に析出し成長した目的金属薄膜とアノードとの
距離を制御して目的金属の薄膜を連続的に析出させるこ
とを特徴とする金属薄膜の製造方法。
A cathode is installed at a two-liquid phase interface formed by an electrolyte solution of a target metal and a non-electrolyte organic liquid having a specific gravity greater than that of the electrolyte solution, and electrolysis is performed. A method for producing a metal thin film, comprising continuously depositing a target metal thin film by controlling a distance between the metal thin film and an anode.
【請求項2】 析出する目的金属薄膜の先端とアノード
との距離を一定に保つように該目的金属薄膜を巻取りな
がら電解することを特徴とする請求項1の方法。
2. The method according to claim 1, wherein the electrolysis is performed while winding the target metal thin film so as to keep the distance between the tip of the target metal thin film to be deposited and the anode constant.
【請求項3】 析出する目的金属薄膜の先端とアノード
との距離を一定に保つようにアノードを移動して電解す
ることを特徴とする請求項1の方法。
3. The method according to claim 1, wherein the anode is moved so that the distance between the tip of the target metal thin film to be deposited and the anode is kept constant, and the electrolysis is performed.
JP4170059A 1992-06-04 1992-06-04 Manufacturing method of metal thin film Expired - Fee Related JP2936368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4170059A JP2936368B2 (en) 1992-06-04 1992-06-04 Manufacturing method of metal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4170059A JP2936368B2 (en) 1992-06-04 1992-06-04 Manufacturing method of metal thin film

Publications (2)

Publication Number Publication Date
JPH05339780A JPH05339780A (en) 1993-12-21
JP2936368B2 true JP2936368B2 (en) 1999-08-23

Family

ID=15897867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4170059A Expired - Fee Related JP2936368B2 (en) 1992-06-04 1992-06-04 Manufacturing method of metal thin film

Country Status (1)

Country Link
JP (1) JP2936368B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318197B1 (en) * 2011-07-01 2013-10-17 주승기 Electroplating system and electroplating method

Also Published As

Publication number Publication date
JPH05339780A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
Robinson et al. On the effects of antimony and glue on zinc electrocrystallization behaviour
Mansfeld et al. The effect of lead ions on the dissolution and deposition characteristics of a zinc single crystal in 6 N KOH
WO2014045986A1 (en) Method for manufacturing aluminum film and method for manufacturing aluminum foil
US8187913B2 (en) Process for producing photoelectric conversion devices
US4159231A (en) Method of producing a lead dioxide coated cathode
Nakano et al. Effect of electrolysis factors on crystal orientation and morphology of electrodeposited cobalt
Dobrev et al. Periodic reverse current electrodeposition of gold in an ultrasonic field using ion-track membranes as templates: growth of gold single-crystals
JP3124848B2 (en) Manufacturing method of metal foil by electrolysis
JP2936368B2 (en) Manufacturing method of metal thin film
Brande et al. Nucleation and initial growth of copper electrodeposits under galvanostatic conditions
JP3074414B2 (en) Manufacturing method of metal thin film
JP2972412B2 (en) Electrochemical method
CN109087902A (en) A kind of Wiring structure and preparation method thereof, display device
US3600294A (en) Electrocrystallizer
Fischer et al. Morphology of the growth of isolated crystals in cathodic metal deposits
US6764586B1 (en) Method for electrochemically metallizing an insulating substrate
JP6990130B2 (en) Electrolytic aluminum foil manufacturing method and manufacturing equipment
Sheshadri et al. The effect of superimposed ac on dc in electrocrystallization of copper on copper single crystal planes
WO2020006761A1 (en) Electrolyte, method for preparing single crystal copper by means of electrodeposition using electrolyte, and electrodeposition device
JPH07138793A (en) Production of oxide thin film
Nageswar Crystal growth at the cathode
JPH06158375A (en) Production of organic matter thin film
CN221645110U (en) Electroplating device
AU2001256857A1 (en) Method and device for the electrolytic coating of a metal strip
JP7042641B2 (en) Aluminum foil manufacturing method and manufacturing equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees