JP2936098B1 - Ultraviolet sensor and method of manufacturing the same - Google Patents

Ultraviolet sensor and method of manufacturing the same

Info

Publication number
JP2936098B1
JP2936098B1 JP22361998A JP22361998A JP2936098B1 JP 2936098 B1 JP2936098 B1 JP 2936098B1 JP 22361998 A JP22361998 A JP 22361998A JP 22361998 A JP22361998 A JP 22361998A JP 2936098 B1 JP2936098 B1 JP 2936098B1
Authority
JP
Japan
Prior art keywords
side substrate
frame member
anode
cathode
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22361998A
Other languages
Japanese (ja)
Other versions
JP2000040487A (en
Inventor
良人 河西
光晴 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP22361998A priority Critical patent/JP2936098B1/en
Application granted granted Critical
Publication of JP2936098B1 publication Critical patent/JP2936098B1/en
Publication of JP2000040487A publication Critical patent/JP2000040487A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【要約】 【課題】 薄型形成が可能で、製造時に余計なガスが発
生するおそれのない紫外線センサを実現する。 【解決手段】 対向面に透光窓部20を残してシリコン層
22が形成された紫外線透過ガラスよりなるアノード側基
板12と、対向面に紫外線の入射によって光電子38を放出
させる光電部28が形成されたシリコンよりなるカソード
側基板14とを対向配置し、両基板の対向面周縁12a,14
aを間に枠部材16を介装させて陽極接合し、以て気密封
止された外囲器18を形成する。外囲器18内には放電ガス
が充填され、外囲器18の外部に導出されたシリコン層22
には外部電極部24が接続されると共に、カソード側基板
14の外面には外部電極層26が形成されている。
To provide an ultraviolet sensor which can be formed to be thin and has no possibility of generating unnecessary gas during manufacturing. SOLUTION: A silicon layer is left with a light-transmitting window portion 20 on the opposite surface
An anode-side substrate 12 made of an ultraviolet-transmissive glass formed with 22 and a cathode-side substrate 14 made of silicon on which a photoelectric unit 28 for emitting photoelectrons 38 upon incidence of ultraviolet light on the opposing surface are arranged to face each other. Peripheral edges 12a, 14 of
A is anodically bonded with a frame member 16 interposed therebetween to form an airtightly sealed envelope 18. The envelope 18 is filled with a discharge gas, and the silicon layer 22 led out of the envelope 18
Is connected to the external electrode unit 24 and the cathode side substrate
An external electrode layer 26 is formed on the outer surface of 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、紫外線を感知し
て外部に信号を出力する紫外線センサに係り、特に、形
状の薄型化が可能な紫外線センサ及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet sensor that senses ultraviolet light and outputs a signal to the outside, and more particularly, to an ultraviolet sensor that can be made thinner and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図11に示すように、従来の紫外線セン
サ60は、アノード62と、光電面64を備えたカソード66と
を、所定の放電ガスと共に紫外線透過ガラス製の気密容
器68内に封入してなる。アノード62とカソード66との間
には所定の間隙が設けられており、また両者の下端部62
a,66aは気密容器68の下端封着部を貫通して外部に導
出され、紫外線センサ60の外部端子を構成している。こ
の外部端子間には、直流電源30によって常時一定の電圧
が印加されている。
2. Description of the Related Art As shown in FIG. 11, a conventional ultraviolet sensor 60 encloses an anode 62 and a cathode 66 having a photocathode 64 together with a predetermined discharge gas in an airtight container 68 made of ultraviolet transmitting glass. Do it. A predetermined gap is provided between the anode 62 and the cathode 66, and the lower ends 62
Reference numerals a and 66a extend to the outside through the lower end sealing portion of the airtight container 68 and constitute external terminals of the ultraviolet sensor 60. A constant voltage is constantly applied between the external terminals by the DC power supply 30.

【0003】しかして、上記カソード66の光電面64に外
部から紫外線UVが入射すると、光電子放出効果によっ
て光電面64から光電子38が放出される。この光電子38
は、アノード62−カソード66間の電界によってアノード
62側に引き寄せられると共に加速され、気密容器68内の
ガス分子と衝突してこれを電子と正イオンとに電離させ
る。この電離の結果生じた電子は、さらに他のガス分子
との衝突・電離を繰り返してアノード62に達する。ま
た、正イオンはカソード66に向かって加速され、光電面
64に衝突して多くの2次電子を発生させる。上記の繰り
返しにより、アノード62−カソード66間に急激に大きな
電流が流れ、放電状態となる。
When ultraviolet rays UV enter the photocathode 64 of the cathode 66 from the outside, photoelectrons 38 are emitted from the photocathode 64 by a photoelectron emission effect. This photoelectron 38
Is caused by the electric field between the anode 62 and the cathode 66.
The gas is attracted to the side 62 and accelerated, and collides with gas molecules in the airtight container 68 to ionize them into electrons and positive ions. Electrons generated as a result of this ionization reach the anode 62 by repeating collision and ionization with other gas molecules. Positive ions are accelerated toward the cathode 66, and
Collision with 64 generates many secondary electrons. By the repetition of the above, a large current suddenly flows between the anode 62 and the cathode 66, and a discharge state occurs.

【0004】[0004]

【発明が解決しようとする課題】この放電生成によって
回路32に電流が流れると、電流検出器(電流計34)が動
作して紫外線の存在が外部に表示されることとなり、紫
外線放射を伴う「炎」や「放電」の検知手段として利用
することが可能となる。
When a current flows through the circuit 32 due to the generation of the discharge, a current detector (ammeter 34) is operated to display the presence of ultraviolet rays to the outside, and the "irradiation with ultraviolet rays" is performed. It can be used as a means for detecting "flame" or "discharge".

【0005】しかしながら、従来の紫外線センサ60の場
合、所定の放電ガス雰囲気中において円筒状のガラス管
内にアノード62とカソード66を配置させた上で、ガラス
管の両端開口を加熱し、これを溶融封止することによっ
て形成されるため、その外形がどうしても嵩張ることと
なり、薄型化には限界があった。また、ガラス管の両端
開口を溶融封止する際に余計なガスが発生して放電ガス
中に混入する結果、紫外線センサ60の放電特性が不安定
となるおそれがあった。
However, in the case of the conventional ultraviolet sensor 60, the anode 62 and the cathode 66 are arranged in a cylindrical glass tube in a predetermined discharge gas atmosphere, and then the openings at both ends of the glass tube are heated and melted. Since it is formed by sealing, its outer shape is inevitably bulky, and there is a limit to the reduction in thickness. In addition, when the both ends of the glass tube are melted and sealed, unnecessary gas is generated and mixed into the discharge gas, so that the discharge characteristics of the ultraviolet sensor 60 may become unstable.

【0006】この発明は、上記問題に鑑みて案出された
ものであり、その目的とするところは、薄型形成が可能
で製造時に余計なガスが発生するおそれのない紫外線セ
ンサ及びその製造方法を実現することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultraviolet sensor which can be formed in a thin shape and does not generate unnecessary gas during manufacturing, and a method of manufacturing the same. Is to make it happen.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明に係る紫外線センサは、少なくとも一面に
透光窓部を残してシリコン層が形成された紫外線透過物
質よりなるアノード側基板と、一面に紫外線の入射によ
って光電子を放出させる光電部が形成されたシリコンよ
りなるカソード側基板とを、アノード側基板のシリコン
層形成面とカソード側基板の光電部形成面とが対向する
ように配置し、両基板の対向面周縁を枠部材を間に介し
て気密封止して外囲器を形成し、該外囲器内に所定の放
電ガスを充填し、上記外囲器の外部に導出されたアノー
ド側基板のシリコン層に外部電極部を接続すると共に、
上記カソード側基板の外面に外部電極層を形成してな
る。このように、紫外線センサの外囲器を一対の基板を
対向配置することで形成しているため、全体形状の薄型
化を実現することができる。
In order to achieve the above object, an ultraviolet sensor according to the present invention comprises an anode-side substrate made of an ultraviolet-transmissive substance having a silicon layer formed on at least one surface thereof while leaving a light-transmitting window. A cathode-side substrate made of silicon on which a photoelectric part that emits photoelectrons by incidence of ultraviolet rays is formed on one surface is disposed such that the silicon layer forming surface of the anode-side substrate and the photoelectric part forming surface of the cathode-side substrate are opposed to each other. The peripheral edges of the opposing surfaces of both substrates are hermetically sealed with a frame member interposed therebetween to form an envelope, and the envelope is filled with a predetermined discharge gas and led out of the envelope. The external electrode part is connected to the silicon layer of the anode side substrate,
An external electrode layer is formed on the outer surface of the cathode-side substrate. As described above, since the envelope of the ultraviolet sensor is formed by arranging the pair of substrates to face each other, it is possible to realize a thin overall shape.

【0008】この紫外線センサの外囲器は、具体的には
以下のように形成される。すなわち、上記枠部材とし
て、内部に可動イオンを含む絶縁材よりなり、上記アノ
ード側基板の対向面周縁と接する第1の端面と、上記カ
ソード側基板の対向面周縁と接する第2の端面とを備え
たものを用い、上記枠部材の第1の端面とアノード側基
板のシリコン層で覆われた対向面周縁とを接触させた状
態で、枠部材の第2の端面に直流電源のマイナス側を接
続すると共に、アノード側基板の外部電極部に上記直流
電源のプラス側を接続し、所定の温度に加熱しつつ上記
直流電源より電圧を印加して、上記枠部材の第1の端面
とアノード側基板の対向面周縁とを陽極接合した後、所
定の放電ガス雰囲気中において、上記枠部材の第2の端
面と上記カソード側基板のシリコンが露出した対向面周
縁とを接触させ、上記アノード側基板の外部電極部に直
流電源のマイナス側を接続すると共に、カソード側基板
の外部電極層に上記直流電源のプラス側を接続し、所定
の温度に加熱しつつ上記直流電源より電圧を印加して、
上記枠部材の第2の端面とカソード側基板の対向面周縁
とを陽極接合する。
The envelope of the ultraviolet sensor is specifically formed as follows. That is, as the frame member, a first end face made of an insulating material containing movable ions therein and in contact with a peripheral edge of the facing surface of the anode-side substrate, and a second end face in contact with the peripheral edge of the facing surface of the cathode-side substrate. In the state in which the first end face of the frame member is brought into contact with the periphery of the facing surface covered with the silicon layer of the anode-side substrate, the negative side of the DC power supply is connected to the second end face of the frame member. At the same time, the positive side of the DC power supply is connected to the external electrode portion of the anode-side substrate, and a voltage is applied from the DC power supply while heating to a predetermined temperature, so that the first end face of the frame member is connected to the anode side. After anodically bonding the opposing surface periphery of the substrate, in a predetermined discharge gas atmosphere, the second end surface of the frame member is brought into contact with the opposing surface periphery of the cathode-side substrate where silicon is exposed, and the anode-side substrate is contacted. External power With connecting the negative side of the DC power source part, connects the positive side of the DC power source to the external electrode layers of the cathode-side substrate, by applying a voltage from the DC power source while heating to a predetermined temperature,
The second end face of the frame member and the peripheral edge of the facing surface of the cathode-side substrate are anodically bonded.

【0009】または、同様の枠部材を用い、上記枠部材
の第2の端面とカソード側基板のシリコンが露出した対
向面周縁とを接触させた状態で、枠部材の第1の端面に
直流電源のマイナス側を接続すると共に、カソード側基
板の外部電極層に上記直流電源のプラス側を接続し、所
定の温度に加熱しつつ上記直流電源より電圧を印加し
て、上記枠部材の第2の端面とカソード側基板の対向面
周縁とを陽極接合した後、所定の放電ガス雰囲気中にお
いて、上記枠部材の第1の端面と上記アノード側基板の
シリコン層で覆われた対向面周縁とを接触させ、上記カ
ソード側基板の外部電極層に直流電源のマイナス側を接
続すると共に、アノード側基板の外部電極部に上記直流
電源のプラス側を接続し、所定の温度に加熱しつつ上記
直流電源より電圧を印加して、上記枠部材の第1の端面
とアノード側基板の対向面周縁とを陽極接合し、以て上
記外囲器を形成するようにしてもよい。
Alternatively, using a similar frame member, a DC power supply is applied to the first end surface of the frame member in a state where the second end surface of the frame member is in contact with the peripheral surface of the cathode-side substrate where silicon is exposed. And the plus side of the DC power supply is connected to the external electrode layer of the cathode-side substrate, and a voltage is applied from the DC power supply while heating to a predetermined temperature, and the second of the frame member is After the end face and the peripheral edge of the facing surface of the cathode substrate are anodically bonded, the first edge surface of the frame member contacts the peripheral surface of the anode substrate covered with the silicon layer in a predetermined discharge gas atmosphere. The negative side of the DC power supply is connected to the external electrode layer of the cathode-side substrate, and the positive side of the DC power supply is connected to the external electrode portion of the anode-side substrate. Voltage Pressurized to, the opposing surface periphery of the first end surface and the anode-side substrate of the frame member by anodic bonding, may be formed of the envelope Te than.

【0010】このように、枠部材とアノード側基板及び
カソード側基板との接合を、陽極接合法を用いて実現す
れば、接合過程において余計なガスが生じることを回避
できる。
As described above, if the joining of the frame member to the anode-side substrate and the cathode-side substrate is realized by using the anodic bonding method, it is possible to avoid generating an unnecessary gas in the bonding process.

【0011】あるいは、同様の枠部材を用い、所定の放
電ガス雰囲気中において、上記枠部材の第1の端面と上
記アノード側基板のシリコン層で覆われた対向面周縁と
を接触させると共に、上記枠部材の第2の端面と上記カ
ード側基板のシリコンが露出した対向面周縁とを接触さ
せ、また上記アノード側基板の外面に電極板を圧着させ
た上で、上記カソード側基板の外部電極層及び上記電極
板間に直流電源を接続し、所定の温度に加熱しつつ上記
直流電源より電圧を一方向に印加して、アノード側基板
の対向面周縁と上記枠部材の第1の端面同士、あるいは
カソード側基板の対向面周縁と上記枠部材の第2の端面
同士の何れか一方を陽極接合した後、上記直流電源によ
って逆方向に電圧を印加して、アノード側基板の対向面
周縁と上記枠部材の第1の端面同士、あるいはカソード
側基板の対向面周縁と上記枠部材の第2の端面同士の何
れか他方を陽極接合し、以て上記外囲器を形成するよう
にすれば、接合工程の効率化を図ることができる。
Alternatively, using a similar frame member, in a predetermined discharge gas atmosphere, the first end face of the frame member is brought into contact with the peripheral edge of the anode-side substrate covered with the silicon layer, and The second end face of the frame member is brought into contact with the periphery of the facing surface of the card-side substrate where silicon is exposed, and an electrode plate is pressed against the outer surface of the anode-side substrate. A DC power source is connected between the electrode plates, and a voltage is applied in one direction from the DC power source while heating to a predetermined temperature, and the periphery of the facing surface of the anode-side substrate and the first end surfaces of the frame member are connected to each other. Alternatively, after one of the peripheral surface of the cathode-side substrate and the second end surface of the frame member is anodically bonded, a voltage is applied in the reverse direction by the DC power supply, and the peripheral surface of the anode-side substrate is Frame members If the other end of the first end faces or the periphery of the facing surface of the cathode-side substrate and the second end face of the frame member is anodically bonded, thereby forming the envelope, the joining process can be performed. Efficiency can be improved.

【0012】あるいは、上記枠部材として、内部に可動
イオンを含む絶縁材よりなり、上記アノード側基板の対
向面周縁と接する第1の端面と、上記カソード側基板の
対向面周縁と接する第2の端面と、対向配置された両基
板の外側面から突出する外周縁部とを備えたものを用
い、所定の放電ガス雰囲気中において、上記枠部材の第
1の端面と上記アノード側基板のシリコン層で覆われた
対向面周縁とを接触させ、また上記枠部材の第2の端面
と上記カード側基板のシリコンが露出した対向面周縁と
を接触させ、上記枠部材の外周縁部に直流電源のマイナ
ス側を接続すると共に、アノード側基板の外部電極部及
びカソード側基板の外部電極層に上記直流電源のプラス
側をそれぞれ接続し、所定の温度に加熱しつつ上記直流
電源より電圧を印加して、アノード側基板の対向面周縁
と上記枠部材の第1の端面とを陽極接合すると同時に、
上記カーソード側基板の対向面周縁と枠部材の第2の端
面とを陽極接合し、以て上記外囲器を形成するようにす
れば、接合工程のさらなる効率化を図ることができる。
Alternatively, the frame member is made of an insulating material containing movable ions therein, and has a first end face in contact with a peripheral edge of the anode-side substrate and a second end surface in contact with the peripheral edge of the cathode-side substrate. A first end face of the frame member and a silicon layer of the anode-side substrate in a predetermined discharge gas atmosphere using an end face and an outer peripheral edge protruding from the outer faces of the oppositely disposed substrates; And the second end surface of the frame member is brought into contact with the peripheral surface of the card-side substrate where silicon is exposed, and the outer peripheral edge of the frame member is provided with a DC power supply. The negative side is connected, and the positive side of the DC power supply is connected to the external electrode portion of the anode side substrate and the external electrode layer of the cathode side substrate, respectively, and a voltage is applied from the DC power supply while heating to a predetermined temperature. Te, when a first end face of the opposing surface perimeter and the frame member of the anode-side substrate anodically bonded simultaneously,
If the peripheral edge of the opposing surface of the above-mentioned cursor-side substrate and the second end surface of the frame member are anodically bonded to form the envelope, the efficiency of the bonding process can be further improved.

【0013】[0013]

【発明の実施の形態】本発明に係る紫外線センサ10は、
図1及び図2に示すように、アノード側基板12とカソー
ド側基板14とを対向配置し、両基板12,14の対向面周縁
12a,14aを、スペーサを兼ねた枠部材16を間に介して
気密封止することによって外囲器18を形成し、該外囲器
18内に放電ガスを充填してなる。上記枠部材16は、ホウ
ケイ酸ガラスよりなり、厚さが100〜500μmの長方形状
のガラス板の真ん中部分を、長方形状に大きく切り欠い
た形状を備えている。上記放電ガスは、50〜80〔体積
%〕のHeを含んだHe−ArガスあるいはHe−Ne
ガスよりなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultraviolet sensor 10 according to the present invention
As shown in FIGS. 1 and 2, the anode-side substrate 12 and the cathode-side substrate 14 are arranged to face each other, and
An envelope 18 is formed by hermetically sealing 12a and 14a with a frame member 16 also serving as a spacer therebetween.
18 is filled with discharge gas. The frame member 16 is made of borosilicate glass, and has a shape in which a rectangular glass plate having a thickness of 100 to 500 μm is largely cut out in a rectangular shape. The discharge gas is a He-Ar gas containing 50 to 80% by volume of He or He-Ne.
Consists of gas.

【0014】上記アノード側基板12は、ホウケイ酸ガラ
ス等の紫外線透過ガラスよりなり、その裏面(対向面)
には透光窓部20を残してシリコン層22が被着形成されて
いる。また、このシリコン層22の端部には、ニッケル被
膜よりなる外部電極部24が形成されている。上記カソー
ド側基板14は、単結晶シリコン板よりなり、その外面に
はクロムやニッケルの被膜よりなる外部電極層26が形成
されている。また、その表面(対向面)には、光電部28
が形成されている。この光電部28は、紫外線の入射によ
って光電子を放出する物質よりなり、具体的にはBa
O、SrO、CaO、Y23、YB6、GdB6、LaB
6、Gd23、CeB6、ThO3、PrB6、NdB6
La23、ZrB2、多結晶ダイヤモンド、LaB6−C
s、GdB6−Cs等、仕事関数が5〔eV〕以下の物
質を被着させることによって形成される。
The anode-side substrate 12 is made of an ultraviolet transmitting glass such as borosilicate glass, and has a back surface (opposing surface).
Is formed with a silicon layer 22 adhered to it, leaving the light-transmitting window portion 20. At the end of the silicon layer 22, an external electrode portion 24 made of a nickel film is formed. The cathode-side substrate 14 is made of a single-crystal silicon plate, and an external electrode layer 26 made of a coating of chromium or nickel is formed on the outer surface thereof. In addition, the photoelectric part 28
Are formed. The photoelectric unit 28 is made of a substance that emits photoelectrons when ultraviolet light enters.
O, SrO, CaO, Y 2 O 3, YB 6, GdB 6, LaB
6, Gd 2 O 3, CeB 6, ThO 3, PrB 6, NdB 6,
La 2 O 3, ZrB 2, polycrystalline diamond, LaB 6 -C
It is formed by depositing a substance having a work function of 5 [eV] or less, such as s, GdB 6 -Cs, or the like.

【0015】図2に示すように、アノード側基板12の外
部電極部24には直流電源30のプラス側が接続されると共
に、外部電極層26にはマイナス側が接続され、一定の電
圧が印加されている。また、この回路32には電流計34と
保護抵抗36が接続されている。
As shown in FIG. 2, a positive side of a DC power supply 30 is connected to the external electrode portion 24 of the anode-side substrate 12, and a negative side is connected to the external electrode layer 26, and a constant voltage is applied. I have. An ammeter 34 and a protection resistor 36 are connected to the circuit 32.

【0016】しかして、発火等に起因して紫外線が発生
した場合、アノード側基板12の表面に入射した紫外線U
Vは、対向面の透光窓部20を経由してカソード側基板14
対向面の光電部28に到達し、光電子38が放出される。こ
の光電子38は、アノード−カソード間の電界によってア
ノード側基板12の内面(シリコン層22)に引き寄せられ
ると共に加速され、外囲器18内のガス分子と衝突してこ
れを電子と正イオンとに電離させる。この電離の結果生
じた電子は、さらに他のガス分子との衝突・電離を繰り
返してシリコン層22に達する。また、正イオンはカソー
ド側基板14の内面に向かって加速され、光電部28に衝突
して多くの2次電子を発生させる。上記の繰り返しによ
り、アノード側基板12のシリコン層22−カソード側基板
14の対向面間に急激に大きな電流が流れ、放電状態とな
る。この放電生成によって回路32に電流が流れると電流
計34が動作し、紫外線の存在、ひいては炎の発生を外部
に表示することが可能となる。もちろん、電流計の代わ
りに、警報ブザーや表示ランプ等を外部表示手段として
用いてもよい。
When ultraviolet rays are generated due to ignition or the like, the ultraviolet rays U incident on the surface of the
V is connected to the cathode-side substrate 14 through the light-transmitting window 20 on the facing surface.
The photoelectrons 38 reach the optoelectronic unit 28 on the opposing surface, and the photoelectrons 38 are emitted. The photoelectrons 38 are attracted to the inner surface (silicon layer 22) of the anode-side substrate 12 and accelerated by the electric field between the anode and the cathode, collide with gas molecules in the envelope 18, and turn them into electrons and positive ions. Let it ionize. The electrons generated as a result of this ionization reach the silicon layer 22 by repeating collision and ionization with other gas molecules. Further, positive ions are accelerated toward the inner surface of the cathode-side substrate 14 and collide with the photoelectric unit 28 to generate many secondary electrons. By repeating the above, the silicon layer 22 of the anode side substrate 12-the cathode side substrate
A large current suddenly flows between the 14 opposing surfaces, causing a discharge state. When a current flows through the circuit 32 due to the generation of the discharge, the ammeter 34 operates, and it becomes possible to externally display the presence of ultraviolet rays, and thus the occurrence of flame. Of course, an alarm buzzer, a display lamp, or the like may be used as the external display means instead of the ammeter.

【0017】上記アノード側基板12と枠部材16との間の
接合、及びカソード側基板14と枠部材16との間の接合
は、陽極接合法によって行われる。この陽極接合法を用
いて外囲器18を形成する工程を、図3〜図5に沿って説
明する。まず、図3に示すように、ホットプレート42上
にアノード側基板12を、シリコン層22形成面を上にして
載置すると共に、内部に可動イオン(Na+)を含むホ
ウケイ酸ガラスによって構成した枠部材16の第1の端面
16aを、シリコン層22で覆われたアノード側基板12の対
向面周縁12a上に重ねる。この枠部材16の第2の端面16
bには、枠部材16の端面形状に対応した形状の電極板44
が圧着される。また、外部電極部24には、陽極接合用直
流電源46のプラス側が接続されると共に、電極板44には
直流電源46のマイナス側が接続される。そして、上記ホ
ットプレート42によって、アノード側基板12及び枠部材
16を摂氏200〜600度に加熱した状態で、直流電源
46より50〜1000Vの直流電圧が印加される。
The bonding between the anode-side substrate 12 and the frame member 16 and the bonding between the cathode-side substrate 14 and the frame member 16 are performed by an anodic bonding method. A process of forming the envelope 18 using this anodic bonding method will be described with reference to FIGS. First, as shown in FIG. 3, the anode-side substrate 12 is placed on the hot plate 42 with the silicon layer 22 forming surface facing up, and is made of borosilicate glass containing mobile ions (Na + ) therein. First end face of the frame member 16
16a is overlapped on the peripheral edge 12a of the facing surface of the anode-side substrate 12 covered with the silicon layer 22. The second end face 16 of the frame member 16
b, an electrode plate 44 having a shape corresponding to the end surface shape of the frame member 16;
Is crimped. Further, the positive side of the anode power supply DC power supply 46 is connected to the external electrode portion 24, and the negative side of the DC power supply 46 is connected to the electrode plate 44. Then, the anode plate 12 and the frame member are
16 is heated to 200-600 degrees Celsius, DC power supply
46 to 50 to 1000 V DC voltage is applied.

【0018】この結果、図4に示すように、一定時間経
過後には枠部材16中の陽イオン48がマイナス側(すなわ
ち枠部材16の第2の端面16b近傍)に移動すると共に、
プラス側(すなわち枠部材16中におけるアノード側基板
12の対向面周縁12a側)にマイナスの電荷が集中して空
間電荷層50が現れ、大きな吸引力を伴う化学結合が生じ
て、枠部材の第1の端面16aとアノード側基板の対向面
周縁12aとの陽極接合が実現される。
As a result, as shown in FIG. 4, after a certain period of time, the cations 48 in the frame member 16 move to the minus side (ie, in the vicinity of the second end face 16b of the frame member 16).
The positive side (ie, the anode side substrate in the frame member 16)
The negative charge concentrates on the outer peripheral edge 12a of the anode 12), the space charge layer 50 appears, and a chemical bond with a large attractive force is generated, and the first end face 16a of the frame member and the peripheral edge of the anode-side substrate are opposed to each other. Anodic bonding with 12a is realized.

【0019】つぎに、図5に示すように、放電ガス雰囲
気中において、ホットプレート42上にカソード側基板14
を外部電極層26を下にして載置すると共に、枠部材16の
第2の端面16bを光電部28で覆われることなくシリコン
地が露出したカソード側基板14の対向面周縁14aに当接
させる。
Next, as shown in FIG. 5, the cathode side substrate 14 is placed on a hot plate 42 in a discharge gas atmosphere.
Is placed with the external electrode layer 26 facing down, and the second end face 16b of the frame member 16 is brought into contact with the opposing surface peripheral edge 14a of the cathode-side substrate 14 where the silicon substrate is exposed without being covered with the photoelectric portion 28. .

【0020】カソード側基板14の外部電極層26には、ホ
ットプレート42を経由して直流電源46のプラス側が接続
されると共に、アノード側基板12の外部電極部24には直
流電源46のマイナス側が接続される。そして、上記ホッ
トプレート42によって、カソード側基板14及び枠部材16
が摂氏200〜600度に加熱された状態で、上記直流
電源46より50〜1000Vの直流電圧が印加される。
この結果、上記と同様のメカニズムによって、カソード
側基板14の対向面周縁14aと枠部材の第2の端面16bと
の強固な陽極接合が実現され、高い気密性を備えた外囲
器18が完成する。
The positive electrode of a DC power supply 46 is connected to the external electrode layer 26 of the cathode substrate 14 via a hot plate 42, and the negative electrode of the DC power supply 46 is connected to the external electrode portion 24 of the anode substrate 12. Connected. Then, the cathode side substrate 14 and the frame member 16 are
Is heated to 200 to 600 degrees Celsius, and a DC voltage of 50 to 1000 V is applied from the DC power supply 46.
As a result, by the same mechanism as described above, strong anodic bonding between the peripheral surface 14a of the cathode-side substrate 14 and the second end surface 16b of the frame member is realized, and the envelope 18 having high airtightness is completed. I do.

【0021】上記の陽極接合法は、ガラスを溶融させる
必要がないため、接合時に余計なガスが発生する危険性
が全くない。なお、上記の陽極接合をより強固なものと
するためには、アノード側基板12の対向面周縁12a、カ
ソード側基板14の対向面周縁14a、及び枠部材16の両端
面16a,16bを可能な限り平滑化しておくことが必要で
あり、例えば表面の凹凸を1μm以下に抑えることが望
ましい。上記においては、アノード側基板12と枠部材16
との接合後に、カソード側基板14と枠部材16との接合を
行う例を示したが、カード側基板14と枠部材16を接合し
た後に、アノード側基板12と枠部材16との接合を行って
もよい。
In the above anodic bonding method, there is no danger of generating an unnecessary gas at the time of bonding since there is no need to melt the glass. In order to make the above anodic bonding stronger, the opposing surface peripheral edge 12a of the anode-side substrate 12, the opposing surface peripheral edge 14a of the cathode-side substrate 14, and both end surfaces 16a, 16b of the frame member 16 can be formed. It is necessary to make the surface as smooth as possible. For example, it is desirable to suppress the surface irregularities to 1 μm or less. In the above, the anode-side substrate 12 and the frame member 16
After joining the cathode-side substrate 14 and the frame member 16, the example in which the cathode-side substrate 14 and the frame member 16 are joined is shown, but after the card-side substrate 14 and the frame member 16 are joined, the anode-side substrate 12 and the frame member 16 are joined. You may.

【0022】上記の接合方法では、アノード側基板12あ
るいはカソード側基板14の何れか一方と枠部材16との接
合後に、両者をひっくり返した上で残りの基板を重ね合
わせ、さらに直流電源46を接続し直す必要があるが、以
下の方法を用いればこれらの手間を大幅に減らすことが
できる。
In the above joining method, after joining either the anode-side substrate 12 or the cathode-side substrate 14 to the frame member 16, the two are turned upside down, and the remaining substrates are overlapped. Although it is necessary to reconnect, these steps can be greatly reduced by using the following method.

【0023】すなわち、図6に示すように、放電ガス雰
囲気中において、ホットプレート42上にカソード側基板
14を外部電極層26を下にして載置すると共に、このカソ
ード側基板14の対向面周縁14aに枠部材の第2の端面16
bを当接させる。また、枠部材の第1の端面16aに、ア
ノード側基板12の対向面周縁12aを当接させると共に、
アノード側基板12の外面にニッケルやアルミニウム、ス
テンレス等よりなる長方形状の電極板51を圧着させる。
上記カソード側基板14の外部電極層26には、初めホット
プレート42を経由して直流電源46のプラス側が接続され
ると共に、上記電極板51には直流電源46のマイナス側が
接続される。
That is, as shown in FIG. 6, the cathode side substrate is placed on the hot plate 42 in a discharge gas atmosphere.
14 is placed with the external electrode layer 26 facing down, and the second end face 16 of the frame member is
b is brought into contact. Further, the peripheral edge 12a of the facing surface of the anode-side substrate 12 is brought into contact with the first end surface 16a of the frame member,
A rectangular electrode plate 51 made of nickel, aluminum, stainless steel, or the like is pressed on the outer surface of the anode-side substrate 12.
The external electrode layer 26 of the cathode-side substrate 14 is first connected to the positive side of the DC power supply 46 via the hot plate 42, and the electrode plate 51 is connected to the negative side of the DC power supply 46.

【0024】そして、上記ホットプレート42によって、
カソード側基板14、枠部材16、及びアノード側基板12が
摂氏200〜600度に加熱された状態で、上記直流電
源46より50〜1000Vの直流電圧が印加される。こ
の結果、一定時間経過後には、枠部材16中の陽イオンが
マイナス側(すなわち枠部材16の第1の端面16a近傍)
に移動すると共に、枠部材16の第2の端面16b近傍にマ
イナスの電荷が集中して空間電荷層が現れ、カソード側
基板14の対向面周縁14aと枠部材の第2の端面16bとの
陽極接合が実現される。つぎに、上記ホットプレート42
による加熱状態を維持しつつ直流電源46の電流方向を逆
転させると、枠部材16中の陽イオンが第2の端面16b近
傍に移動すると共に、枠部材16の第1の端面16a近傍に
マイナスの電荷が集中して空間電荷層が現れる。この結
果、アノード側基板12の対向面周縁12aと枠部材の第1
の端面16aとの陽極接合が実現され、高い気密性を備え
た外囲器18が完成する。
Then, by the hot plate 42,
While the cathode-side substrate 14, the frame member 16, and the anode-side substrate 12 are heated to 200 to 600 degrees Celsius, a DC voltage of 50 to 1000 V is applied from the DC power supply 46. As a result, after the lapse of a certain time, the cations in the frame member 16 are shifted to the minus side (that is, in the vicinity of the first end face 16a of the frame member 16).
The negative charge concentrates near the second end face 16b of the frame member 16 and a space charge layer appears, and the anode between the peripheral edge 14a of the cathode side substrate 14 and the second end face 16b of the frame member is moved. Joining is achieved. Next, the hot plate 42
When the current direction of the DC power supply 46 is reversed while the heating state is maintained, the cations in the frame member 16 move to the vicinity of the second end face 16b, and the negative ions move to the vicinity of the first end face 16a of the frame member 16. The charges concentrate and a space charge layer appears. As a result, the peripheral edge 12a of the facing surface of the anode-side substrate 12 and the first
Anodic bonding with the end surface 16a is realized, and the envelope 18 having high airtightness is completed.

【0025】直流電源46の電流方向を逆転させること
は、例えば図示の通り、一対のスイッチ52,54の接点
を、それぞれ第1の接点52a,54aから第2の接点52
b,54bに切り替えることによって簡単に実現できる。
もちろん、先にアノード側基板12の対向面周縁12aと枠
部材の第1の端面16aとの陽極接合を行った後、カソー
ド側基板14の対向面周縁14aと枠部材の第2の端面16b
との陽極接合を行うようにしてもよい。
To reverse the current direction of the DC power supply 46, for example, as shown in the drawing, the contacts of the pair of switches 52 and 54 are respectively connected from the first contacts 52a and 54a to the second contact 52a.
It can be easily realized by switching to b and 54b.
Of course, first, the anodic bonding between the opposing surface peripheral edge 12a of the anode-side substrate 12 and the first end surface 16a of the frame member is performed, and then the opposing surface peripheral edge 14a of the cathode-side substrate 14 and the second end surface 16b of the frame member.
Anodic bonding may be performed.

【0026】上記した陽極接合法は、何れも基本的には
アノード側基板12と枠部材16との接合及びカソード側基
板14と枠部材16との接合を別々に行うものであるが、両
者の接合を一度に済ませることもできる。そのために
は、図7及び図8に示すように、まず枠部材16として、
アノード側基板12及びカソード側基板14の縦寸法及び横
寸法よりも大きい寸法を備えたものを用いる。また、ア
ノード側基板12の対向面に形成されたシリコン膜22は、
アノード側基板12の一側面から表面の一部にかけて延長
配置されており、このシリコン膜22の延長部分22aに外
部電極部24が接続されている。そして、放電ガスで満た
された雰囲気中において、アノード側基板の対向面周縁
12aと枠部材の第1の端面16aとが接触すると共に、カ
ソード側基板の対向面周縁14aと枠部材の第2の端面16
bとが接触するように、アノード側基板12、枠部材16、
カソード側基板14を重ね合わせる。この際、枠部材16の
外周縁部は、両基板12,14の外側面から鍔状に突出する
こととなる(図7)。
In each of the above-described anodic bonding methods, basically, the bonding between the anode-side substrate 12 and the frame member 16 and the bonding between the cathode-side substrate 14 and the frame member 16 are performed separately. Joining can be done at once. For this purpose, first, as shown in FIGS.
Those having dimensions larger than the vertical and horizontal dimensions of the anode-side substrate 12 and the cathode-side substrate 14 are used. The silicon film 22 formed on the facing surface of the anode-side substrate 12 is
The anode electrode 12 is arranged so as to extend from one side surface to a part of the surface, and an external electrode portion 24 is connected to the extension portion 22a of the silicon film 22. Then, in an atmosphere filled with the discharge gas, the periphery of the facing surface of the anode-side substrate is
12a and the first end surface 16a of the frame member are in contact with each other, and the peripheral edge 14a of the opposing surface of the cathode-side substrate and the second end surface 16a of the frame member are contacted.
b, the anode side substrate 12, the frame member 16,
The cathode side substrate 14 is overlaid. At this time, the outer peripheral edge of the frame member 16 projects in a flange shape from the outer surfaces of the substrates 12 and 14 (FIG. 7).

【0027】上記枠部材16の外周縁部端面16cには、電
極枠58が圧着される。この電極枠58は、可撓性を備えた
良導性の金属帯を、枠部材16の外周縁部端面16cに対応
するように矩形状に折曲して形成されている。この電極
枠58の開閉端部58aを左右方向に開きながら、枠部材の
外周縁部を電極枠58内に導き入れた後、上記開閉端部58
aを閉じると、電極枠58自体が有する復元力によって、
枠部材の外周縁部端面16cと電極枠58の内面とが圧着さ
れることとなる。そして、図9に示すように、アノード
側基板12、枠部材16を積層させた状態で、カソード側基
板14をホットプレート42上に載置する。
An electrode frame 58 is crimped to the outer peripheral end face 16c of the frame member 16. The electrode frame 58 is formed by bending a flexible conductive metal band into a rectangular shape so as to correspond to the outer peripheral end face 16 c of the frame member 16. The outer peripheral edge of the frame member is guided into the electrode frame 58 while opening and closing the open / close end 58a of the electrode frame 58 in the left-right direction.
When a is closed, due to the restoring force of the electrode frame 58 itself,
The outer peripheral edge 16 c of the frame member and the inner surface of the electrode frame 58 are pressed. Then, as shown in FIG. 9, the cathode-side substrate 14 is placed on the hot plate 42 in a state where the anode-side substrate 12 and the frame member 16 are stacked.

【0028】アノード側基板12の外部電極部24には直流
電源46のプラス側が接続されると共に、カソード側基板
14の外部電極層26にも、ホットプレート42を経由して直
流電源46のプラス側が接続される。また、枠部材16の外
周縁部端面16cを覆う電極枠58には、直流電源46のマイ
ナス側が接続される。
The positive electrode of a DC power supply 46 is connected to the external electrode portion 24 of the anode substrate 12 and
The plus side of the DC power supply 46 is also connected to the fourteen external electrode layers 26 via the hot plate 42. The negative side of the DC power supply 46 is connected to the electrode frame 58 which covers the outer peripheral edge 16 c of the frame member 16.

【0029】しかして、上記ホットプレート42によって
摂氏200〜600度に加熱しながら直流電源46より5
0〜1000Vの電圧が印加されると、図10に示すよ
うに、枠部材16を構成するガラス内部の陽イオン(Na
+)48が電極枠58側に移動すると同時に、アノード側基
板12及びカソード側基板14との界面近傍に、マイナスの
電荷が集中して空間電荷層50が形成され、大きな吸引力
が生じてアノード側基板12及びカソード側基板14は枠部
材16に化学結合される。すなわち、アノード側基板の対
向面周縁12aと枠部材の第1の端面16aとの陽極接合、
及びカソード側基板の対向面周縁14aと枠部材の第2の
端面16bとの陽極接合が同時に実現されることとなる。
While being heated to 200 to 600 degrees Celsius by the hot plate 42, 5
When a voltage of 0 to 1000 V is applied, as shown in FIG.
+ ) At the same time as 48 moves to the electrode frame 58 side, a negative charge is concentrated near the interface between the anode-side substrate 12 and the cathode-side substrate 14 to form a space charge layer 50, which generates a large attractive force, The side substrate 12 and the cathode side substrate 14 are chemically bonded to the frame member 16. That is, anodic bonding between the peripheral edge 12a of the facing surface of the anode-side substrate and the first end surface 16a of the frame member,
In addition, anodic bonding between the peripheral edge 14a of the facing surface of the cathode-side substrate and the second end surface 16b of the frame member is simultaneously realized.

【0030】上記のように、枠部材16の外周縁部がアノ
ード側基板12及びカソード側基板14の外側面よりも突出
するように構成したのは、陽イオン48の移動・蓄積先を
確保するためである。また、枠部材の外周縁部端面16c
を取り囲むように電極枠58を圧着させたのは、外周縁部
端面16c全体に均一に電界が加わるようにするためであ
る。
As described above, the outer peripheral edge of the frame member 16 is configured to protrude from the outer side surfaces of the anode-side substrate 12 and the cathode-side substrate 14 to secure the movement and accumulation destination of the cations 48. That's why. Also, the outer peripheral edge end face 16c of the frame member.
The reason why the electrode frame 58 is pressure-bonded so as to surround the edge is to apply an electric field uniformly to the entire outer peripheral end face 16c.

【0031】[0031]

【発明の効果】本発明に係る紫外線センサにあっては、
上記のようにアノード側基板とカソード側基板とを、枠
部材を間に介して接合してなる外囲器を用いているた
め、従来のようにガラス管を加工して気密容器を形成す
る場合に比較して、全体形状の薄型化を実現することが
できる。また、枠部材とアノード側基板及びカソード側
基板との接合を、溶融工程を伴わない陽極接合法によっ
て実現しているため、外囲器形成過程において余計なガ
スが発生するおそれもない。
According to the ultraviolet sensor of the present invention,
As described above, since the anode-side substrate and the cathode-side substrate are joined together with a frame member interposed therebetween, a glass tube is processed as in the conventional case to form an airtight container. As a result, the overall shape can be made thinner. In addition, since the joining of the frame member to the anode-side substrate and the cathode-side substrate is realized by an anodic bonding method that does not involve a melting step, there is no possibility that unnecessary gas is generated in the process of forming the envelope.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る紫外線センサの構造を示す分解斜
視図である。
FIG. 1 is an exploded perspective view showing a structure of an ultraviolet sensor according to the present invention.

【図2】上記紫外線センサの動作原理を示す模式図であ
る。
FIG. 2 is a schematic view showing the operation principle of the ultraviolet sensor.

【図3】上記紫外線センサのアノード側基板と枠部材と
の接合工程を示す説明図である。
FIG. 3 is an explanatory diagram showing a joining process of an anode-side substrate and a frame member of the ultraviolet sensor.

【図4】上記紫外線センサの接合原理を示す模式図であ
る。
FIG. 4 is a schematic view showing a bonding principle of the ultraviolet sensor.

【図5】上記紫外線センサのカソード側基板と枠部材と
の接合工程を示す説明図である。
FIG. 5 is an explanatory view showing a joining step of a cathode-side substrate and a frame member of the ultraviolet sensor.

【図6】上記紫外線センサのアノード側基板、枠部材及
びカソード側基板との接合工程を示す説明図である。
FIG. 6 is an explanatory diagram showing a bonding step of the ultraviolet sensor with an anode-side substrate, a frame member, and a cathode-side substrate.

【図7】本発明に係る他の紫外線センサの構造を示す分
解斜視図である。
FIG. 7 is an exploded perspective view showing the structure of another ultraviolet sensor according to the present invention.

【図8】上記紫外線センサの枠部材に電極枠を係合する
様子を示す斜視図である。
FIG. 8 is a perspective view showing a state in which an electrode frame is engaged with a frame member of the ultraviolet sensor.

【図9】上記紫外線センサのアノード側基板及びカソー
ド側基板と枠部材との接合工程を示す説明図である。
FIG. 9 is an explanatory view showing a joining step of a frame member with the anode-side substrate and the cathode-side substrate of the ultraviolet sensor.

【図10】上記紫外線センサの接合原理を示す模式図で
ある。
FIG. 10 is a schematic view illustrating the bonding principle of the ultraviolet sensor.

【図11】従来の紫外線センサを示す説明図である。FIG. 11 is an explanatory diagram showing a conventional ultraviolet sensor.

【符号の説明】[Explanation of symbols]

10 紫外線センサ 12 アノード側基板 12a アノード側基板の対向面周縁 14 カソード側基板 14a カード側基板の対向面周縁 16 枠部材 16a 枠部材の第1の端面 16b 枠部材の第2の端面 16c 枠部材の外周縁部端面 18 外囲器 20 透光窓部 22 シリコン層 24 外部電極部 26 外部電極層 28 光電部 46 陽極接合用直流電源 51 電極板 10 Ultraviolet ray sensor 12 Anode-side substrate 12a Peripheral edge of opposing surface of anode-side substrate 14 Cathode-side substrate 14a Peripheral edge of opposing surface of card-side substrate 16 Frame member 16a First end surface 16b of frame member 16b Second end surface of frame member 16c Outer edge 18 End surface 20 Translucent window 22 Silicon layer 24 External electrode 26 External electrode layer 28 Photoelectric part 46 DC power supply for anode bonding 51 Electrode plate

フロントページの続き (56)参考文献 特開 平4−345741(JP,A) 特開 平10−104059(JP,A) 特開 平10−275587(JP,A) 特公 昭45−29612(JP,B1) 特公 昭50−8352(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01J 40/00 - 47/26 G01J 1/00 - 1/60 G01T 1/00 - 1/40 Continuation of the front page (56) References JP-A-4-345741 (JP, A) JP-A-10-14059 (JP, A) JP-A-10-275587 (JP, A) JP-B-45-29612 (JP) , B1) JP 50-8352 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) H01J 40/00-47/26 G01J 1/00-1/60 G01T 1/00 -1/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一面に透光窓部を残してシリ
コン層が形成された紫外線透過物質よりなるアノード側
基板と、一面に紫外線の入射によって光電子を放出させ
る光電部が形成されたシリコンよりなるカソード側基板
とを、アノード側基板のシリコン層形成面とカソード側
基板の光電部形成面とが対向するように配置し、両基板
の対向面周縁を枠部材を間に介して気密封止して外囲器
を形成し、該外囲器内に所定の放電ガスを充填し、上記
外囲器の外部に導出されたアノード側基板のシリコン層
に外部電極部を接続すると共に、上記カソード側基板の
外面に外部電極層を形成したことを特徴とする紫外線セ
ンサ。
1. An anode-side substrate having a silicon layer formed on at least one surface of a silicon layer leaving a light-transmitting window portion, and silicon having a photoelectric portion formed on one surface to emit photoelectrons by incidence of ultraviolet rays. The cathode side substrate is arranged so that the silicon layer forming surface of the anode side substrate and the photoelectric part forming surface of the cathode side substrate face each other, and the peripheral edges of the opposing surfaces of both substrates are hermetically sealed via a frame member therebetween. Forming an envelope, filling the envelope with a predetermined discharge gas, connecting an external electrode portion to a silicon layer of an anode-side substrate led out of the envelope, and An ultraviolet sensor having an external electrode layer formed on an outer surface of a substrate.
【請求項2】 上記枠部材として、内部に可動イオンを
含む絶縁材よりなり、上記アノード側基板の対向面周縁
と接する第1の端面と、上記カソード側基板の対向面周
縁と接する第2の端面とを備えたものを用い、 上記枠部材の第1の端面とアノード側基板のシリコン層
で覆われた対向面周縁とを接触させた状態で、枠部材の
第2の端面に直流電源のマイナス側を接続すると共に、
アノード側基板の外部電極部に上記直流電源のプラス側
を接続し、所定の温度に加熱しつつ上記直流電源より電
圧を印加して、上記枠部材の第1の端面とアノード側基
板の対向面周縁とを陽極接合した後、 所定の放電ガス雰囲気中において、上記枠部材の第2の
端面と上記カソード側基板のシリコンが露出した対向面
周縁とを接触させ、上記アノード側基板の外部電極部に
直流電源のマイナス側を接続すると共に、カソード側基
板の外部電極層に上記直流電源のプラス側を接続し、所
定の温度に加熱しつつ上記直流電源より電圧を印加し
て、上記枠部材の第2の端面とカソード側基板の対向面
周縁とを陽極接合し、以て上記外囲器を形成することを
特徴とする請求項1に記載の紫外線センサの製造方法。
2. The frame member is made of an insulating material containing movable ions therein, and has a first end face in contact with a peripheral edge of the anode-side substrate and a second end surface in contact with the peripheral edge of the cathode-side substrate. A DC power supply is applied to the second end surface of the frame member while the first end surface of the frame member is in contact with the peripheral edge of the anode-side substrate covered with the silicon layer. Connect the negative side,
A positive side of the DC power supply is connected to an external electrode portion of the anode-side substrate, and a voltage is applied from the DC power supply while heating to a predetermined temperature, so that a first end surface of the frame member and an opposing surface of the anode-side substrate. After the peripheral edge is anodically bonded, in a predetermined discharge gas atmosphere, the second end surface of the frame member is brought into contact with the peripheral surface of the cathode-side substrate where silicon is exposed, and the external electrode portion of the anode-side substrate is contacted. The negative side of the DC power source is connected to the external electrode layer of the cathode side substrate, and the positive side of the DC power source is connected, and a voltage is applied from the DC power source while heating to a predetermined temperature. The method for manufacturing an ultraviolet sensor according to claim 1, wherein the second end face and the periphery of the facing surface of the cathode-side substrate are anodically bonded to form the envelope.
【請求項3】 上記枠部材として、内部に可動イオンを
含む絶縁材よりなり、上記アノード側基板の対向面周縁
と接する第1の端面と、上記カソード側基板の対向面周
縁と接する第2の端面とを備えたものを用い、 上記枠部材の第2の端面とカソード側基板のシリコンが
露出した対向面周縁とを接触させた状態で、枠部材の第
1の端面に直流電源のマイナス側を接続すると共に、カ
ソード側基板の外部電極層に上記直流電源のプラス側を
接続し、所定の温度に加熱しつつ上記直流電源より電圧
を印加して、上記枠部材の第2の端面とカソード側基板
の対向面周縁とを陽極接合した後、 所定の放電ガス雰囲気中において、上記枠部材の第1の
端面と上記アノード側基板のシリコン層で覆われた対向
面周縁とを接触させ、上記カソード側基板の外部電極層
に直流電源のマイナス側を接続すると共に、アノード側
基板の外部電極部に上記直流電源のプラス側を接続し、
所定の温度に加熱しつつ上記直流電源より電圧を印加し
て、上記枠部材の第1の端面とアノード側基板の対向面
周縁とを陽極接合し、以て上記外囲器を形成することを
特徴とする請求項1に記載の紫外線センサの製造方法。
3. The frame member is made of an insulating material containing movable ions therein, and has a first end surface in contact with a peripheral edge of the anode-side substrate and a second end surface in contact with the peripheral edge of the cathode-side substrate. A negative end of the DC power source is connected to the first end face of the frame member in a state where the second end face of the frame member is brought into contact with the periphery of the facing surface of the cathode-side substrate where silicon is exposed. And connecting the positive side of the DC power supply to the external electrode layer of the cathode-side substrate, applying a voltage from the DC power supply while heating to a predetermined temperature, and connecting the second end face of the frame member to the cathode. After anodically bonding the peripheral edge of the opposing surface of the side substrate, in a predetermined discharge gas atmosphere, the first end surface of the frame member is brought into contact with the peripheral edge of the anode-side substrate covered with the silicon layer, Outside the cathode side substrate With connecting the negative side of the DC power source to the electrode layer, connects the positive side of the DC power source to the external electrode of the anode-side substrate,
Applying a voltage from the DC power supply while heating to a predetermined temperature, anodically bonding the first end surface of the frame member and the periphery of the facing surface of the anode-side substrate, thereby forming the envelope. The method for manufacturing an ultraviolet sensor according to claim 1, wherein:
【請求項4】 上記枠部材として、内部に可動イオンを
含む絶縁材よりなり、上記アノード側基板の対向面周縁
と接する第1の端面と、上記カソード側基板の対向面周
縁と接する第2の端面とを備えたものを用い、 所定の放電ガス雰囲気中において、上記枠部材の第1の
端面と上記アノード側基板のシリコン層で覆われた対向
面周縁とを接触させると共に、上記枠部材の第2の端面
と上記カード側基板のシリコンが露出した対向面周縁と
を接触させ、また上記アノード側基板の外面に電極板を
圧着させた上で、 上記カソード側基板の外部電極層及び上記電極板間に直
流電源を接続し、 所定の温度に加熱しつつ上記直流電源より電圧を一方向
に印加して、アノード側基板の対向面周縁と上記枠部材
の第1の端面同士、あるいはカソード側基板の対向面周
縁と上記枠部材の第2の端面同士の何れか一方を陽極接
合した後、 上記直流電源によって逆方向に電圧を印加して、アノー
ド側基板の対向面周縁と上記枠部材の第1の端面同士、
あるいはカソード側基板の対向面周縁と上記枠部材の第
2の端面同士の何れか他方を陽極接合し、以て上記外囲
器を形成することを特徴とする請求項1に記載の紫外線
センサの製造方法。
4. The frame member is made of an insulating material containing movable ions therein, and has a first end face in contact with a peripheral edge of the anode-side substrate and a second end surface in contact with the peripheral edge of the cathode-side substrate. In a predetermined discharge gas atmosphere, a first end face of the frame member is brought into contact with a peripheral edge of the anode-side substrate covered with a silicon layer in a predetermined discharge gas atmosphere. The second end face is brought into contact with the periphery of the facing surface of the card-side substrate where silicon is exposed, and an electrode plate is pressed against the outer surface of the anode-side substrate, and then the external electrode layer of the cathode-side substrate and the electrode A DC power supply is connected between the plates, a voltage is applied in one direction from the DC power supply while heating to a predetermined temperature, and the periphery of the facing surface of the anode-side substrate and the first end surfaces of the frame member or the cathode side Board After anodizing one of the peripheral edge of the opposing surface and the second end surface of the frame member, a voltage is applied in the opposite direction by the DC power supply, and the peripheral edge of the opposing surface of the anode-side substrate and the first of the frame member are applied. End faces of each other,
2. The ultraviolet sensor according to claim 1, wherein one of the other edge of the opposing surface of the cathode-side substrate and the second end surface of the frame member is anodically bonded to form the envelope. 3. Production method.
【請求項5】 上記枠部材として、内部に可動イオンを
含む絶縁材よりなり、上記アノード側基板の対向面周縁
と接する第1の端面と、上記カソード側基板の対向面周
縁と接する第2の端面と、対向配置された両基板の外側
面から突出する外周縁部とを備えたものを用い、 所定の放電ガス雰囲気中において、上記枠部材の第1の
端面と上記アノード側基板のシリコン層で覆われた対向
面周縁とを接触させ、また上記枠部材の第2の端面と上
記カード側基板のシリコンが露出した対向面周縁とを接
触させ、 上記枠部材の外周縁部端面に直流電源のマイナス側を接
続すると共に、アノード側基板の外部電極部及びカソー
ド側基板の外部電極層に上記直流電源のプラス側をそれ
ぞれ接続し、 所定の温度に加熱しつつ上記直流電源より電圧を印加し
て、アノード側基板の対向面周縁と上記枠部材の第1の
端面とを陽極接合すると同時に、上記カーソード側基板
の対向面周縁と枠部材の第2の端面とを陽極接合し、以
て上記外囲器を形成することを特徴とする請求項1に記
載の紫外線センサの製造方法。
5. The frame member is made of an insulating material containing movable ions therein, and has a first end surface in contact with a peripheral edge of the anode-side substrate and a second end surface in contact with the peripheral edge of the cathode-side substrate. A first end face of the frame member and a silicon layer of the anode-side substrate in a predetermined discharge gas atmosphere using an end face and an outer peripheral edge protruding from the outer side faces of the opposed substrates; And a second end face of the frame member is brought into contact with a peripheral face of the card-side substrate where silicon is exposed, and a DC power supply is applied to an end face of an outer peripheral edge of the frame member. And the positive side of the DC power supply is connected to the external electrode portion of the anode side substrate and the external electrode layer of the cathode side substrate, respectively, and a voltage is applied from the DC power supply while heating to a predetermined temperature. hand At the same time, the periphery of the facing surface of the anode-side substrate and the first end surface of the frame member are anodically bonded, and at the same time, the periphery of the facing surface of the cathode-side substrate and the second end surface of the frame member are anodically bonded. The method for manufacturing an ultraviolet sensor according to claim 1, wherein an envelope is formed.
JP22361998A 1998-07-23 1998-07-23 Ultraviolet sensor and method of manufacturing the same Expired - Lifetime JP2936098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22361998A JP2936098B1 (en) 1998-07-23 1998-07-23 Ultraviolet sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22361998A JP2936098B1 (en) 1998-07-23 1998-07-23 Ultraviolet sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2936098B1 true JP2936098B1 (en) 1999-08-23
JP2000040487A JP2000040487A (en) 2000-02-08

Family

ID=16801051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22361998A Expired - Lifetime JP2936098B1 (en) 1998-07-23 1998-07-23 Ultraviolet sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2936098B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739772A (en) * 2019-03-25 2020-10-02 浜松光子学株式会社 Method for manufacturing electron tube

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762719B2 (en) 2004-02-17 2011-08-31 浜松ホトニクス株式会社 Photomultiplier tube
US7242007B2 (en) * 2004-10-01 2007-07-10 Honeywell International Inc. Small-gap light sensor
JP6066799B2 (en) * 2013-03-28 2017-01-25 アズビル株式会社 Flame detection sensor
JP2021048053A (en) * 2019-09-19 2021-03-25 国立大学法人東海国立大学機構 Light detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739772A (en) * 2019-03-25 2020-10-02 浜松光子学株式会社 Method for manufacturing electron tube
CN111739772B (en) * 2019-03-25 2024-04-30 浜松光子学株式会社 Method for manufacturing electron tube

Also Published As

Publication number Publication date
JP2000040487A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
US20090283290A1 (en) Vacuum Device
US20070131869A1 (en) Ultra violet light sensor
WO2005078759A1 (en) Photomultiplier
US6030267A (en) Alignment method for field emission and plasma displays
JP2936098B1 (en) Ultraviolet sensor and method of manufacturing the same
US7867807B2 (en) Method for manufacturing photoelectric converting device
EP0833370B1 (en) Ultraviolet detector
KR970004490B1 (en) Detecting sensor of ultraviolet rays
US20030146698A1 (en) Photocathode and electron tube
US7521864B2 (en) Electron device with ring-less getter, method for affixing ring-less getter, and method for activating the same
US3656019A (en) Hydrogen-filled gas detector having cathode helix supported by envelope wall
CN116615958A (en) Luminous sealing body and light source device
JP3426340B2 (en) Display tube for light source and method of manufacturing the same
US3662206A (en) Cathode ray tube having inert barrier between silver chloride seal and photo cathode
US3209190A (en) Ultra-violet detector
US3334260A (en) Radiation detector and method of fabricating the same
US5417766A (en) Channel evaporator
JP3121140B2 (en) Flat cathode ray tube and method of manufacturing the same
JPS6236341B2 (en)
JPH03254042A (en) Manufacture of discharge container
JP3131165B2 (en) Method for manufacturing field electron emission type surge absorbing element
US20070080642A1 (en) Gas discharge display device and fabricating method thereof
JPH0311524A (en) Method for vacuum-hermetic sealing fluorescent character display tube
JPS63237331A (en) Gas discharge display panel
JPS5880241A (en) Display device