JP2934970B2 - Underwater acoustic transducer - Google Patents

Underwater acoustic transducer

Info

Publication number
JP2934970B2
JP2934970B2 JP1288442A JP28844289A JP2934970B2 JP 2934970 B2 JP2934970 B2 JP 2934970B2 JP 1288442 A JP1288442 A JP 1288442A JP 28844289 A JP28844289 A JP 28844289A JP 2934970 B2 JP2934970 B2 JP 2934970B2
Authority
JP
Japan
Prior art keywords
piezoelectric
particle size
average particle
volume ratio
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1288442A
Other languages
Japanese (ja)
Other versions
JPH03148884A (en
Inventor
幸治 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Original Assignee
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Togyo KK filed Critical Nippon Tokushu Togyo KK
Priority to JP1288442A priority Critical patent/JP2934970B2/en
Publication of JPH03148884A publication Critical patent/JPH03148884A/en
Application granted granted Critical
Publication of JP2934970B2 publication Critical patent/JP2934970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、合成ゴム等のゴム基材に圧電磁器粉末を配
合した圧電複合材料よりなる圧電ゴムを備え、例ば水中
に音波または超音波を送出したり、また逆に水中を伝播
する音波または超音波を受波する水中音響変換器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention includes a piezoelectric rubber made of a piezoelectric composite material in which a piezoelectric ceramic powder is blended with a rubber base material such as a synthetic rubber. The present invention relates to an underwater acoustic transducer for transmitting an ultrasonic wave or receiving a sound wave or ultrasonic wave propagating in water.

[従来技術] チタン酸鉛(PbTiO3)等の異方性のある圧電磁器の粉
末はペロブスカイト構造をもつ強誘電体材料であり、こ
のため種々の圧電材料や焦電材料として広く使用されて
いるが、特に最近では水中での圧電定数dh(d33+2
d31)及びgh(=dh/ε)が大きいことからハイドロフォ
ン等の水中音響変換器用圧電材料として注目されてい
る。
[Prior Art] Anisotropic piezoelectric ceramic powder such as lead titanate (PbTiO 3 ) is a ferroelectric material having a perovskite structure, and is therefore widely used as various piezoelectric materials and pyroelectric materials. However, recently, the piezoelectric constant d h (d 33 +2
Since d 31 ) and g h (= d h / ε) are large, they are attracting attention as piezoelectric materials for underwater acoustic transducers such as hydrophones.

このような水中音響変換器用圧電材料としては、音波
又は超音波を効率よく水中へ放射したり受波し得るよう
に水との音響整合性がよく、かつ水中深く浸漬してもそ
の水圧に充分耐え得る強度を有するように低密度、可撓
性に富んだ圧電材料が要求される。
Such a piezoelectric material for underwater acoustic transducers has good acoustic matching with water so that sound waves or ultrasonic waves can be efficiently radiated or received into water, and has sufficient water pressure even when immersed deeply in water. A low-density, highly flexible piezoelectric material is required to have the strength to withstand.

そしてかかる要望に応えるものとして、チタン酸鉛等
の粒子を作成し、これを合成ゴムなどのゴム基材中に混
合した複合材料が提案され、この材料にあって、さらに
大きな圧電定数dh,ghのものの実現が要望されている。
In response to such demands, a composite material in which particles such as lead titanate are prepared and mixed with a rubber base material such as synthetic rubber has been proposed, and in this material, a larger piezoelectric constant d h , The realization of g h is desired.

[発明が解決しようとする課題] 水中音響変換器に用いられる圧電ゴムの圧電定数dh,g
hを高くするためには、ゴム基材中における異方性のあ
る圧電磁器、例えばPbTiO3,BiFeO3,Bi5TiNbWO15(混合
層状複合ビスマス酸化物),チタン酸鉛・ビスマスフェ
ライト固溶体等の粉末の体積割合を増加させれば良いこ
とは一般的に知られている。すなわち、第1図のグラフ
に示す理論曲線のように体積割合の増加に伴って誘電率
ε33 T0,圧電定数dhが上昇することが机上にあって予
測されるのである。
[Problems to be Solved by the Invention] Piezoelectric constants d h and g of the piezoelectric rubber used in the underwater acoustic transducer
In order to increase h , anisotropic piezoelectric ceramics in the rubber substrate, such as PbTiO 3 , BiFeO 3 , Bi 5 TiNbWO 15 (mixed layered composite bismuth oxide), lead titanate / bismuth ferrite solid solution, etc. It is generally known that the volume ratio of the powder may be increased. That is, the dielectric constant ε 33 T / ε 0 with increasing volume fraction as the theoretical curve shown in the graph of Figure 1, is the be expected In the desk of the piezoelectric constant d h is increased.

ここで、同図に示すように例えば平均粒径3,3μm,7.3
μmのような小さな粒径のみをゴム基材中に含有させた
圧電複合材料は、平均粒径が31.8μmのような大きな粒
径のみをゴム基材中に含有させたものに比して圧電定数
dhが低いとされる。
Here, as shown in FIG.
A piezoelectric composite material containing only a small particle size such as μm in a rubber base material has a higher piezoelectric size than a material containing only a large particle size such as 31.8 μm in a rubber base material. constant
d h is said to be low.

従って大きな粒径の圧電磁器粉末を用いて、その体積
割合を可及的に増大すれば、圧電定数dhを増大し得るこ
ととなる。
Thus a piezoelectric ceramic powder of large particle size, if increasing the volume ratio as possible, and thus capable of increasing the piezoelectric constant d h.

ところが、実際には体積割合を増大しても、第1図に
示す様に60%程度から誘電率ε33 T0,及び圧電定数dh
は下降気味となり、必ずしま理論通りにはならない。ま
た大粒径の圧電磁器粉末のみを用いたものにあっては、
そのゴム基材に対する体積割合を増加させた場合には、
第2図に示す様に、誘電率の変化率Δε33 T33 T及び
圧電定数の変化率Δdh/dhが大きくなり、圧電依存性が
増大する。さらには小さな粒径のみをゴム基材中に含有
させた圧電複合材料にあっても、大粒径のものほどでは
ないが、やはり上記各変化率が体積割合の増加と共に大
きくなって圧力依存性が増大する。
However, even if the volume ratio is actually increased, the dielectric constant ε 33 T / ε 0 and the piezoelectric constant d h are reduced from about 60% as shown in FIG.
Is on a downtrend and does not always meet the theory. In the case of using only large-diameter piezoelectric ceramic powder,
When the volume ratio to the rubber substrate is increased,
As shown in FIG. 2, the change rate [Delta] d h / d h rate of change Δε 33 T / ε 33 T and the piezoelectric constant of the dielectric constant is increased, the piezoelectric dependency increases. Further, even in a piezoelectric composite material in which only a small particle diameter is contained in a rubber base material, although not as large as that of a large particle diameter, each of the above-mentioned rates of change also increases as the volume ratio increases, and the pressure dependence is increased. Increase.

そしてこのように圧力依存性が高いと、異なった深度
(水圧)で水中音響変換器を用いた場合には出力のバラ
付きを生じ、出力の補正を要して信号処理が面倒となる
通の問題を生じることとなる。
If the pressure dependency is high in this way, if the underwater acoustic transducer is used at different depths (water pressures), the output will vary, and it will be necessary to correct the output and the signal processing will be complicated. This will cause problems.

ここで上記各変化率は、圧電複合材料の試料を絶縁溶
液中に浸漬して、静水圧を0.5MPaから15MPaに増大させ
たときの、夫々の特性値の変化をとったものである。
Here, each of the above-mentioned rates of change is obtained by taking a change in each characteristic value when the sample of the piezoelectric composite material is immersed in an insulating solution and the hydrostatic pressure is increased from 0.5 MPa to 15 MPa.

本発明は、圧力依存性が少なく、しかも圧電定数dh,g
hの高い水中音響変換器の提供を目的とするものであ
る。
The present invention has a low pressure dependency and a piezoelectric constant d h , g
It is intended to provide an underwater acoustic transducer having a high h .

[課題を解決するための手段] 本発明は、表裏に電極が形成され、かつ厚み方向に分
極されてなる圧電ゴムを備えた水中音響変換器におい
て、 前記圧電ゴムを、夫々限界値が平均粒径に対して±3
σ(σ;標準偏差)の範囲にある粒径分布を有し、その
平均粒径が5〜10μmである圧電磁器粒子群と、同じく
平均粒径が20μm以上である圧電磁器粒子群とを体積比
1:5〜5:1の範囲で配合し、ゴム基材中に圧電磁器粒子の
総量の体積割合が60%以上となるように混合して構成し
てなる圧力依存性の小さな圧電複合材料によって形成し
たことを特徴とするものである。
[Means for Solving the Problems] The present invention relates to an underwater acoustic transducer provided with a piezoelectric rubber having electrodes formed on the front and back sides and polarized in the thickness direction. ± 3 for diameter
A piezoelectric ceramic particle group having a particle size distribution in the range of σ (σ; standard deviation) and having an average particle size of 5 to 10 μm and a piezoelectric ceramic particle group having an average particle size of 20 μm or more ratio
A small pressure-dependent piezoelectric composite material that is blended in the range of 1: 5 to 5: 1 and mixed so that the volume ratio of the total amount of piezoelectric ceramic particles in the rubber base material is 60% or more It is characterized by having been formed.

[作用] 上述した従来構成の水中音響変換器の圧電ゴムに用い
られる、圧電複合材料の圧力依存性が体積割合の上昇と
共に大きくなる理由を検討する。
[Operation] The reason why the pressure dependency of the piezoelectric composite material used for the piezoelectric rubber of the underwater acoustic transducer having the conventional configuration described above increases with an increase in the volume ratio will be examined.

ゴム基材中の圧電磁器粉末の量を増大した場合にあっ
て、大きな平均粒径のものによって該粉末を構成したも
のは、その密度の上昇と共に各粒子が密接しあって、そ
の間に比較的大容積の間隙を生じる。このためゴム基材
と、圧電磁器粉末との混合過程で、材料中に混入した空
気が該間隙中に閉じ込められて、大きな気孔が生じ易
い。一方、小さな粒径のものあっては、圧電磁器粉末の
表面積が著しく増大するから、圧電磁器粉末とゴム基材
との粒界に形成された小さな気孔が空気層となって増大
することが考えられる。
When the amount of the piezoelectric ceramic powder in the rubber base material is increased, and the powder is constituted by one having a large average particle size, each particle comes into close contact with the increase in the density, and during that time, the relative This creates a large volume gap. For this reason, in the mixing process of the rubber base material and the piezoelectric ceramic powder, air mixed in the material is trapped in the gap, and large pores are easily generated. On the other hand, in the case of particles having a small particle size, the surface area of the piezoelectric ceramic powder is significantly increased, and it is considered that small pores formed at the grain boundary between the piezoelectric ceramic powder and the rubber base material increase as an air layer. Can be

すなわち、両者の間隙の形成メカニズムは夫々異なる
としても、粒径が過大であっても過小であってもその配
合量が増大することにより気孔含有量が増加することが
予想されるのである。そしてこのように気孔があると、
圧電複合材料を水中等の高圧下で用いた場合にこれが圧
縮され、その特性に変化を生ずる。
In other words, even if the mechanisms of forming the gaps are different from each other, it is expected that the pore content will increase due to the increase in the blending amount regardless of whether the particle size is too large or too small. And when there are pores like this,
When a piezoelectric composite material is used under high pressure, such as in water, it is compressed and changes its properties.

そこでこの気孔の増加を調べるために、試料の実測密
度ρmeasと、各構成成分から割り出した理論密度ρcal
との比を取って、圧電磁器粒子の体積割合に対する変化
を調べた。この結果、体積割合が65%以上となる密度比
ρmeascaiが減少し、理論密度ρcalよりも実測密度
ρmeasが減少することが解った。そしてこの密度差は、
結局気孔の増大によるものと考えることができ、従って
体積割合の増加と共に気孔が増大していくものと結論づ
けられる。
Therefore, in order to investigate the increase in pores, the measured density ρ meas of the sample and the theoretical density ρ cal
The change with respect to the volume ratio of the piezoelectric ceramic particles was examined by taking the ratio of As a result, it was found that the density ratio ρ meas / ρ cai at which the volume ratio becomes 65% or more decreased, and the measured density ρ meas decreased from the theoretical density ρ cal . And this density difference is
It can be concluded that the pores increase as the volume fraction increases.

そこで本発明者はかかる知見に基づき、大粒径のもの
と、小粒径のものとを所定の割合で混合すれば、大粒径
のものの間に小粒径のものが介在することにより、粒子
間に密閉状の間隙が生じることがないため粒子間にゴム
基材が均一状に混入され、また粒子の単位重量あたりの
表面積も減少して、粒界に生じる気孔の発生を抑制する
ことができると考えた。
Then, based on such knowledge, the present inventor, if a large particle size and a small particle size are mixed at a predetermined ratio, the small particle size is interposed between the large particle size, Since a rubber-like base material is uniformly mixed between the particles because there is no closed space between the particles, the surface area per unit weight of the particles is reduced, and the generation of pores at the grain boundaries is suppressed. I thought I could do it.

そして各種の試験の結果、夫々限界値が平均粒径に対
して±3σ(σ;標準偏差)の範囲にある粒径分布を有
し、その平均粒径が5〜10μmである圧電磁器粒子群
と、同じく平均粒径が20μm以上である圧電磁器粒子群
とを体積比1:5〜5:1の割合で配合し、ゴム基材中に圧電
磁器粒子の総容量の体積割合が60%以上となるように混
合して構成してなる圧電複合材料は、圧力依存性が少な
く、かつ圧電定数の高い有用な材料であることを確認し
た。すなわち、かかる圧電複合材料を用いて圧電ゴムを
形成し、これにより水中音響変換器を構成した場合に
は、優れた特性のものを実現できることとなる。
As a result of various tests, piezoelectric ceramic particles having a particle size distribution whose limit value is within ± 3σ (σ; standard deviation) with respect to the average particle size, and having an average particle size of 5 to 10 μm. And a group of piezoelectric ceramic particles having an average particle size of 20 μm or more are blended in a volume ratio of 1: 5 to 5: 1, and the volume ratio of the total volume of the piezoelectric ceramic particles in the rubber base material is 60% or more. It has been confirmed that the piezoelectric composite material formed by mixing so as to have a low pressure dependency and a high piezoelectric constant is a useful material. That is, when a piezoelectric rubber is formed by using such a piezoelectric composite material and a hydroacoustic transducer is formed by using the piezoelectric rubber, excellent characteristics can be realized.

[実施例] 本発明に係る圧電ゴム1a,1bを形成するための圧電複
合材料につき説明する。
[Example] A piezoelectric composite material for forming the piezoelectric rubbers 1a and 1b according to the present invention will be described.

まず、平均粒径7.3μm及び31.8μmのチタン酸鉛粒
子群(PT)を用意し、これを1:5,1:2,1:1,2:1及び5:1の
割合で配合したものを、クロロプレンゴムと混合し、そ
の配合比がチタン酸鉛粒子の体積割合を50%,55%,62.5
%,65%,70%,72.5%,75%,77.5%.80%とする50種類の
混合試料を作成した。ここで平均粒径7.3μm及び31.8
μmのチタン酸鉛粒子群は第7図ロ,ハに示す粒径分布
からなり、いずれも粒径分布の限界値が平均粒径に対し
て±3σ(σ;標準偏差)の範囲にある。
First, a lead titanate particle group (PT) having an average particle size of 7.3 μm and 31.8 μm was prepared, and was blended in a ratio of 1: 5, 1: 2, 1: 1, 2: 1 and 5: 1. Is mixed with chloroprene rubber, and the compounding ratio is such that the volume ratio of lead titanate particles is 50%, 55%, 62.5%.
%, 65%, 70%, 72.5%, 75%, 77.5% and 80% of 50 mixed samples were prepared. Here, the average particle size is 7.3 μm and 31.8
The μm lead titanate particle group has the particle size distribution shown in FIG. 7B and FIG. 7C, and the limit value of the particle size distribution is within ± 3σ (σ; standard deviation) with respect to the average particle size.

そして前記配合比のものに加硫剤を加え、混練後、平
面方向に圧力を印加しながら80mm各(厚み0.5mm)の平
板状に加硫成形し、さらに銀ゴム電極付け,分極の各工
程を順次行ない、こうして形成された圧電ゴム1a,1bを
第3図の様にφ30の円板に切り出し、二枚を中心が陽極
に、外則面が負極になるように貼り合せ、各電極にケー
ブル2a,2bを各極に接続し、さらにこれをダンピング材
3に貼り付けて、ポリウレタン樹脂4で樹脂モールドし
て圧電ゴム1a,1bを備える水中音響変換器を構成した。
そして各特性を測定した。
Then, a vulcanizing agent is added to the mixture having the above-mentioned compounding ratio, and after kneading, vulcanization molding is performed to form a flat plate of 80 mm (0.5 mm in thickness) while applying pressure in the plane direction. The piezoelectric rubbers 1a and 1b thus formed are cut out into a disc of φ30 as shown in FIG. 3, and the two pieces are bonded together such that the center becomes the anode and the outer surface becomes the negative electrode. The cables 2a and 2b were connected to the respective poles, which were further attached to a damping material 3, and resin-molded with a polyurethane resin 4 to form an underwater acoustic transducer having piezoelectric rubbers 1a and 1b.
And each characteristic was measured.

また同様に、これと比較するように、チタン酸鉛の粉
末の平均粒径が各々3.3μm,7.3μm,及び31.8μmのPT粉
末単体のものを体積割合が30%,40%,50%,60%,65%,7
0%,75%,80%となるようにゴム基材に混合した圧電複
合材料計27種類を用意した。ここで、平均粒計3.3μm
のものは第7図イに示す粒径分布の粒子群であって、粒
径分布の限界値が平均粒径に対して±3σ(σ;標準偏
差)の範囲にある。
Similarly, as compared with this, the PT powder alone having an average particle diameter of 3.3 μm, 7.3 μm, and 31.8 μm of lead titanate powder was used in a volume ratio of 30%, 40%, 50%, 60%, 65%, 7
A total of 27 types of piezoelectric composite materials mixed with a rubber base material so as to be 0%, 75%, and 80% were prepared. Here, the average grain size is 3.3 μm
Are particle groups having a particle size distribution shown in FIG. 7A, and the limit value of the particle size distribution is within a range of ± 3σ (σ; standard deviation) with respect to the average particle size.

同様に平均粒径15.2μmのPT粉末単体のものを体積割
合が70%となるようにゴム基材に混合した圧電複合材料
を比較試料として用意した。
Similarly, a piezoelectric composite material in which a single PT powder having an average particle size of 15.2 μm was mixed with a rubber base material such that the volume ratio was 70% was prepared as a comparative sample.

さら本発明の他材料の実施例として、平均粒径6.9μ
mと35.0μmのチタン酸ジルコン酸鉛(PZT)磁器粉末
を体積比1:1にて配合し、これを体積割合80%となる様
にクロロプレンゴム中に配合した。そして各圧電複合材
料により同一構造の圧電ゴムからなる水中音響変換器を
構成し、各特性を測定して比較した。
Further, as an example of another material of the present invention, an average particle size of 6.9 μm
m and 35.0 μm of lead zirconate titanate (PZT) porcelain powder were blended at a volume ratio of 1: 1 and blended in chloroprene rubber so as to have a volume ratio of 80%. Then, an underwater acoustic transducer made of piezoelectric rubber having the same structure was constituted by each piezoelectric composite material, and each characteristic was measured and compared.

この結果、第1図〜第6図に示す各関係を得ることが
できた。また次表に例示する値を得ることができた。こ
こで次表はPTの体積割合が70%及びその付近の各測定値
を示すものである。
As a result, the respective relationships shown in FIGS. 1 to 6 could be obtained. Also, the values shown in the following table were obtained. Here, the following table shows each measured value when the volume ratio of PT is 70% and its vicinity.

上記の表に示す様に、各体積割合のものにおいて、密
度比ρmeascalはいずれも90%以上である。そして第
2図に示す様に平均粒径3.3μm,7.3μmまたは31.8μm
のチタン酸鉛粒子のみをゴム基材に混合したものが、そ
の体積割合が60%以上となると急速に低下し、前表に示
す様に体積割合70%ぐらいでは密度比96.7%(平均粒径
7.3μm),96,9%(平均粒径31.8μm),96.2%(平均
粒径15.2μm)となるのに比して、本発明のPT系複合材
料は同じく体積割合70%ぐらいでは密度比97.2%であ
り、その減少が小さく気孔が従来構成に比して減少して
いることが認められた。
As shown in the above table, in each of the volume ratios, the density ratio ρ meas / ρ cal is 90% or more. Then, as shown in FIG. 2, the average particle size is 3.3 μm, 7.3 μm or 31.8 μm.
When only the lead titanate particles are mixed with the rubber base material, the volume ratio rapidly decreases when the volume ratio is 60% or more, and as shown in the preceding table, when the volume ratio is about 70%, the density ratio is 96.7% (average particle size).
7.3 μm), 96,9% (average particle size 31.8 μm) and 96.2% (average particle size 15.2 μm), whereas the PT-based composite material of the present invention also has a density ratio of about 70% by volume. 97.2%, indicating that the decrease was small and the pores were reduced as compared with the conventional configuration.

一方、音速cはあまり変化がなく、音響インピーダン
スに変化を与えず、水中音響変換器用圧電材料として有
用性を維持し得るものであった。
On the other hand, the sound velocity c did not change much, and did not change the acoustic impedance, so that the usefulness as a piezoelectric material for an underwater acoustic transducer could be maintained.

また誘電率ε33 T0,受波感度及び圧電定数dh,d33
向上し、良好な特性を有するものとして確認された。
Further, the dielectric constant ε 33 T / ε 0 , the wave receiving sensitivity and the piezoelectric constants d h , d 33 were also improved, and it was confirmed that they had good characteristics.

また径方向の圧電定数d31を、dh=d33+2d31の関係か
ら、前記圧電定数dh,d33により計算して求めたところ、
注目すべきことに圧電定数d31の絶対値は極めて小さな
値となり、クロロプレンゴムに対する混合粒子の体積割
合が77.5%以上で零に近似するものとし得ることが確認
された。
Further, the piezoelectric constant d 31 in the radial direction was calculated from the relationship d h = d 33 + 2d 31 using the piezoelectric constants d h and d 33 .
The absolute value of the piezoelectric constant d 31 Remarkably becomes extremely small value, it was confirmed that the volume ratio of the mixed particles to chloroprene rubber may be assumed to approximate to zero at 77.5 percent or more.

この圧電定数d31が零近くなると、圧電変換器に付与
される径方向の振動は、通常ノイズを発生させるもので
あるが、この径方向振動による出力の発生が抑制され、
受波特性が向上することとなる利点がある。
When the piezoelectric constant d 31 is close zero, the vibration in the radial direction is applied to the piezoelectric transducer, but is intended to generate a normal noise, generation of the output according to the radial vibration is suppressed,
There is an advantage that the wave receiving characteristics are improved.

さらにはPZT磁器粉末を用いた従来の圧電複合材料
は、チタン酸鉛粒子に比して圧電定数d33が高いという
良好な特性を持っているが、反面において圧電定数d31
の絶対値も高く、その有用性を減殺されていた。ところ
が、前表の様に二種類の大小の平均粒径の圧電磁器粒子
群を混合した本発明のPZT系複合材料は圧電定数d31が−
1.5と小さい。この実験から帰納されるように、PZT系複
合材料にあっても、本発明を適用することにより圧電定
数d33を向上できると共に、圧電定数d31の絶対値をも減
少させることができ、その有用性をさらに引き出し得る
ことが解る。
Furthermore the conventional piezoelectric composites using PZT ceramic powder, the piezoelectric constant d 33 compared with the lead titanate particles have good characteristics of high piezoelectric constant d 31 in the other hand
Absolute value was also high, and its usefulness had been diminished. However, PZT-based composite material of the present invention obtained by mixing piezoelectric ceramic particles having an average particle diameter of the two kinds of large and small as the previous table piezoelectric constant d 31 is -
1.5 and small. As induction from this experiment, even in the PZT-based composite material, by applying the present invention it is possible to improve the piezoelectric constant d 33, can also reduce the absolute value of piezoelectric constant d 31, the It turns out that usefulness can be further extracted.

圧力依存性についてみると、試料を絶縁溶液中に浸漬
して静水圧を0.5MPaから15MPaに増大させたときの、誘
電率の変化率Δε33 T33 T及び圧電定数の変化率Δdh/
dhは小さいことが認められる。従って本発明のものは従
来構成に比して圧力依存性を小さくし得ることが解る。
Looking at the pressure dependence, the rate of change of the dielectric constant Δε 33 T / ε 33 T and the rate of change of the piezoelectric constant Δd h when the sample was immersed in an insulating solution and the hydrostatic pressure was increased from 0.5 MPa to 15 MPa /
d h is observed to be small. Therefore, it can be seen that the present invention can reduce the pressure dependency as compared with the conventional configuration.

ここで、一般的に圧電定数dhの大きな材料は変化率Δ
dh/dhも大きいとされているが、前表に示されるように
体積割合70%のものを単体のPT系複合材料からなる比較
試料と比べてみると、圧電定数dhが30.2と大きな値を示
しているにもかかわらず、変化率Δdh/dhが比較試料に
比してかなり小さいことが認められた。
Here, large materials commonly piezoelectric constant d h is the rate of change Δ
d h / d h also have been greater, the front Comparing the comparative sample consisting of a single PT Composites what percentage by volume of 70% as shown in Table, the piezoelectric constant d h is 30.2 despite it indicates a large value, the change rate [Delta] d h / d h was observed to be much smaller than the comparative sample.

而して、かかる構成の圧電複合材料は極めて有用なも
のであることが確認される。
Thus, it is confirmed that the piezoelectric composite material having such a configuration is extremely useful.

[数値限定の理由] 平均粒径31.8μmと7.3μmのチタン酸鉛粒子を各種
の配合比で混合した混合粒子を作成し、該粒子をゴム基
材に対して各種の体積割合で混ぜたものの夫々の圧力依
存性を調べた。
[Reason for limiting the numerical values] Mixed particles were prepared by mixing lead titanate particles having an average particle size of 31.8 μm and 7.3 μm at various compounding ratios, and the particles were mixed at various volume ratios with respect to the rubber base material. The pressure dependence of each was investigated.

ここで、第4図は横軸に平均粒径31.8μmと7.3μm
の比をとり、縦軸に圧電定数dhをとり、しかも各材料で
静水圧を変化させて圧力依存性を調べたものである。
Here, FIG. 4 shows the average particle size of 31.8 μm and 7.3 μm on the horizontal axis.
Taking the ratio of the vertical axis represents the piezoelectric constant d h, yet in which examined the pressure dependency by changing the hydrostatic pressure in the material.

この結果、ゴム基材に対する体積割合が増大するに従
って、または平均粒径31.8μmの混合比が増大するに従
って、静水圧をかけたとき(15MPa)と、圧力を解除し
たとき(0.5MPa)の差が大きくなり、圧力依存性が高ま
ることが確認された。
As a result, the difference between when the hydrostatic pressure is applied (15 MPa) and when the pressure is released (0.5 MPa) as the volume ratio to the rubber substrate increases or as the mixing ratio of the average particle size increases to 31.8 μm. Was increased, and the pressure dependence was confirmed to increase.

ところで、上述した様に圧力依存性は圧電複合材料中
の空気の含有量と密接に関係している。すなわち、密度
比ρmeascalが小さくなるほど空気の割合が多いこと
が解る。そして平均粒径31.8μmの割合が高いほど、ま
たは混合粒子のゴム基材への体積割合が高くなるほど空
気の含有量が大きくなり、密度比ρmeascalが小さく
なることが言える。すなわち密度比ρmeascalを基準
とすることにより混合比、体積割合及びその他の要因を
同一俎上にのせて、同じような因子として取り扱うこと
が可能となる。
By the way, as described above, the pressure dependency is closely related to the content of air in the piezoelectric composite material. That is, it can be understood that the smaller the density ratio ρ meas / ρ cal , the larger the proportion of air. It can be said that the higher the ratio of the average particle diameter is 31.8 μm, or the higher the volume ratio of the mixed particles to the rubber base material, the larger the air content and the smaller the density ratio ρ meas / ρ cal . That is, by using the density ratio ρ meas / ρ cal as a reference, the mixing ratio, the volume ratio, and other factors can be dealt with on the same basis and handled as similar factors.

そこで第5図において、密度比ρmeascalと、圧電
定数dhの減少率との関係を示す。
Therefore, in FIG. 5, showing the density ratio ρ meas / ρ cal, the relationship between the reduction rate of the piezoelectric constant d h.

この関係を調べると、各試料はおおむね3つの群I,I
I,IIIに分類することができる。すなわち、静水圧を変
化させても圧電定数dhが殆ど変わらず、圧力依存性が小
さい群I、圧電定数の変化率と密度比とが一次関数的に
変化する群II、及びその値がランダムであり、しかも比
較的変化率が安定している群IIIである。また群IIは、
群Iと近似して変化率が小さい群II aと、群IIIと変化
率が近似する群II b、さらに変化率が大きな群II cに分
けることができる。
Examining this relationship, each sample was roughly composed of three groups I, I
It can be classified into I and III. That is, even by changing the hydrostatic unchanged piezoelectric constant d h is almost the pressure dependency is small group I, group II, and the rate of change and the density ratio of the piezoelectric constant changes a linear function manner, and random value And the rate of change is relatively stable. Group II
It can be divided into a group IIa having a small change rate by approximating the group I, a group IIb having a similar change rate to the group III, and a group IIc having a larger change rate.

そして今度は、第6図にあって横軸に平均粒径31.8μ
mと7.3μmの比をとり、縦軸に混合粒子の体積割合を
とって、前記各群との関係を調べた。
This time, the average particle size is 31.8μ on the horizontal axis in FIG.
The relationship between each group was examined by taking the ratio of m to 7.3 μm, and taking the volume ratio of the mixed particles on the vertical axis.

その結果、興味深いことには、圧力依存性が比較的が
小さい群II aがその中央(体積比1:5〜5:1の範囲)で混
合粒子の体積割合の高い方へ侵入しており、かかる範囲
にあっては圧電磁器粒子を多量にゴム基材に混入しても
圧力依存性が良好であることが示された。ところで圧電
磁器の体積割合が大きければ誘電率ε33 T及び圧電
定数dhが向上することは第1図にあっても明らかであ
る。従って、かかる解析から平均粒径31.8μmと7.3μ
mの体積比が1:5〜5:1の範囲では、圧力依存性が比較的
小さく、しかも高い誘電率ε33 T及び圧電定数dh
得ることのできる材料であることが判断され得る。
As a result, it is interesting that group IIa, which has relatively small pressure dependence, penetrates into the higher volume fraction of the mixed particles at its center (in the range of 1: 5 to 5: 1), In such a range, even if a large amount of piezoelectric ceramic particles were mixed into the rubber substrate, the pressure dependency was good. However it if the volume fraction of the piezoelectric ceramic is larger dielectric constant ε 33 T / ε 0, and the piezoelectric constant d h is improved is apparent even in the first FIG. Therefore, from such analysis, the average particle size of 31.8μm and 7.3μm
The volume ratio of m is 1: 5 to 5: 1 in the range, the pressure dependency is relatively small and it is determined a material capable of obtaining a high dielectric constant ε 33 T / ε 0, and the piezoelectric constant d h Can be done.

そして、前表に示された平均粒径31.8μmと7.3μm
の体積比が1:1のものも、上記の範ちゅうにおいて所定
の特性を生じているのである。
And the average particle diameters 31.8 μm and 7.3 μm shown in the previous table
Even when the volume ratio is 1: 1, predetermined characteristics are generated in the above range.

一方、小平均粒径の圧電磁器粉末の平均粒は5〜10μ
mの範囲で考えられる。この範囲のものは、その作成の
容易性において優れて現実的であるからである。また大
平均粒径の圧電磁器粉末の平均粒径は20μm以上の範囲
で考えられる。小平均粒径との差は10μmであるが、そ
の粒子の体積比では8倍の相違があり、この程度の平均
粒径差があれば夫々限界値が平均粒径に対して±3σ
(σ;標準偏差)の範囲にある粒径分布を有するものに
あって、各粒子径がオーバーラップすることが少なく、
所要の作用効果を生じるものとし得るからである。
On the other hand, the average particle size of the piezoelectric ceramic powder having a small average particle size is 5 to 10 μm.
m. This is because those in this range are excellent in terms of ease of preparation and realistic. The average particle size of the piezoelectric ceramic powder having a large average particle size is considered to be in a range of 20 μm or more. Although the difference from the small average particle size is 10 μm, there is an eight-fold difference in the volume ratio of the particles, and if there is such a difference in the average particle size, the limit value is ± 3σ with respect to the average particle size.
(Σ; standard deviation), having a particle size distribution in the range, each particle size is less likely to overlap,
This is because the required operation and effect can be obtained.

而してこの結果、本発明に用いられる圧電複合材料
は、上記の粒径分布を有し、その平均粒径が互いに2倍
以上の差をもつことにより、粒径分布の限界値が互いに
オーバーラップすることをほぼ避け得た平均粒子径の異
なる複数群の圧電磁器粉末をゴム基材に混合したものと
定義できる。例えば平均粒径5〜10μmの圧電磁器粉末
と、平均粒径20μm以上の圧電磁器粉末とを体積比1:5
〜5:1の範囲で配合したものを、ゴム基材中に圧電磁器
粒子の総量の体積割合が60%以上となるように混合する
ことにより構成したものとして把握できるものである。
As a result, the piezoelectric composite material used in the present invention has the above-mentioned particle size distribution, and the average particle size has a difference of two times or more from each other. It can be defined as a mixture of a plurality of groups of piezoelectric ceramic powders having different average particle diameters which can be substantially avoided from being wrapped and mixed with a rubber base material. For example, a piezoelectric ceramic powder having an average particle size of 5 to 10 μm and a piezoelectric ceramic powder having an average particle size of 20 μm or more have a volume ratio of 1: 5.
It can be grasped as what was blended in a range of from 5: 1 to 5: 1 by mixing them in a rubber base material such that the volume ratio of the total amount of piezoelectric ceramic particles was 60% or more.

尚、各実施例にあっては、チタン酸鉛粒子での試験値
を示したが、本発明は平均粒径の異なるもの相互の物理
的振る舞いに依存するものであるから、PZT等他の圧電
磁器粉末においても同様の作用効果を奏し得るものであ
り、チタン酸鉛粒子に限定されない。
In each of the examples, test values for lead titanate particles were shown. However, since the present invention relies on mutual physical behaviors having different average particle sizes, other piezoelectric materials such as PZT are used. The same effect can be obtained with the porcelain powder, and is not limited to lead titanate particles.

[発明の効果] 本発明の水中用音響変換器に用いられる、圧電複合材
料は、所定の関係にある大平均粒子と小平均粒子径の二
種以上の圧電磁器粒子群を混合して、気孔含有量を可及
的に減少させ、これにより圧電定数dhが充分大きく、し
かも圧力依存性が小さいという良好な特性を生じる。こ
のためこの圧電複合材料により形成された圧電ゴムを備
える本発明の水中音響変換器は、圧力依存性が小さく、
異なった深度(水圧)で用いた場合にも安定した出力を
得ることができる。
[Effects of the Invention] The piezoelectric composite material used in the underwater acoustic transducer of the present invention is obtained by mixing two or more types of piezoelectric ceramic particles having a predetermined relationship between a large average particle and a small average particle diameter, thereby forming pores. The content is reduced as much as possible, which results in good properties such that the piezoelectric constant d h is sufficiently large and the pressure dependence is small. Therefore, the underwater acoustic transducer of the present invention including the piezoelectric rubber formed of the piezoelectric composite material has a small pressure dependency,
Even when used at different depths (water pressure), a stable output can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は圧電磁器粉末の体積割合と、誘電率ε33 T
及び圧電定数dhとの関係を示すグラフ、第2図は圧電磁
器粉末の体積割合と、誘電率ε33 T及び圧電定数dhの変
化率並びに密度比との関係を示すグラフ、第3図は本発
明の水中音響変換器の構成を示す縦断側面図、第4図は
混合粒子の混合比と圧電定数dhとの関係を示すグラフ、
第5図は密度比と圧電定数dhの減少率を示すグラフ、第
6図は混合粒子の混合比とその体積割合との関係を示す
グラフ、第7図イ、ロ,ハは夫々本発明の実施例に使用
される平均粒径3.3μm,7.3μm,31.8μmのチタン酸鉛粒
子の粒径分布を示すグラフである。
FIG. 1 shows the volume ratio of the piezoelectric ceramic powder and the dielectric constant ε 33 T / ε 0.
And a graph showing the relationship between the piezoelectric constant d h, the graph FIG. 2 showing the volume fraction of piezoelectric ceramic powders, the relationship between the change rate and the density ratio of the dielectric constant epsilon 33 T and the piezoelectric constant d h, Fig. 3 graph showing the vertical sectional side view showing a configuration of the underwater acoustic transducer of the present invention, the relation between the mixing ratio and the piezoelectric constant d h in Fig. 4 mixed particles,
Figure 5 is a graph showing the reduction rate of the density ratio and the piezoelectric constant d h, graph Figure 6 is showing a relationship between the mixing ratio of the mixed particles and their volume fraction, seventh stamen, b, c are each present invention 10 is a graph showing the particle size distribution of the lead titanate particles having an average particle size of 3.3 μm, 7.3 μm, and 31.8 μm used in the example of FIG.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表裏に電極が形成され、かつ厚み方向に分
極されてなる圧電ゴムを備えた水中音響変換器におい
て、 前記圧電ゴムを、夫々限界値が平均粒径に対して±3σ
(σ;標準偏差)の範囲にある粒径分布を有し、その平
均粒径が5〜10μmである圧電磁器粒子群と、同じく平
均粒径が20μm以上である圧電磁器粒子群とを体積比1:
5〜5:1の範囲で配合し、ゴム基材中に圧電磁器粒子の総
量の体積割合が60%以上となるように混合して構成して
なる圧力依存性の小さな圧電複合材料によって形成した
ことを特徴とする水中音響変換器。
1. An underwater acoustic transducer comprising a piezoelectric rubber having electrodes formed on both sides thereof and polarized in a thickness direction, wherein the piezoelectric rubber has a limit value of ± 3σ with respect to an average particle diameter.
(Σ; standard deviation), a volume ratio between a piezoelectric ceramic particle group having an average particle size of 5 to 10 μm and a piezoelectric ceramic particle group having an average particle size of 20 μm or more. 1:
It is formed of a small pressure-dependent piezoelectric composite material that is blended in a range of 5 to 5: 1 and mixed in a rubber base material so that the volume ratio of the total amount of piezoelectric ceramic particles is 60% or more. An underwater acoustic transducer.
JP1288442A 1989-11-06 1989-11-06 Underwater acoustic transducer Expired - Lifetime JP2934970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288442A JP2934970B2 (en) 1989-11-06 1989-11-06 Underwater acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288442A JP2934970B2 (en) 1989-11-06 1989-11-06 Underwater acoustic transducer

Publications (2)

Publication Number Publication Date
JPH03148884A JPH03148884A (en) 1991-06-25
JP2934970B2 true JP2934970B2 (en) 1999-08-16

Family

ID=17730267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288442A Expired - Lifetime JP2934970B2 (en) 1989-11-06 1989-11-06 Underwater acoustic transducer

Country Status (1)

Country Link
JP (1) JP2934970B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320910A (en) * 1991-12-09 1994-06-14 Ngk Spark Plug Co., Ltd. Piezoelectric composite material

Also Published As

Publication number Publication date
JPH03148884A (en) 1991-06-25

Similar Documents

Publication Publication Date Title
Kara et al. Porous PZT ceramics for receiving transducers
EP1044466B1 (en) Improved piezoelectric ceramic-polymer composites
US6335856B1 (en) Triboelectric device
Smith et al. Properties of composite piezoelectric materials for ultrasonic transducers
JP2777976B2 (en) Piezoelectric ceramic-polymer composite material and manufacturing method thereof
US20160096294A1 (en) Ultrasound Transducer Matching Layers and Method of Manufacturing
US20040219351A1 (en) Component having vibration-damping properties, mixture for manufacturing the component, and method of manufacturing such a component
JP2934970B2 (en) Underwater acoustic transducer
US5320910A (en) Piezoelectric composite material
Guillaussier et al. Porous lead zirconate titanate ceramics for hydrophones
JP2981901B2 (en) Piezoelectric element for underwater acoustic transducer
Wenger et al. Characterization and evaluation of piezoelectric composite bimorphs for in‐situ acoustic emission sensors
US20100283355A1 (en) Method for changing ultrasound wave frequency by using the acoustic matching layer
JP3256254B2 (en) Flexible composite piezoelectric material
Paul et al. Flexural vibration of piezoelectric composite hollow cylinder
Makarev et al. Digital piezomaterial based on piezoceramic-polymer composite for ultrasonic transducers
US4751014A (en) Piezoelectric composite material
JPH01172281A (en) Dielectric material for piezoelectric vibrator
Slayton et al. Single layer piezoelectric-epoxy composite
Tandon et al. Particle size dependence of piezoelectric and acoustical response of a composite hydrophone
Franco et al. Determination of the acoustic properties of tungsten/epoxy and tungsten/polyurethane composites using ultrasonic transmission technique
Roncari et al. Ferroelectric ceramics with included porosity for hydrophone applications
Zou et al. Hydrostatic piezoelectric property of composite PbTiO/sub 3/-P (VDF/TeFE) for hydrophone applications
RU2673444C1 (en) Method for obtaining porous piezoceramics with anisotropy of dielectric permittivity and number of other parameters
JP3098831B2 (en) Composite piezoelectric materials for underwater transducers