JP2934861B1 - Method for recovering hydrogen from aliphatic amine compounds - Google Patents

Method for recovering hydrogen from aliphatic amine compounds

Info

Publication number
JP2934861B1
JP2934861B1 JP10270663A JP27066398A JP2934861B1 JP 2934861 B1 JP2934861 B1 JP 2934861B1 JP 10270663 A JP10270663 A JP 10270663A JP 27066398 A JP27066398 A JP 27066398A JP 2934861 B1 JP2934861 B1 JP 2934861B1
Authority
JP
Japan
Prior art keywords
hydrogen
aliphatic amine
decomposition
gas
amine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10270663A
Other languages
Japanese (ja)
Other versions
JP2000095501A (en
Inventor
森 二タ村
愛華 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10270663A priority Critical patent/JP2934861B1/en
Application granted granted Critical
Publication of JP2934861B1 publication Critical patent/JP2934861B1/en
Publication of JP2000095501A publication Critical patent/JP2000095501A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

【要約】 【課題】 悪臭物質である脂肪族アミン化合物の分解に
おいて、高選択率で水素を生成させ、水素ガスとして回
収しうる処理方法を提供する。 【解決手段】 脂肪族アミン化合物を不活性ガス雰囲気
下、低温プラズマにより分解し、高選択率で水素を生成
させる脂肪族アミン化合物からの水素の回収方法。
Abstract: PROBLEM TO BE SOLVED: To provide a treatment method capable of generating hydrogen at a high selectivity in the decomposition of an aliphatic amine compound as a malodorous substance and recovering it as hydrogen gas. SOLUTION: A method for recovering hydrogen from an aliphatic amine compound in which an aliphatic amine compound is decomposed by low-temperature plasma in an inert gas atmosphere to generate hydrogen at a high selectivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、悪臭物質である脂
肪族アミン化合物を効率よく分解し、かつ、高い選択率
で水素を生成させてこれを回収する脂肪族アミン化合物
の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an aliphatic amine compound which efficiently decomposes an aliphatic odor compound, which is a malodorous substance, and generates and recovers hydrogen with a high selectivity.

【0002】[0002]

【従来の技術】悪臭を有する揮発性有機化合物の処理に
おいては、その分解、除去により悪臭をなくすことが行
われる。この処理において、単に分解消臭するだけでな
く、分解生成物が回収して別のエネルギーなどとして利
用できるものとすれば、環境問題に寄与するばかりでな
く、資源の有効利用につながると考えられる。
2. Description of the Related Art In the treatment of volatile organic compounds having an odor, the odor is eliminated by decomposition and removal. In this treatment, if it is assumed that the decomposition products are collected and can be used as other energy, etc. as well as simply eliminating the smell, it is thought that this not only contributes to environmental problems but also leads to effective use of resources. .

【0003】[0003]

【発明が解決しようとする課題】本発明は、悪臭物質で
ある脂肪族アミン化合物の分解において、高選択率で水
素を生成させ、水素ガスとして回収しうる処理方法を提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a processing method capable of generating hydrogen at a high selectivity and recovering it as hydrogen gas in the decomposition of an aliphatic amine compound which is a malodorous substance. .

【0004】[0004]

【課題を解決するための手段】本発明者は、嫌気性条件
下での有機化合物の低温プラズマ分解について検討し、
脂肪族アミンを低温プラズマで分解すると高い選択率で
水素が生成することを見出した。本発明はこの知見に基
づきなされた。すなわち本発明は、脂肪族アミン化合物
を不活性ガス雰囲気下、低温プラズマにより分解し、高
選択率で水素を生成させることを特徴とする脂肪族アミ
ン化合物の処理方法を提供するものである。
Means for Solving the Problems The present inventors have studied low-temperature plasma decomposition of organic compounds under anaerobic conditions,
It has been found that hydrogen is generated with high selectivity when aliphatic amines are decomposed by low-temperature plasma. The present invention has been made based on this finding. That is, the present invention provides a method for treating an aliphatic amine compound, which comprises decomposing the aliphatic amine compound by low-temperature plasma in an inert gas atmosphere to generate hydrogen at a high selectivity.

【0005】[0005]

【発明の実施の形態】本発明方法における分解反応は、
低温プラズマのプラズマ反応装置を用いて行われ、反応
装置等に特に制限はない。反応装置としては、例えば、
強誘電体ペレット充填型低温プラズマ反応器などを用い
ることができ、強誘電体の誘電率を好ましくは室温で
3,000〜10,000とする。投入電圧は好ましく
は5.0〜8.0kVである。投入電圧が高すぎると、
反応器内の伝導度が高くなって導通してしまい、いわゆ
るブレークダウン(breakdown)という現象が起こること
がある。この状態ではマイクロディスチャージを反応器
内に起こすことができない。本発明方法における分解反
応は室温で行うことができ、反応温度は通常、25〜2
6℃である(室温付近の反応で、通常、反応中に1〜2
℃の温度上昇が生ずる)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The decomposition reaction in the method of the present invention is as follows.
The reaction is performed using a low-temperature plasma plasma reactor, and the reactor is not particularly limited. As a reaction device, for example,
A ferroelectric pellet-filled low-temperature plasma reactor or the like can be used, and the dielectric constant of the ferroelectric is preferably 3,000 to 10,000 at room temperature. The input voltage is preferably between 5.0 and 8.0 kV. If the input voltage is too high,
The conductivity in the reactor becomes high and the reactor conducts, so that a so-called breakdown phenomenon may occur. In this state, microdischarge cannot occur in the reactor. The decomposition reaction in the method of the present invention can be performed at room temperature, and the reaction temperature is usually 25 to 2
6 ° C. (reaction near room temperature, usually 1-2
° C).

【0006】本発明においてはバックグラウンドガスと
して、不活性ガス(例えば窒素ガス、アルゴンガスな
ど)を用い、好ましくはバックグラウンドガス中の酸素
濃度を1%未満とする。バックグラウンドガス中の酸素
濃度が高いと、分解反応で生成した水素が水になってし
まい、水素ガスの回収率が低下することがある。本発明
方法においては、あらかじめ処理対象の脂肪族アミン化
合物を、好ましくは400ppm以上、さらに好ましく
は500〜2000ppmの濃度でバックグラウンドガ
スと混合して反応ガスとし、これを反応器内に導入す
る。反応ガス圧は好ましくは常圧(1気圧)とする。反
応ガス流速は、ガス滞留時間が秒以上であれば分解率へ
の影響はなく、任意に選択できる。
In the present invention, an inert gas (eg, nitrogen gas, argon gas, or the like) is used as a background gas, and the oxygen concentration in the background gas is preferably less than 1%. If the oxygen concentration in the background gas is high, hydrogen generated by the decomposition reaction becomes water, and the recovery rate of hydrogen gas may decrease. In the method of the present invention, the aliphatic amine compound to be treated is mixed with a background gas at a concentration of preferably 400 ppm or more, more preferably 500 to 2,000 ppm, as a reaction gas, and the reaction gas is introduced into the reactor. The reaction gas pressure is preferably normal pressure (1 atm). The reaction gas flow rate can be arbitrarily selected without affecting the decomposition rate as long as the gas residence time is at least seconds.

【0007】本発明方法で処理できる脂肪族アミン化合
物は、揮発性のものであればどのような化合物でもよ
く、1級、2級、3級アミンのいずれも処理することが
できるが、水素を多く回収できる点からは、1分子あた
りの水素原子の数が多い3級アミンが好ましい。また、
炭素数が1〜6の脂肪族アミン化合物が好ましく、3〜
6がさらに好ましい。具体的には例えばメチルアミン、
ジメチルアミン、トリメチルアミン、ジメチルエチルア
ミン、メチルジエチルアミン、トリエチルアミンなどが
あげられる。
The aliphatic amine compound which can be treated by the method of the present invention may be any compound as long as it is volatile, and any of primary, secondary and tertiary amines can be treated. A tertiary amine having a large number of hydrogen atoms per molecule is preferred from the viewpoint of large recovery. Also,
Aliphatic amine compounds having 1 to 6 carbon atoms are preferred,
6 is more preferred. Specifically, for example, methylamine,
Examples thereof include dimethylamine, trimethylamine, dimethylethylamine, methyldiethylamine, and triethylamine.

【0008】本発明の処理方法の分解生成物として水素
の次に多いのはメタンであるが、投入電力密度(Specif
ic Energy Density (SED) 、単位ガス処理量当りに消費
される電力量の目安)などの条件を適宜選択すること
で、メタンの4倍程度の選択率で水素を生成させ、回収
することが可能である。生成した水素の分離、回収は、
常法により行うことができる。通常の化学反応では、反
応の過酷度があがると目的物質の二次分解や副反応が起
こりやすくなるが、本発明方法においては低温プラズマ
による分解反応を行うことにより、脂肪族アミン化合物
の分解率を上げると目的の水素の選択率も向上し、副反
応などによる二次汚染物質を発生させることなく高い選
択率で水素を生成させることができるという優れた特徴
を有する。
[0008] Methane is the next largest product of decomposition as a decomposition product in the treatment method of the present invention.
By appropriately selecting conditions such as ic Energy Density (SED) and the amount of power consumed per unit gas processing volume), hydrogen can be generated and recovered at a selectivity about four times that of methane. It is. Separation and recovery of generated hydrogen
It can be performed by a conventional method. In ordinary chemical reactions, when the severity of the reaction increases, secondary decomposition and side reactions of the target substance tend to occur.However, in the method of the present invention, the decomposition rate of the aliphatic amine compound is reduced by performing the decomposition reaction by low-temperature plasma. When the value is increased, the selectivity of the target hydrogen is also improved, and there is an excellent feature that hydrogen can be generated at a high selectivity without generating secondary contaminants due to side reactions and the like.

【0009】[0009]

【実施例】次に、本発明を実施例に基づいてさらに詳細
に説明する。 実施例1、2 室温で誘電率が5000のチタン酸バリウム(BaTi
3)(粒径1mm)を充填したパックトベッド型(電極
間距離1.54cm)の強誘電体ペレット充填型低温プ
ラズマ反応器を用い、室温で、トリメチルアミン(TM
A)又はジメチルアミン(DMA)の分解処理を行っ
た。両電極間に50Hzの交流電圧を印加し、一次側の
消費電力はデジタルパワーメーターにより測定した。こ
の消費電力とガス流速の比によりSEDを算出した。バ
ックグラウンドガスには乾燥窒素ガスを用い、TMA又
はDMAの濃度が500ppmの反応ガスを用いた。ガ
ス流速はそれぞれ、0.5L/min(ガス滞留時間
8.9秒)、1.0L/min(4.4秒)及び1.5
L/min(3.0秒)で行った。生成物の同定はキャ
ピラリーカラム(DB−1)を備えたGC−MS(Shim
adzu GC-MS 5050A)により行った。定量分析は、脂肪族
アミンと比較的融点の高い有機副生成物についてはFI
D(水素炎イオン化検出器)を備えたGC(GL Science
s, GC-353, Pora PLOT Amines)、C2 以下の炭化水素に
ついてはTCD(熱伝導度検出器)とFIDを備えたG
C(Shimadzu GC-9A, Porapak Q + N, Molecular Sieve
13X) により行った。H2 の定量はTCDを備えたGC
(Shimadzu GC-14B, Molecular Sieve 13X) により行っ
た。
Next, the present invention will be described in more detail with reference to examples. Examples 1 and 2 Barium titanate (BaTi) having a dielectric constant of 5,000 at room temperature
O 3 ) (particle diameter 1 mm) packed in a low temperature plasma reactor packed with ferroelectric pellets (distance between electrodes 1.54 cm) at room temperature using trimethylamine (TM)
A) or dimethylamine (DMA) decomposition treatment was performed. An AC voltage of 50 Hz was applied between both electrodes, and the power consumption on the primary side was measured with a digital power meter. The SED was calculated from the ratio between the power consumption and the gas flow rate. A dry nitrogen gas was used as a background gas, and a reaction gas having a TMA or DMA concentration of 500 ppm was used. The gas flow rates were 0.5 L / min (gas residence time 8.9 seconds), 1.0 L / min (4.4 seconds) and 1.5 L / min, respectively.
L / min (3.0 seconds). The product was identified by GC-MS (Shim) equipped with a capillary column (DB-1).
adzu GC-MS 5050A). Quantitative analysis was performed on aliphatic amines and organic by-products with relatively high melting points by FI
GC (GL Science) equipped with D (flame flame ionization detector)
s, GC-353, Pora PLOT Amines), G for the C 2 or less hydrocarbons with a FID and TCD (thermal conductivity detector)
C (Shimadzu GC-9A, Porapak Q + N, Molecular Sieve
13X). Quantification of H 2 was determined by GC with TCD.
(Shimadzu GC-14B, Molecular Sieve 13X).

【0010】SEDに対するTMA、DMAの分解率の
グラフを図1、図2にそれぞれ示した。いずれのアミン
の分解率についても、ガス流速の影響は認められず、S
EDの値とともに分解率は増加し、高い分解率を示し
た。ガス滞留時間が3.0秒程度でも、高速電子から脂
肪族アミンへのエネルギー移動は十分に起こるものと推
察される。アミンのアルキル置換基の数による分解率の
差は、ほとんどなかった。分解生成物として、いずれの
アミン化合物の場合も、水素、メタン、エタン、エチレ
ン、アセチレンが得られ、他にN2 Oなどが微量生成し
た。また、反応水素量に対する分解生成物(水素、メタ
ン、C2 炭化水素)の選択率のグラフを、それぞれ図
3、図4に示した。いずれの場合も、脂肪族アミンの分
解率が高いほど水素の選択率が向上しており、水素の次
に生成量の多いメタンに対し、約4倍の選択率で水素を
生成させることができた。水素ガスの最大の収率はTM
Aで59%、DMAで57%であった。なお、水素、メ
タン、C2 炭化水素の選択率は水素収支を元に算出し
た。例えばTMAの場合には以下の式(1)〜(3)に
よる。
FIGS. 1 and 2 show graphs of the decomposition rates of TMA and DMA with respect to SED, respectively. Regarding the decomposition rate of any of the amines, the influence of the gas flow rate was not observed.
The decomposition rate increased with the ED value, indicating a high decomposition rate. It is assumed that even when the gas residence time is about 3.0 seconds, the energy transfer from the fast electrons to the aliphatic amine occurs sufficiently. There was almost no difference in the degradation rate with the number of alkyl substituents on the amine. For all amine compounds, hydrogen, methane, ethane, ethylene, and acetylene were obtained as decomposition products, and trace amounts of N 2 O and the like were generated. Also, graphs of the selectivity of decomposition products (hydrogen, methane, C 2 hydrocarbons) with respect to the amount of reaction hydrogen are shown in FIGS. 3 and 4, respectively. In any case, the higher the decomposition rate of the aliphatic amine, the higher the selectivity of hydrogen is, and the hydrogen can be generated with a selectivity about four times that of methane, which produces the next largest amount of hydrogen. Was. The maximum yield of hydrogen gas is TM
A was 59% and DMA was 57%. The selectivity of hydrogen, methane and C 2 hydrocarbon was calculated based on the hydrogen balance. For example, in the case of TMA, the following equations (1) to (3) are used.

【0011】 式(1) SelectH2 =100 ×(2× ConcnH2)/[Initial concnTMA×(ConvTMA / 100)× 9] 式(2) SelectCH4 =100 ×(4× ConcnCH4)/[Initial concnTMA×(ConvTMA / 100)× 9] 式(3) SelectC2 =100 ×(6× ConcnC2H6 + 4× ConcnC2H4 + 2×ConcnC2H2)/ [Initial concnTMA×(ConvTMA /100)× 9] (Selectは選択率、Concn は生成濃度、Convは転化率、
Initial Concn は初濃度を意味する)
Equation (1) Select H2 = 100 × (2 × Concn H2 ) / [Initial concn TMA × (Conv TMA / 100) × 9] Equation (2) Select CH4 = 100 × (4 × Concn CH4 ) / [ Initial concn TMA × (Conv TMA / 100) × 9] Equation (3) Select C2 = 100 × (6 × Concn C2H6 + 4 × Concn C2H4 + 2 × Concn C2H2 ) / [Initial concn TMA × (Conv TMA / 100) × 9] (Select is selectivity, Concn is production concentration, Conv is conversion rate,
Initial Concn means initial concentration)

【0012】実施例3 実施例1、2と全く同様にして、メチルアミン(MA)
の分解処理を行った(反応ガス中のMAの濃度は500
ppmとした)。MAの反応性はDMAとほぼ同様で、
SED 12.1kJ/Lにおいて78モル%の分解率
を示し、収率56%で水素ガスを回収することができ
た。
Example 3 Methylamine (MA) was prepared in exactly the same manner as in Examples 1 and 2.
(MA concentration in the reaction gas is 500
ppm). The reactivity of MA is almost the same as DMA,
At a SED of 12.1 kJ / L, a decomposition rate of 78 mol% was exhibited, and hydrogen gas could be recovered with a yield of 56%.

【0013】[0013]

【発明の効果】本発明方法によれば、悪臭物質である脂
肪族アミン化合物を効率よく分解するとともに、高い選
択率で水素を生成させることができ、単に分解するだけ
でなく生成した水素を回収利用することができる。本発
明方法では、低温プラズマを利用することにより、脂肪
族アミン化合物の分解率が高いほど生成物中の水素の選
択率は向上し、副反応などによる二次汚染物質を発生さ
せることなく高い選択率で水素を生成させることができ
る。
According to the method of the present invention, it is possible to efficiently decompose an aliphatic amine compound, which is a malodorous substance, and to generate hydrogen at a high selectivity. Can be used. In the method of the present invention, by using low-temperature plasma, the higher the decomposition rate of the aliphatic amine compound, the higher the selectivity of hydrogen in the product is, and the higher the selectivity without generating secondary contaminants due to side reactions and the like. Hydrogen can be produced at a high rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における、SEDに対するTMAの分
解率を示すグラフである。
FIG. 1 is a graph showing the decomposition rate of TMA with respect to SED in Example 1.

【図2】実施例2における、SEDに対するDMAの分
解率を示すグラフである。
FIG. 2 is a graph showing the decomposition ratio of DMA to SED in Example 2.

【図3】実施例1における、TMA処理時の反応水素量
に対する水素、メタン、C2 炭化水素の選択率を示すグ
ラフである。
FIG. 3 is a graph showing the selectivity of hydrogen, methane, and C 2 hydrocarbons with respect to the amount of reactive hydrogen during TMA treatment in Example 1.

【図4】実施例2における、DMA処理時の反応水素量
に対する水素、メタン、C2 炭化水素の選択率を示すグ
ラフである。
FIG. 4 is a graph showing the selectivity of hydrogen, methane, and C 2 hydrocarbons with respect to the amount of reactive hydrogen during DMA processing in Example 2.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脂肪族アミン化合物を不活性ガス雰囲気
下、低温プラズマにより分解し、高選択率で水素を生成
させることを特徴とする脂肪族アミン化合物からの水素
の回収方法。
1. A method for recovering hydrogen from an aliphatic amine compound, comprising decomposing the aliphatic amine compound by low-temperature plasma in an inert gas atmosphere to generate hydrogen at a high selectivity.
JP10270663A 1998-09-25 1998-09-25 Method for recovering hydrogen from aliphatic amine compounds Expired - Lifetime JP2934861B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270663A JP2934861B1 (en) 1998-09-25 1998-09-25 Method for recovering hydrogen from aliphatic amine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270663A JP2934861B1 (en) 1998-09-25 1998-09-25 Method for recovering hydrogen from aliphatic amine compounds

Publications (2)

Publication Number Publication Date
JP2934861B1 true JP2934861B1 (en) 1999-08-16
JP2000095501A JP2000095501A (en) 2000-04-04

Family

ID=17489229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270663A Expired - Lifetime JP2934861B1 (en) 1998-09-25 1998-09-25 Method for recovering hydrogen from aliphatic amine compounds

Country Status (1)

Country Link
JP (1) JP2934861B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344065A (en) * 2016-05-04 2017-11-14 魏星 The technique and method of low-temperature plasma synergistic sulfuric acid crystallisation processing dimethylamine waste water, waste gas and stink

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338203A (en) 2001-05-22 2002-11-27 National Institute Of Advanced Industrial & Technology Method for generating hydrogen by low temperature plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344065A (en) * 2016-05-04 2017-11-14 魏星 The technique and method of low-temperature plasma synergistic sulfuric acid crystallisation processing dimethylamine waste water, waste gas and stink

Also Published As

Publication number Publication date
JP2000095501A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
Bauschlicher Jr The reaction of polycyclic aromatic hydrocarbon cations with hydrogen atoms: The astrophysical implications
Futamura et al. Comparison of reactor performance in the nonthermal plasma chemical processing of hazardous air pollutants
US20020175084A1 (en) Process for production of hydrogen using nonthermal plasma
Futamura et al. Mechanisms for formation of inorganic byproducts in plasma chemical processing of hazardous air pollutants
RU2002116665A (en) Method for the production of vinyl chloride from ethane and ethylene with secondary consumption in the reaction of HC1 leaving the reactor
US4059675A (en) Decomposition of halogenated organic compounds
JP3834614B2 (en) Method for producing synthesis gas using low-temperature plasma
JPWO2008001844A1 (en) Method for producing high purity hexafluoropropylene and cleaning gas
EP1085075A1 (en) Treatment of hydrogen sulfide-containing gaseous compositions
Magureanu et al. Chlorinated organic compounds decomposition in a dielectric barrier discharge
US2709186A (en) Preparation of compounds of fluorine and carbon
Ogata et al. Decomposition of benzene in air in a plasma reactor: effect of reactor type and operating conditions
JP2934861B1 (en) Method for recovering hydrogen from aliphatic amine compounds
JP2006509831A5 (en)
KR101634675B1 (en) Dielectric barrier discharge plasma system with catalyst and method for removing carbon dioxide and methane using the same
US2467373A (en) Production of nitriles
JP4255201B2 (en) Chain hydrocarbon steam reforming method and apparatus therefor
JP3974954B2 (en) Method for removing olefinic impurities from 2H-heptafluoropropane (R227)
Quan et al. Preparation and application of porous calcium fluoride—a novel fluorinating reagent and support of catalyst
JP2005144450A (en) Treating method of off gas generated from semiconductor process chamber
McDaniel et al. Rate parameters for the reactions of the bromomethyne radical
Karecki et al. Evaluation of oxalyl fluoride for a dielectric etch application in an inductively coupled plasma etch tool
Wang et al. Conversion of methane to C~ 2 hydrocarbons via cold plasma reaction
US2709183A (en) Synthesis of aliphatic fluorine compounds from hydrogen fluoride and carbon
Kabashima et al. Continuous production of synthesis gas at ambient temperature from steam reforming of methane with nonthermal plasma

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term