JP2934727B2 - Driving method of ferroelectric liquid crystal device - Google Patents

Driving method of ferroelectric liquid crystal device

Info

Publication number
JP2934727B2
JP2934727B2 JP6038189A JP6038189A JP2934727B2 JP 2934727 B2 JP2934727 B2 JP 2934727B2 JP 6038189 A JP6038189 A JP 6038189A JP 6038189 A JP6038189 A JP 6038189A JP 2934727 B2 JP2934727 B2 JP 2934727B2
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
driving
scanning
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6038189A
Other languages
Japanese (ja)
Other versions
JPH02239228A (en
Inventor
晃 間瀬
秋男 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP6038189A priority Critical patent/JP2934727B2/en
Publication of JPH02239228A publication Critical patent/JPH02239228A/en
Application granted granted Critical
Publication of JP2934727B2 publication Critical patent/JP2934727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】 『発明の利用分野』 本発明は、ディスプレイ、光シャッター等に応用され
る強誘電性液晶表示装置を駆動させる方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for driving a ferroelectric liquid crystal display device applied to a display, an optical shutter and the like.

『従来の技術』 従来、複数のマトリックス状電極を有する強誘電性液
晶表示装置の駆動方法としては、2フィールド法、4パ
ルス法、複数同時消去法等がある。
2. Description of the Related Art Conventionally, as a driving method of a ferroelectric liquid crystal display device having a plurality of matrix electrodes, there are a two-field method, a four-pulse method, a plural simultaneous erasing method, and the like.

2フィールド法においては第2図(a)に示すよう
に、1つの走査電極の選択時間が4つの位相から構成さ
れ、1画素の表示に対する1フレームを2つに分割し、
前半、後半の2つのフィールドに2つずつの位相を配置
して、黒の書き込みと白の書き込みをそれぞれ別のフィ
ールドで行うものである。
In the two-field method, as shown in FIG. 2A, the selection time of one scanning electrode is composed of four phases, one frame for one pixel display is divided into two,
Two phases are arranged in each of the first half field and the second half field, and black writing and white writing are performed in different fields.

ここで「選択時間が4つの位相から構成され」とは、
1フレーム内における1走査電極の選択時間内に4つの
パルスを有することを意味する。
Here, "the selection time is composed of four phases"
This means that there are four pulses within the selection time of one scan electrode in one frame.

4パルス法においても、第2図(b)に示すように、
走査電極の選択時間を4つの位相に分割して強誘電性液
晶分子の有する自発分極の向きを反転或いは保持させて
白、黒を表示する。
Also in the four-pulse method, as shown in FIG.
The selection time of the scanning electrode is divided into four phases and the direction of spontaneous polarization of the ferroelectric liquid crystal molecules is inverted or held to display white and black.

複数同時消去法にあっては、1つの走査電極の選択時
間中に任意の複数本の走査電極上の強誘電性液晶分子を
一方向に一斉に向かせるための電界を加えた後、該走査
電極の一本毎に選択時間を2つの位相に分割して、先程
とは逆の向きの電界を制御信号に従って加えている。
In the multiple simultaneous erasing method, an electric field for simultaneously orienting the ferroelectric liquid crystal molecules on a plurality of arbitrary scanning electrodes in one direction during a selection time of one scanning electrode is applied, and then the scanning is performed. The selection time is divided into two phases for each electrode, and an electric field in a direction opposite to the previous direction is applied according to the control signal.

第2図(c)に複数同時消去法の駆動波形例を示す。 FIG. 2 (c) shows an example of the driving waveform of the multiple simultaneous erasing method.

『従来の問題点』 上記の2フィールド法、4パルス法においては1つの
走査電極の選択時間を4つの位相に分割し、実際強誘電
性液晶分子を有効に動かしている時間はその内の1つの
位相でしかない。例えば640本の制御電極と400本の走査
電極を有する強誘電性液晶表示装置を想定すると一般的
にビデオ周期と呼ばれる1秒間に30画面を有した場合、
一本の走査電極上にある強誘電性液晶分子に加わる有効
パルスの巾T1は、 T1=(30×400×4)-1≒21〔μsec〕 となり、完全な表示を得るためには、強誘電性液晶材料
に速い応答速度を求めなければならなかった。もしくは
加える電界の大きさを大きくしなければならなかった。
[Conventional Problems] In the above-described two-field method and four-pulse method, the selection time of one scanning electrode is divided into four phases, and the time during which the ferroelectric liquid crystal molecules are effectively moved is one of them. There are only two phases. For example, assuming a ferroelectric liquid crystal display device having 640 control electrodes and 400 scanning electrodes, if there are 30 screens per second generally called a video cycle,
The width T 1 of the effective pulse applied to the ferroelectric liquid crystal molecules on one scanning electrode is T 1 = (30 × 400 × 4) −1 ≒ 21 [μsec]. Therefore, a fast response speed has to be required for the ferroelectric liquid crystal material. Alternatively, the magnitude of the applied electric field had to be increased.

また、複数同時消去法では、例えば8本同時に消去し
た場合を想定すると強誘電性液晶分子に加わる有効パル
ス巾T2は、 T2=(30×400×2×9/8)≒37〔μsec〕 となり、複数同時消去法によって駆動を行う場合には、
2フィールド法、4パルス法に比較して、約0.57倍の遅
い応答速度を有する強誘電性液晶材料を用いることがで
きる。しかしながら、駆動波形が複雑であるため、周辺
の駆動回路が複雑になり、回路作製のための工程数が増
すという問題点を有していた。
In the multiple simultaneous erasing method, for example, assuming that eight lines are simultaneously erased, the effective pulse width T 2 applied to the ferroelectric liquid crystal molecules is T 2 = (30 × 400 × 2 × 9/8) ≒ 37 [μsec When driving by the multiple simultaneous erasing method,
A ferroelectric liquid crystal material having a response speed about 0.57 times slower than that of the two-field method or the four-pulse method can be used. However, since the driving waveform is complicated, there is a problem that peripheral driving circuits are complicated, and the number of steps for fabricating the circuit is increased.

『発明の構成』 上記問題点を解決するために、本発明は選択された走
査電極の1ライン分の書き込みのために走査電極に印加
される走査信号が2つの位相から構成され、或いは制御
電極に加わる制御信号が2つの位相から構成されること
を特徴としている。
[Structure of the Invention] In order to solve the above problems, the present invention provides a method in which a scanning signal applied to a scanning electrode for writing one line of a selected scanning electrode is composed of two phases, Is characterized in that the control signal applied to the signal is composed of two phases.

本発明を用いることにより、従来と比較して駆動波形
が単純化され、回路作製の点でコストを下げることがで
き、さらに走査信号、制御信号ともに書き込み時の信号
を2種類のパルスで構成すれば、以下に述べるように比
較的応答速度の遅い強誘電性液晶を用いることができ
る。
By using the present invention, the driving waveform can be simplified as compared with the related art, the cost can be reduced in terms of circuit fabrication, and furthermore, both the scanning signal and the control signal can be composed of two types of pulses at the time of writing. For example, a ferroelectric liquid crystal having a relatively slow response speed can be used as described below.

一般に強誘電性液晶には、明確な閾値電圧が存在しな
いため、非常に小さな電界であっても長時間印加され続
けると強誘電性液晶分子の自発分極の向きが変わる。つ
まり時分割駆動においては、非選択時に強誘電性液晶分
子には平均的に0〔V〕の直流成分しか加えることがで
きない。又、平均的に0〔V〕であっても、1つの位相
が加わる時間内に、強誘電性液晶分子の自発分極の向き
を変える、又は、保持させる電界を加えてはならない。
本発明は、強誘電性液晶装置の時分割駆動について述べ
ているので当然の如く、これらの必要条件を満たし、マ
トリックス駆動が可能となっている。
In general, a clear threshold voltage does not exist in a ferroelectric liquid crystal. Therefore, even when a very small electric field is applied for a long time, the direction of spontaneous polarization of the ferroelectric liquid crystal molecules changes. That is, in the time-division driving, only a direct current component of 0 [V] can be applied to ferroelectric liquid crystal molecules on average when not selected. Even if the average is 0 [V], an electric field for changing or maintaining the direction of spontaneous polarization of the ferroelectric liquid crystal molecules must not be applied within the time when one phase is applied.
Since the present invention describes time-division driving of a ferroelectric liquid crystal device, it is needless to say that these requirements are satisfied and matrix driving is possible.

本発明を用いることによって、前述の640×400ドット
の強誘電性液晶表示装置を1秒間に30画面を表示させた
場合、強誘電性液晶分子に加わる有効パルス巾T3は、 T3=(30×400×2)-1≒42〔μsec〕 となり、2フィールド法、4パルス法に比較して2倍、
複数同時消去法と比較しても、1.1倍遅い強誘電性液晶
材料を用いることができる。そして、なおかつ駆動回路
の複雑さは2フィールド法、4パルス法と同程度であ
る。
When the above-described 640 × 400 dot ferroelectric liquid crystal display device displays 30 screens per second by using the present invention, the effective pulse width T 3 applied to the ferroelectric liquid crystal molecules is T 3 = ( 30 × 400 × 2) -1 ≒ 42 [μsec], which is twice as large as the 2-field method and 4-pulse method.
A ferroelectric liquid crystal material that is 1.1 times slower than the multiple simultaneous erasing method can be used. Further, the complexity of the driving circuit is almost the same as the two-field method and the four-pulse method.

また、仮に同一の強誘電性液晶材料を使用して比較し
た場合、駆動電圧をほぼ1/2にすることが可能となり、
強誘電性液晶表示装置の消費電力を2フィールド法、4
パルス法に比較して、約1/4にすることが可能になっ
た。
Also, if the comparison is made using the same ferroelectric liquid crystal material, the driving voltage can be reduced to almost half,
The power consumption of the ferroelectric liquid crystal display device is calculated by the two-field method,
Compared to the pulse method, it became possible to reduce it to about 1/4.

また、強誘電性液晶材料の応答速度は周囲の温度が上
昇するにつれて速くなることがわかっている。従って、
同一の強誘電性液晶材料を用いて比較した場合、本発明
の駆動方法を用いることにより、より低温領域まで表示
が可能になった。
In addition, it has been found that the response speed of the ferroelectric liquid crystal material increases as the ambient temperature increases. Therefore,
When comparison was made using the same ferroelectric liquid crystal material, display was possible to a lower temperature region by using the driving method of the present invention.

この点について、第1表を用いて簡単に説明する。な
お、第1表のデータは下に示す構造式の強誘電性液晶の
ものである。
This will be briefly described with reference to Table 1. The data in Table 1 is for a ferroelectric liquid crystal having the structural formula shown below.

そして、第1表の上段に温度を、下段に応答速度(単
位μsec)を示す。
The upper part of Table 1 shows the temperature, and the lower part shows the response speed (unit: μsec).

従来の2フィールド法、或いは4パルス法を用いた場
合、640×400ドットの強誘電性液晶装置において、1秒
間に30画面の駆動を行うためには、前に述べたように42
μsecを限度としてこれより速い応答速度の強誘電性液
晶でなければならないから、第1表からわかるように、
少なくとも35℃以上の温度範囲でしか行うことができな
かった。同様に複数同時消去法を用いた場合には、約20
℃以上の温度範囲で駆動が可能となる。
In the case of using the conventional two-field method or the four-pulse method, in order to drive 30 screens per second in a 640 × 400 dot ferroelectric liquid crystal device, as described above, 42 pixels are required.
Since the ferroelectric liquid crystal must have a faster response speed than the μsec limit, as can be seen from Table 1,
It could only be performed in a temperature range of at least 35 ° C. Similarly, when the multiple simultaneous erasure method is used, about 20
Driving is possible in a temperature range of not less than ° C.

そして、本発明を用いた場合には、約15℃以上の温度
範囲で駆動を行うことができ、強誘電性液晶装置が表示
可能な温度範囲を大幅に広げたことがわかる。
In addition, when the present invention is used, driving can be performed in a temperature range of about 15 ° C. or more, and it can be seen that the temperature range in which the ferroelectric liquid crystal device can display is greatly widened.

『実施例』 ソーダガラス基板上に公知のスパッタ法によりITO(I
ndium Tin Oxide)薄膜を2000Å成膜した後、公知のフ
ォトリソグラフィー法により、400本の走査電極を有す
る走査電極側基板と640本の制御電極を有する制御電極
側基板を作製した。その後、走査電極を有する基板上に
公知のオフセット法を用いてポリアミック酸を塗布し、
280℃で2時間の焼成を行い、厚さ500Åのポリイミド膜
を得た。そして、綿布を用いて公知のラビングを行った
後、2.5μmの球状絶縁物をスペーサーとして走査電極
側基板上に散布した。一方、制御電極側基板の周辺部に
エポキシ系の接着材を印刷して、走査電極側基板と制御
電極側基板とを貼り合わせた。その後、公知の真空注入
法を用いて強誘電性液晶材料を該基板間に注入した。
[Example] ITO (I) was formed on a soda glass substrate by a known sputtering method.
After forming a 2000-nm thin film of ndium tin oxide, a scan electrode side substrate having 400 scan electrodes and a control electrode side substrate having 640 control electrodes were manufactured by a known photolithography method. Thereafter, a polyamic acid is applied to the substrate having the scanning electrodes by using a known offset method,
Firing was performed at 280 ° C. for 2 hours to obtain a polyimide film having a thickness of 500 °. Then, after performing known rubbing using a cotton cloth, a 2.5 μm spherical insulator was used as a spacer and sprayed on the scan electrode side substrate. On the other hand, an epoxy-based adhesive was printed on the periphery of the control electrode side substrate, and the scan electrode side substrate and the control electrode side substrate were bonded. Thereafter, a ferroelectric liquid crystal material was injected between the substrates using a known vacuum injection method.

そして、電極と駆動回路とを接続して駆動を行った。 Then, driving was performed by connecting the electrode and the drive circuit.

第1図に本実施例に用いた駆動波形を示す。ただし
、、は、それぞれ、制御電極側に印加した波形、
走査電極側に印加した波形、その合成波形(液晶に印加
される波形)を示す。
FIG. 1 shows a driving waveform used in this embodiment. Where is the waveform applied to the control electrode side,
The waveform applied to the scanning electrode side and the composite waveform (waveform applied to the liquid crystal) are shown.

また第3図(a)に本発明を用いた場合の強誘電性液
晶装置の任意の画素の強誘電性液晶分子に加わる電界の
変化と、光透過量の変化を表すオシロスコープ写真を示
し、第3図(b)にその説明を示す。ただし、本図にお
いては走査電極の数が100本の場合であり、写真の上段
には光応答、下段には駆動波形を示す。
FIG. 3 (a) shows an oscilloscope photograph showing a change in the electric field applied to the ferroelectric liquid crystal molecules of an arbitrary pixel of the ferroelectric liquid crystal device and a change in the amount of transmitted light when the present invention is used. FIG. 3 (b) shows the explanation. However, this figure shows the case where the number of scanning electrodes is 100, and the upper part of the photograph shows the optical response and the lower part shows the driving waveform.

そして、第4図(a)〜(q)に駆動波形の例を示
す。(c)、(d)、(i)、(m)、(q)は本発明
の駆動波形の他の例、他は参考例である。ただし、簡単
のため、4×4ドットの強誘電性液晶装置の場合を示
す。また、(a)〜(q)の各図において、、、
はそれぞれ制御電極側に印加される波形、走査電極側に
印加される波形、その合成波形(液晶に印加される波
形)を示す。
FIGS. 4A to 4Q show examples of driving waveforms. (C), (d), (i), (m), and (q) are other examples of the drive waveform of the present invention, and the others are reference examples. However, for simplicity, the case of a 4 × 4 dot ferroelectric liquid crystal device is shown. In each of the figures (a) to (q),
Indicates a waveform applied to the control electrode side, a waveform applied to the scanning electrode side, and a composite waveform (a waveform applied to the liquid crystal).

『効果』 以上述べたように、本発明を用いることにより駆動回
路の単純化が可能になり、さらには比較的応答速度の遅
い強誘電性液晶材料を用いることが可能になった。ま
た、駆動させることのできる温度範囲も広がった。
[Effects] As described above, the use of the present invention makes it possible to simplify the driving circuit, and further, it is possible to use a ferroelectric liquid crystal material having a relatively slow response speed. Further, the temperature range in which the device can be driven has been widened.

さらに、走査電極に印加される走査信号と制御電極に
印加される制御信号が、共に1つの画素について2つの
位相と、それぞれの位相で異なる電圧の信号を有し、非
選択かつOFFとされた画素の電圧を、交流ではなく0Vと
することで、消費電力を低減し、かつOFFとされた画素
における透過光量の微小な変動を大幅に低減し、コント
ラストの低下を極小とすることができる。
Further, the scanning signal applied to the scanning electrode and the control signal applied to the control electrode both had two phases for one pixel and a signal of a different voltage at each phase, and were unselected and turned off. By setting the voltage of the pixel to 0 V instead of alternating current, power consumption can be reduced, minute fluctuations in the amount of transmitted light in the pixel that is turned off can be significantly reduced, and reduction in contrast can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

第1図に本実施例の駆動波形を示す。 11……選択時のON 12……選択時のOFF 13……非選択時のON 14……非選択時のOFF 第2図に強誘電性液晶表示装置を時分割駆動する際の従
来の駆動波形を示す。 (a)2フィールド法 (b)4パルス法 (c)複数同時消去法 第3図(a)に本発明による駆動法を用いた場合の任意
の画素の光の透過量の変化と、該画素に加えたオシロ波
形を表すオシロスコープ写真を示す。 第3図(b)には、第3図(a)のオシロスコープ写真
を撮影した際の強誘電性液晶装置の表示の説明を示す。 31……白地に白 32……白地に黒 33……黒地に白 34……黒地に黒 35……千鳥格子地に白 36……千鳥格子地に黒 第4図(a)〜(q)に、駆動波形の例を示す。
FIG. 1 shows a driving waveform of this embodiment. 11: ON when selected 12: OFF when selected 13: ON when not selected 14: OFF when not selected Fig. 2 shows conventional driving when driving a ferroelectric liquid crystal display device in a time division manner. The waveform is shown. (A) Two-field method (b) Four-pulse method (c) Multiple simultaneous erasing method FIG. 3 (a) shows a change in the light transmission amount of an arbitrary pixel when the driving method according to the present invention is used and the pixel 3 shows an oscilloscope photograph showing an oscilloscope waveform added to the oscilloscope. FIG. 3 (b) shows a description of the display of the ferroelectric liquid crystal device when the oscilloscope photograph of FIG. 3 (a) is taken. 31 White on a white background 32 Black on a white background 33 White on a black background 34 Black on a black background 35 White on a houndstooth lattice 36 Black on a houndstooth lattice Fig. 4 (a) to ( q) shows an example of the drive waveform.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02F 1/133 G09G 3/36 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G02F 1/133 G09G 3/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】走査電極を有する基板と制御電極を有する
基板との間に強誘電性液晶を介在させた強誘電性液晶装
置の駆動方法において、 前記走査電極に印加される走査信号と前記制御電極に印
加される制御信号は、共に1つの画素について2つの位
相と、それぞれの位相で異なる電圧の信号を有し、 前記走査信号の電圧は前記画素の選択または非選択、前
記制御信号の電圧は前記画素のONまたはOFFをそれぞれ
決定し、 前記走査信号の電圧が非選択を決定し、かつ前記制御信
号の電圧がOFFを決定したときの画素の電圧は0Vである
ことを特徴とする強誘電性液晶装置の駆動方法。
1. A method of driving a ferroelectric liquid crystal device in which a ferroelectric liquid crystal is interposed between a substrate having a scanning electrode and a substrate having a control electrode, wherein a scanning signal applied to the scanning electrode and the control signal The control signals applied to the electrodes each have two phases for one pixel and signals of different voltages at each phase, and the voltage of the scanning signal is selection or non-selection of the pixel, and the voltage of the control signal. Determines ON or OFF of the pixel, respectively, wherein the voltage of the scanning signal determines non-selection, and the voltage of the pixel when the voltage of the control signal determines OFF is 0V. A method for driving a dielectric liquid crystal device.
JP6038189A 1989-03-13 1989-03-13 Driving method of ferroelectric liquid crystal device Expired - Fee Related JP2934727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6038189A JP2934727B2 (en) 1989-03-13 1989-03-13 Driving method of ferroelectric liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038189A JP2934727B2 (en) 1989-03-13 1989-03-13 Driving method of ferroelectric liquid crystal device

Publications (2)

Publication Number Publication Date
JPH02239228A JPH02239228A (en) 1990-09-21
JP2934727B2 true JP2934727B2 (en) 1999-08-16

Family

ID=13140511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038189A Expired - Fee Related JP2934727B2 (en) 1989-03-13 1989-03-13 Driving method of ferroelectric liquid crystal device

Country Status (1)

Country Link
JP (1) JP2934727B2 (en)

Also Published As

Publication number Publication date
JPH02239228A (en) 1990-09-21

Similar Documents

Publication Publication Date Title
JPH0544009B2 (en)
JPS60156047A (en) Driving method of optical modulating element
JPS60156046A (en) Driving method of optical modulating element
JPS6261931B2 (en)
JP2651204B2 (en) Driving method of liquid crystal device
JPS6261930B2 (en)
JPS6244247B2 (en)
JP2934727B2 (en) Driving method of ferroelectric liquid crystal device
JP2542851B2 (en) Optical modulator
JPH028814A (en) Liquid crystal device
JPS60201325A (en) Liquid crystal optical element and driving method thereof
JPH0414766B2 (en)
JPS63236012A (en) Driving method for electro-optical device
JP2566149B2 (en) Optical modulator
JPH0448367B2 (en)
JPH0799415B2 (en) Liquid crystal device
JP2614220B2 (en) Display device
JP2662793B2 (en) Liquid crystal element
JP2770981B2 (en) Driving method of matrix type ferroelectric liquid crystal panel
JP2628157B2 (en) Ferroelectric liquid crystal electro-optical device
JPH0718993B2 (en) Driving method for ferroelectric liquid crystal panel
JPH07117661B2 (en) Liquid crystal element driving method
JP3204702B2 (en) Driving method of liquid crystal display element
JPS62289818A (en) Driving method for optical modulation element
JPH07122704B2 (en) Optical modulator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees