JP2934369B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JP2934369B2
JP2934369B2 JP5129168A JP12916893A JP2934369B2 JP 2934369 B2 JP2934369 B2 JP 2934369B2 JP 5129168 A JP5129168 A JP 5129168A JP 12916893 A JP12916893 A JP 12916893A JP 2934369 B2 JP2934369 B2 JP 2934369B2
Authority
JP
Japan
Prior art keywords
solar cell
substrate
interconnector
connection
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5129168A
Other languages
Japanese (ja)
Other versions
JPH06338626A (en
Inventor
秀起 ▲吉▼岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP5129168A priority Critical patent/JP2934369B2/en
Publication of JPH06338626A publication Critical patent/JPH06338626A/en
Application granted granted Critical
Publication of JP2934369B2 publication Critical patent/JP2934369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池セルに関し、
特に人工衛星用として用いられる薄型太陽電池セルに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell,
In particular, it relates to a thin solar cell used for artificial satellites.

【0002】[0002]

【従来の技術】従来の技術について、図4乃至図7を参
照して説明する。図4及び図5はそれぞれ、従来例によ
る太陽電池セルの斜視図、図6は従来例による太陽電池
セルの断面図、図7は従来の太陽電池セルを複数個直列
接続した状態を示す断面図である。
2. Description of the Related Art A conventional technique will be described with reference to FIGS. 4 and 5 are perspective views of a conventional solar cell, FIG. 6 is a cross-sectional view of a conventional solar cell, and FIG. 7 is a cross-sectional view showing a state in which a plurality of conventional solar cells are connected in series. It is.

【0003】太陽電池セルの発生電力を増大させるため
の1つの技術として、光電流を増大させることがある。
例えば、太陽電池セル表面で入射光を多重反射させ、入
射光の反射の低減及び光路長の増大のために、テクスチ
ャと呼ばれるピラミッド状の微細な凹凸を太陽電池セル
の基板の受光面側に形成する方法である。近年では、図
4に示すようにピラミッド10の頂点が太陽電池セル基
板内部に向かった逆ピラミッド、図5に示すようにV字
形状の溝11を設けたVグルーブ等の形状の微細な凹凸
を形成されたものもある。(以下、これら微細な凹凸の
ある太陽電池セルの基板の受光面側の形状を総称して
「無反射形状」という。)図中、12は基板、13裏面
電極である。
One technique for increasing the power generated by a solar cell is to increase the photocurrent.
For example, incident light is reflected multiple times on the solar cell surface, and fine pyramid-shaped irregularities called textures are formed on the light receiving surface side of the solar cell substrate in order to reduce the reflection of the incident light and increase the optical path length. How to In recent years, as shown in FIG. 4, a pyramid 10 has an inverted pyramid in which the apex is directed toward the inside of the solar cell substrate, and as shown in FIG. Some have been formed. (Hereinafter, the shape on the light-receiving surface side of the substrate of these solar cells having fine irregularities is collectively referred to as "non-reflective shape.") In the figure, reference numeral 12 denotes a substrate and 13 a back electrode.

【0004】図6は従来の無反射形状を有した太陽電池
セルの概念的な断面図を示す。無反射形状を有した基板
12の受光面側に表面電極14が、さらにその表面に表
面電極接続部15が設けられている。13は裏面電極、
16は後述するようにインターコネクタ17で接続され
る裏面電極接続部である。
FIG. 6 is a conceptual sectional view of a conventional solar cell having a non-reflective shape. A surface electrode 14 is provided on the light receiving surface side of the substrate 12 having a non-reflective shape, and a surface electrode connection portion 15 is provided on the surface. 13 is a back electrode,
Reference numeral 16 denotes a back electrode connecting portion connected by an interconnector 17 as described later.

【0005】図7は、図6の太陽電池セルが複数個、直
列方向に接続された実施例の断面図である。ここでは、
隣合う太陽電池セル20,21をとりあげて説明する
が、他の太陽電池セルの接続も同様である。太陽電池セ
ル20の裏面電極13と太陽電池セル21の表面電極1
4とが、インターコネクタ17によって接続されてい
る。インターコネクタ17の裏面電極13および表面電
極14への接続はそれぞれ、裏面電極接続部16および
表面電極接続部15を介して行われる。また、太陽電池
セルの上面側にはカバーガラス18が接着剤19を介し
て接着されている。
FIG. 7 is a sectional view of an embodiment in which a plurality of solar cells of FIG. 6 are connected in series. here,
Although the description will be given taking the adjacent solar cells 20 and 21 as an example, the connection of other solar cells is the same. Back electrode 13 of solar cell 20 and front electrode 1 of solar cell 21
4 are connected by an interconnector 17. The interconnector 17 is connected to the back electrode 13 and the front electrode 14 via the back electrode connection part 16 and the front electrode connection part 15, respectively. A cover glass 18 is adhered to the upper surface side of the solar cell via an adhesive 19.

【0006】ここで、太陽電池セル21の表面電極接続
部15は受光面側が無反射形状の基板12の上に表面電
極14が形成されているため、微細な凹凸状となってい
る。また、基板の受光面側がこのような表面形状を有し
た太陽電池セル21の表面電極接続部15及び太陽電池
セル20の裏面電極接続部16と、インターコネクタ1
7の接続は溶接接続法または半田接続法で接続される。
Here, the surface electrode connection portion 15 of the solar cell 21 has a fine unevenness because the surface electrode 14 is formed on the substrate 12 whose light-receiving surface is non-reflective. Also, the front electrode connecting portion 15 of the solar cell 21 and the back electrode connecting portion 16 of the solar cell 20 having the light receiving surface side of the substrate having such a surface shape, and the interconnector 1
The connection 7 is connected by a welding connection method or a solder connection method.

【0007】この際、信頼性の高い接続を行うため、イ
ンターコネクタ17の上からある一定レベル以上の圧力
を加えた上、インターコネクタ17及び表面電極接続部
15または裏面電極接続部16に接続に必要な熱を加え
る方法が選択されることが一般的である。
At this time, in order to perform a highly reliable connection, a pressure of a certain level or more is applied from above the interconnector 17, and the interconnector 17 is connected to the front electrode connecting portion 15 or the back electrode connecting portion 16. Generally, the method of applying the required heat is selected.

【0008】特に、人工衛星用の太陽電池セルの場合、
インターコネクタは銀等の低電気抵抗の金属が使用され
るため、太陽電池セルの基板とインターコネクタの線膨
張係数の違いから宇宙における広範囲の温度サイクル
(例えば、−180℃から+100℃の温度範囲を10
00サイクル)でその接続箇所の大きな応力が発生し、
最悪の場合は開放状態になってしまう。このため、この
インターコネクタの接続は、応力に耐え得る信頼性の高
い接続が重要となる。
In particular, in the case of a solar cell for an artificial satellite,
Since the interconnector is made of a metal having a low electric resistance such as silver, a wide temperature cycle in the universe (for example, a temperature range of -180 ° C to + 100 ° C) due to a difference in linear expansion coefficient between the solar cell substrate and the interconnector. 10
00 cycle), a large stress is generated at the connection point,
In the worst case, it will be open. For this reason, it is important for the connection of the interconnector to be a highly reliable connection that can withstand stress.

【0009】[0009]

【発明が解決しようとする課題】しかし、表面電極接続
部15とインターコネクタ17の接続を行う場合、及び
裏面電極接続部16とインターコネクタ17の接続を行
う場合、共にその接続部に対応する基板12の受光面側
が無反射形状であるため、信頼性の高い接続に必要な加
圧および加熱の際に、局部的な応力集中が発生し、基板
12が割れてしまうことがしばしばあった。特に、基板
材料の厚さが100μm以下の薄型太陽電池セルの場
合、基板が頻繁に割れてしまっていた。
However, when the connection between the front electrode connection portion 15 and the interconnector 17 and the connection between the rear electrode connection portion 16 and the interconnector 17 are made, the substrate corresponding to the connection portion is used. Since the light-receiving surface side of the substrate 12 has a non-reflective shape, local stress concentration occurs during pressurization and heating necessary for highly reliable connection, and the substrate 12 is often broken. In particular, in the case of a thin solar cell having a substrate material thickness of 100 μm or less, the substrate was frequently broken.

【0010】また、工程の順序として、太陽電池セル2
1の表面電極14にインターコネクタ17が接続され、
カバーガラス18が接着剤19で接着された後で、隣接
する太陽電池セル20の裏面電極13にインターコネク
タ17が接続されるため、裏面電極接続部16における
接続で太陽電池セル基板12が割れてしまうと、その損
害は甚大である。
The order of the steps is as follows.
An interconnector 17 is connected to one surface electrode 14,
After the cover glass 18 is bonded with the adhesive 19, the interconnector 17 is connected to the back electrode 13 of the adjacent solar cell 20, so that the connection at the back electrode connection portion 16 breaks the solar cell substrate 12. If so, the damage is enormous.

【0011】これに対し、太陽電池セルがインターコネ
クタの接続の際に割れないようにするため、太陽電池セ
ルの受光面全体を平坦にすると、光電流が減少してしま
い、太陽電池セルの発生電力が小さくなってしまう。
On the other hand, when the entire light receiving surface of the solar cell is flattened in order to prevent the solar cell from breaking when the interconnector is connected, the photocurrent is reduced, and the generation of the solar cell is reduced. The power is reduced.

【0012】そこで、本発明の目的は、光電流を減少さ
せたり、基板割れを発生させることなく、高信頼性のイ
ンターコネクタ接続ができる太陽電池セルを提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a photovoltaic cell capable of highly reliable interconnector connection without reducing photocurrent or causing substrate cracking.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するため
に本発明は、基板表面に凹凸形状の受光面が形成され、
前記基板の表面及び裏面にインターコネクタによって外
部接続される電極が設けられてなる太陽電池セルにおい
て、前記基板の前記表面電極取り付け面を平坦にすると
ともに、前記基板表面の内、前記裏面電極の前記インタ
ーコネクタ接続部に対向する面を平坦に形成してなるこ
とを特徴とする。
In order to achieve the above object, the present invention provides a light receiving surface having an uneven shape on a substrate surface,
In a solar cell in which electrodes externally connected to each other by an interconnector are provided on the front and back surfaces of the substrate, the surface electrode mounting surface of the substrate is flattened, and the surface of the substrate includes The surface facing the interconnector connection portion is formed flat.

【0014】[0014]

【作用】インターコネクタの接続部分は平坦となってい
るので、太陽電池セルを複数個接続して使用する際に、
接続に必要な圧力、熱をセルに加えても、基板への応力
は分散され、従来の凹凸形状の基板表面に加圧する時の
ように応力集中が発生することはなく、基板が割れるこ
とがない。
[Function] Since the connection portion of the interconnector is flat, when connecting and using a plurality of solar cells,
Even if the pressure and heat necessary for connection are applied to the cell, the stress on the substrate is dispersed, and stress concentration does not occur as in the case of pressing on a conventional uneven substrate surface, and the substrate may be broken. Absent.

【0015】また、平坦にする部分の面積はインターコ
ネクタの接続部分のみであり、セル全体に比較すると非
常に小面積であるので、無反射構造の部分が若干増加す
ることになっても、そのことによる出力低下はほとんど
ない。
Further, the area of the portion to be flattened is only the connection portion of the interconnector, and is very small as compared with the whole cell. Therefore, even if the portion of the anti-reflection structure slightly increases, There is almost no output reduction.

【0016】[0016]

【実施例】本発明の一実施例について、図1乃至図3を
参照して説明する。図1は本発明の一実施例による太陽
電池セルの断面図、図2は図1の太陽電池セルを複数個
接続した状態を示す断面図、図3は同じく上面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view of a solar cell according to one embodiment of the present invention, FIG. 2 is a cross-sectional view showing a state where a plurality of solar cells of FIG. 1 are connected, and FIG. 3 is a top view of the same.

【0017】なお、図4乃至図7に示す従来例と同一機
能部分には同一記号を付している。ここでは、主に従来
例と異なる点についてのみ説明する。本実施例の特徴
は、図1及び図2より明らかなように、基板3の表面電
極1の取り付け面及び表面電極接続部2を従来のように
無反射形状とせず平坦にするとともに、裏面電極接続部
16に対向する基板3の受光面部分4も平坦にした点に
ある。それ以外の部分は従来と同様無反射形状としてい
る。
The same functional parts as those in the conventional example shown in FIGS. 4 to 7 are denoted by the same reference numerals. Here, only the points different from the conventional example will be mainly described. As is clear from FIGS. 1 and 2, the feature of this embodiment is that the mounting surface of the surface electrode 1 of the substrate 3 and the surface electrode connection portion 2 are made flat without using a non-reflective shape as in the related art, The light receiving surface portion 4 of the substrate 3 facing the connection portion 16 is also flat. The other portions have a non-reflective shape as in the related art.

【0018】本実施例の太陽電池セルは上記のように、
表面電極接続部2及び裏面電極接続部16に対向する基
板3の受光面を平坦としているので、インターコネクタ
17の高信頼性の接続に必要な圧力及び熱を加えても、
その時に発生する基板への応力は分散され応力集中が発
生しなくなる。これは、インターコネクタ17の接続さ
れる部分だけをみた場合、基板の受光面側に無反射形状
を有さない平坦な太陽電池セルインターコネクタ接続と
同等の状態となるためである。
As described above, the solar cell of this embodiment is
Since the light receiving surface of the substrate 3 facing the front electrode connection portion 2 and the back electrode connection portion 16 is flat, even if pressure and heat necessary for highly reliable connection of the interconnector 17 are applied,
The stress applied to the substrate at that time is dispersed, so that stress concentration does not occur. This is because, when only the part to which the interconnector 17 is connected is viewed, the state is equivalent to a flat solar cell interconnector connection having no non-reflective shape on the light receiving surface side of the substrate.

【0019】また、インターコネクタ17が接続される
基板3の表面接続部2及び裏面電極接続部16に対応す
る基板3の受光面部分4の表面を平坦にすることによ
り、その部分の無反射構造はなくなることになるが、図
3からも明らかなように平坦部の面積はセル全体の面積
と比較すると非常に小面積であり、この平坦部を設ける
ことによる太陽電池セルの発生電力の低下は、最大でも
0.2%程度であり、ほとんど影響がない。
Further, by flattening the surface of the light receiving surface portion 4 of the substrate 3 corresponding to the front surface connection portion 2 and the back surface electrode connection portion 16 of the substrate 3 to which the interconnector 17 is connected, the non-reflection structure of that portion is obtained. However, as is clear from FIG. 3, the area of the flat portion is very small compared to the area of the entire cell, and the reduction in the power generated by the solar cell due to the provision of the flat portion does not increase. , Is at most about 0.2%, and has almost no effect.

【0020】このように、本実施例の太陽電池セルによ
れば、光電流を減少させたり、基板割れを発生させるこ
となく、高信頼性のインターコネクタ接続ができる。
As described above, according to the solar cell of the present embodiment, a highly reliable interconnector connection can be made without reducing the photocurrent or causing the substrate to crack.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
光電流を減少させたり、基板割れを発生させることな
く、高信頼性のインターコネクタ接続ができる太陽電池
セルを実現できる。
As described above, according to the present invention,
A photovoltaic cell capable of highly reliable interconnector connection can be realized without reducing photocurrent or causing substrate cracking.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による太陽電池セルの断面図
である。
FIG. 1 is a cross-sectional view of a solar cell according to one embodiment of the present invention.

【図2】図1の太陽電池セルを複数個接続した状態を示
す断面図である。
FIG. 2 is a cross-sectional view showing a state where a plurality of solar cells of FIG. 1 are connected.

【図3】図2の上面図である。FIG. 3 is a top view of FIG. 2;

【図4】従来例による太陽電池セルの斜視図である。FIG. 4 is a perspective view of a conventional solar cell.

【図5】他の従来例による太陽電池セルの斜視図であ
る。
FIG. 5 is a perspective view of a solar cell according to another conventional example.

【図6】従来例による太陽電池セルの断面図である。FIG. 6 is a cross-sectional view of a conventional solar cell.

【図7】図6の太陽電池セルを複数個接続した状態を示
す断面図である。
FIG. 7 is a cross-sectional view showing a state in which a plurality of solar cells of FIG. 6 are connected.

【符号の説明】[Explanation of symbols]

1 表面電極 3 基板 4 平坦部 13 裏面電極 16 裏面電極接続部 17 インターコネクタ DESCRIPTION OF SYMBOLS 1 Front electrode 3 Substrate 4 Flat part 13 Back electrode 16 Back electrode connection part 17 Interconnector

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板表面に凹凸形状の受光面が形成され、
前記基板の表面及び裏面にインターコネクタによって外
部接続される電極が設けられてなる太陽電池セルにおい
て、 前記基板の前記表面電極取り付け面を平坦にするととも
に、前記基板表面の内、前記裏面電極の前記インターコ
ネクタ接続部に対向する面を平坦に形成してなることを
特徴とする太陽電池セル。
An uneven light receiving surface is formed on a substrate surface,
In a solar cell in which electrodes externally connected to each other by an interconnector are provided on the front and back surfaces of the substrate, the surface electrode mounting surface of the substrate is flattened, and the back surface electrode of the substrate surface is A solar cell, wherein a surface facing an interconnector connecting portion is formed flat.
JP5129168A 1993-05-31 1993-05-31 Solar cell Expired - Fee Related JP2934369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129168A JP2934369B2 (en) 1993-05-31 1993-05-31 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129168A JP2934369B2 (en) 1993-05-31 1993-05-31 Solar cell

Publications (2)

Publication Number Publication Date
JPH06338626A JPH06338626A (en) 1994-12-06
JP2934369B2 true JP2934369B2 (en) 1999-08-16

Family

ID=15002827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129168A Expired - Fee Related JP2934369B2 (en) 1993-05-31 1993-05-31 Solar cell

Country Status (1)

Country Link
JP (1) JP2934369B2 (en)

Also Published As

Publication number Publication date
JPH06338626A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
US5994641A (en) Solar module having reflector between cells
US4296270A (en) Array of solar cells
US10205041B2 (en) Light redirecting film useful with solar modules
US4355196A (en) Solar cell having improved back surface reflector
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
US20070144578A1 (en) Means and Method for Electrically Connecting Photovoltaic Cells in a Solar Module
EP0956599B1 (en) Method for forming wraparound contacts on solar cells
JPH04233773A (en) Solar-battery device
US20100294336A1 (en) Center tapped receiver
US20100108123A1 (en) Interconnecting reflector ribbon for solar cell modules
WO1995015582A1 (en) A photovoltaic solar panel and a method for producing same
US20100216276A1 (en) Method for Electrically Connecting Photovoltaic Cells in a Photovoltaic Device
US9972734B2 (en) Photovoltaic modules comprising light directing mediums and methods of making the same
CN102318081A (en) Low converging property flat distribution photovoltaic module
US5430616A (en) Interconnector and electronic device element with the interconnector
JPH09260696A (en) Solar cell
EP2141747B2 (en) Solar cell module
JPS60239067A (en) Solar cell element
JPH03283474A (en) Compound semiconductor photoelectric conversion element of si substrate
JPS62209872A (en) Photoelectric conversion element
JPS6030183A (en) Thin film solar cell
JP2934369B2 (en) Solar cell
JPH02235379A (en) Solar cell module
JPH0945946A (en) Solar cell and fabrication thereof
JPS6088482A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees