JP2933392B2 - Brazing method for heat-resistant alloy having insulating oxide film on surface, preheated metal carrier for exhaust gas purification, and method for producing the same - Google Patents

Brazing method for heat-resistant alloy having insulating oxide film on surface, preheated metal carrier for exhaust gas purification, and method for producing the same

Info

Publication number
JP2933392B2
JP2933392B2 JP6525237A JP52523794A JP2933392B2 JP 2933392 B2 JP2933392 B2 JP 2933392B2 JP 6525237 A JP6525237 A JP 6525237A JP 52523794 A JP52523794 A JP 52523794A JP 2933392 B2 JP2933392 B2 JP 2933392B2
Authority
JP
Japan
Prior art keywords
heat
resistant alloy
brazing
resistant
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6525237A
Other languages
Japanese (ja)
Inventor
省吾 紺谷
晃 岡本
康二 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP6525237A priority Critical patent/JP2933392B2/en
Priority claimed from PCT/JP1994/000772 external-priority patent/WO1994026455A1/en
Application granted granted Critical
Publication of JP2933392B2 publication Critical patent/JP2933392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は耐熱合金、詳しくは表面に絶縁酸化皮膜を有
する耐熱合金のろう付け方法および該技術を用いて製造
される浄化性能に優れる排ガス浄化用メタル担体に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for brazing a heat-resistant alloy, and more particularly to a method for brazing a heat-resistant alloy having an insulating oxide film on a surface, and a metal carrier for exhaust gas purification excellent in purification performance manufactured by using the technique.

背景技術 自動車排ガス浄化用触媒においては、一般にPt,Rh,Pd
等の三元触媒が用いられている。該触媒が機能するため
には触媒が350〜400℃程度の温度まで加熱される必要が
ある。現在広く用いられている触媒コンバータは、セラ
ミックス担体あるいはメタル担体に触媒を担持するもの
であり、排ガスそれ自体のもつ熱エネルギーにより触媒
を加熱し活性化する方法である。そのためエンジン始動
時から触媒が機能する温度に達するまでの時間が長く、
エンジン始動直後の浄化性能が劣るという欠点を有して
いた。
BACKGROUND ART In automobile exhaust gas purifying catalysts, generally, Pt, Rh, Pd
And the like. In order for the catalyst to function, the catalyst needs to be heated to a temperature of about 350 to 400 ° C. A catalytic converter widely used at present has a catalyst supported on a ceramic carrier or a metal carrier, and is a method of heating and activating the catalyst by the thermal energy of the exhaust gas itself. Therefore, the time from when the engine starts until the temperature at which the catalyst functions is long,
There was a disadvantage that the purification performance immediately after starting the engine was poor.

しかるに最近の排ガス規制強化を背景として、エンジ
ン始動直後すなわちコールドスタート時の浄化性能に優
れる触媒コンバータが切望されている。その対策にメタ
ル担体を構成するハニカム構造の平板(平状の薄板)と
波板(波付け加工された薄板)の少くとも一方に絶縁皮
膜を被覆して互いに電気的に絶縁して巻込み、渦巻き方
向に通電することによって発生したジュール熱で触媒を
強制的に加熱し、触媒機能温度に達するまでの時間を短
縮する方法がある。
However, with the recent tightening of exhaust gas regulations, a catalytic converter having excellent purification performance immediately after engine start, that is, at the time of cold start has been desired. As a countermeasure, at least one of the honeycomb structured flat plate (flat thin plate) and the corrugated plate (corrugated thin plate) constituting the metal carrier is covered with an insulating film, and electrically insulated from each other. There is a method of forcibly heating the catalyst with Joule heat generated by energizing in a spiral direction to shorten the time required to reach the catalyst functional temperature.

また、特表平3−500911号公報に、平板と波板からな
るハニカム構造内に絶縁層を設け、電気的加熱に適した
抵抗値を有するメタル担体が開示されている。上記公報
に開示されている構造の一例を第1図に示す。該構造は
ハニカム構造151の中に絶縁層180を適宜間隔で配置し、
矢印の如き電流路を形成するものである。該電流路で消
費される電力は50ないし500Wに制御される。これは自動
車用のバッテリーから無理なく供給できる電力である。
しかしながら電気的に加熱される部分は、前述の平板、
波板に絶縁皮膜を施した場合と同様にハニカム構造全体
であり、所望の温度に達するのに長時間を要する。
JP-T 3-500911 discloses a metal carrier having an insulating layer provided in a honeycomb structure composed of a flat plate and a corrugated plate and having a resistance value suitable for electric heating. FIG. 1 shows an example of the structure disclosed in the above publication. In this structure, insulating layers 180 are arranged at appropriate intervals in a honeycomb structure 151,
This forms a current path as indicated by an arrow. The power consumed in the current path is controlled between 50 and 500W. This is the power that can be reasonably supplied from a car battery.
However, the electrically heated part is the aforementioned flat plate,
As in the case where the insulating film is applied to the corrugated sheet, the entire honeycomb structure is required, and it takes a long time to reach a desired temperature.

また、特開平5−59939号公報にはハニカム構造内に
ヒーターを埋め込む構成のメタル担体が開示されてい
る。該構造では電気的に加熱されるのは埋め込まれたヒ
ーターのみである。しかしながら、実際には触媒反応が
開始すると、例えば2CO+O2=2CO2で表されるような燃
焼反応を生じる。該反応は発熱反応であり大きな熱量を
発生する。すなわちハニカム構造の一部分のみを、担持
されている触媒の機能する温度まで加熱すれば、該加熱
部分において反応が開始した後は、反応熱で自ずと他の
部分も迅速に加熱される。この場合、電気的に加熱され
る容積は前記引例と比較すると小さく、従って同じ電力
を印加した場合、該加熱部分の触媒は短時間で機能温度
に達する。
Japanese Patent Application Laid-Open No. 5-59939 discloses a metal carrier having a structure in which a heater is embedded in a honeycomb structure. In this configuration, only the embedded heater is electrically heated. However, actually, when the catalytic reaction starts, a combustion reaction occurs, for example, represented by 2CO + O 2 = 2CO 2 . The reaction is exothermic and generates a large amount of heat. That is, if only a part of the honeycomb structure is heated to a temperature at which the supported catalyst functions, after the reaction starts in the heated part, the other parts are naturally heated quickly by the heat of reaction. In this case, the electrically heated volume is small compared to the reference, so that when the same power is applied, the catalyst in the heated part reaches the functional temperature in a short time.

しかし特開平5−59939号公報記載の方法でも、機能
面では優れているものの、加熱用ヒーターを埋め込むた
めの穴あるいは溝を形成したハニカムを製造し、しかる
後に該穴あるいは溝に合う形状に加工したヒーターを埋
め込む製造方法をとらざるを得ず、製造工程が煩雑であ
るという欠点を有している。
However, even in the method described in Japanese Patent Application Laid-Open No. 5-59939, a honeycomb having a hole or a groove for embedding a heater for heating is manufactured and then processed into a shape suitable for the hole or the groove. However, there is a drawback that the manufacturing method for embedding the heater is forced to take a complicated manufacturing process.

本発明は特に予加熱型メタル担体において、以上の問
題点を解決するものである。すなわち、 本発明の目的は表面に絶縁皮膜を有する耐熱合金(以
下絶縁被覆耐熱合金と称す)を強固に接合することにあ
る。
The present invention solves the above problems particularly in a preheated metal carrier. That is, an object of the present invention is to firmly join a heat-resistant alloy having an insulating film on its surface (hereinafter referred to as an insulating-coated heat-resistant alloy).

本発明の他の目的は絶縁被覆耐熱合金の接合部に良好
な電気伝導性を付与することにある。
Another object of the present invention is to provide good electrical conductivity to a joint of an insulating coated heat-resistant alloy.

本発明の他の目的は平板と波板の少くとも一方が絶縁
被覆耐熱合金で構成されたハニカム構造から成る予加熱
型排ガス浄化触媒メタル担体において、極めて簡単な構
造によってハニカム構造内部を通電可能にするところに
ある。
Another object of the present invention is to provide a preheated exhaust gas purifying catalyst metal carrier having a honeycomb structure in which at least one of a flat plate and a corrugated plate is formed of an insulating coated heat-resistant alloy, and the inside of the honeycomb structure can be energized by an extremely simple structure. Where you do it.

また、本発明の他の目的は前記ハニカム構造内の一部
に通電せしめてメタル担体の予加熱を可能にするところ
にある。
Another object of the present invention is to allow a portion of the inside of the honeycomb structure to be energized to enable preheating of the metal carrier.

また本発明の他の目的は前記ハニカム構造内の平板と
波板を十分に接合せしめるところにある。
Another object of the present invention is to sufficiently join the flat plate and the corrugated plate in the honeycomb structure.

発明の構成 本発明は上記の目的を達成するために次のような技術
を提供するものである。
Configuration of the Invention The present invention provides the following technology to achieve the above object.

ハニカム構造を構成する平板と波板の少なくとも一方
に絶縁皮膜を被覆して互いに電気的に絶縁してあるハニ
カム構造において、該平板と波板間の一部分を電気的に
導通するようにろう付け方法で接合できれば、該接合部
を有する経路のみが発熱部となるハニカム構造を形成で
きる。
In a honeycomb structure in which at least one of a flat plate and a corrugated plate constituting a honeycomb structure is coated with an insulating film and is electrically insulated from each other, a brazing method for electrically connecting a part between the flat plate and the corrugated plate is provided. Can form a honeycomb structure in which only the path having the joining portion becomes a heat generating portion.

しかしながら、一般に用いられているろう付け法で接
合できるのは耐熱合金の表面に絶縁皮膜が形成されてい
ないもの同士に限られている。その理由は絶縁皮膜が存
在している場合、ろう材が溶融しても絶縁皮膜によっ
て、ろう材と耐熱合金の融合が阻害されるためである。
そこで表面に絶縁皮膜を有する耐熱合金(絶縁被覆耐熱
合金)を強固に、しかも接合部が電気伝導性を有するよ
うに接合する技術が必要である。
However, joining that can be performed by a generally used brazing method is limited to those having no insulating film formed on the surface of the heat-resistant alloy. The reason for this is that if an insulating film is present, the fusion of the brazing material and the heat-resistant alloy is inhibited by the insulating film even if the brazing material melts.
Therefore, there is a need for a technique for joining a heat-resistant alloy having an insulating film on its surface (insulating-coated heat-resistant alloy) so that the joint has electrical conductivity.

前記課題を解決するために本発明は、絶縁被覆耐熱合
金(例えばAlを含有する耐熱合金)と耐熱合金を接合す
る際、強還元金属(例えばZr)とろう材を積層した接合
材を用い、上記強還元金属面を絶縁被覆耐熱合金側に配
置し積層体にしたのち、非酸化性雰囲気中に加熱しろう
付けするものである。
In order to solve the above-described problems, the present invention uses a joining material obtained by laminating a strong reducing metal (eg, Zr) and a brazing material when joining an insulating coating heat-resistant alloy (eg, a heat-resistant alloy containing Al) and a heat-resistant alloy, The above-mentioned strongly reduced metal surface is arranged on the side of the insulating coating heat-resistant alloy to form a laminate, and then heated and brazed in a non-oxidizing atmosphere.

また絶縁被覆耐熱合金同士を接合する場合には、1対
の強還元金属の間にろう材を介挿した接合材を用い、積
層体にしたのち非酸化性雰囲気中で加熱しろう付けす
る。
When joining the insulating coated heat-resistant alloys to each other, a joining material in which a brazing material is interposed between a pair of strongly reduced metals is used to form a laminate, and then heated and brazed in a non-oxidizing atmosphere.

以上の接合方法により波板と平板の少なくとも一つが
絶縁被覆耐熱合金からなるハニカム構造が導通可能な接
合部を有するメタル担体を構成することができる。
According to the above joining method, a metal carrier having a joining portion through which a honeycomb structure in which at least one of a corrugated plate and a flat plate is made of an insulating-coated heat-resistant alloy can be conducted can be formed.

図面の簡単な説明 第1図は従来技術による予加熱型メタル担体の平面図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a preheated metal carrier according to the prior art.

第2図は本発明の積層体を示す一部断面正面図であ
る。
FIG. 2 is a partially sectional front view showing the laminate of the present invention.

第3図は第2図の積層体を接合した場合の接合部を模
式的に示す一部断面正面図である。
FIG. 3 is a partial cross-sectional front view schematically showing a joint when the laminate of FIG. 2 is joined.

第4図(a)は本発明のメタル担体の排ガス入り側か
ら視た平面図である。
FIG. 4 (a) is a plan view of the metal carrier of the present invention as viewed from the exhaust gas entry side.

第4図(b)は第4図(a)のA−A断面図である。 FIG. 4 (b) is a sectional view taken along line AA of FIG. 4 (a).

第5図は第4図(a)、第4図(b)で示すメタル担
体の接合部付近の断面模式図である。
FIG. 5 is a schematic cross-sectional view of the vicinity of the joint portion of the metal carrier shown in FIGS. 4 (a) and 4 (b).

第6図はレーザービーム溶接により導電路が形成され
たメタル担体の斜視図である。
FIG. 6 is a perspective view of a metal carrier having a conductive path formed by laser beam welding.

第7図は本発明の他の実施例の積層体を示す一部断面
正面図である。
FIG. 7 is a partially sectional front view showing a laminated body according to another embodiment of the present invention.

第8図は第7図の積層体を接合した場合の接合部を模
式的に示す一部断面正面図である。
FIG. 8 is a partial cross-sectional front view schematically showing a joint when the laminate of FIG. 7 is joined.

第9図は比較例の積層体の一部断面正面図である。 FIG. 9 is a partial cross-sectional front view of the laminate of the comparative example.

第10図は第9図の積層体を接合した場合の接合部を模
式的に示す一部断面正面図である。
FIG. 10 is a partial cross-sectional front view schematically showing a joint when the laminate of FIG. 9 is joined.

第11図は本発明の他の実施例の積層体を示す一部断面
正面図である。
FIG. 11 is a partially sectional front view showing a laminate according to another embodiment of the present invention.

第12図は本発明方法によりメタル担体を形成する過程
を示す模式図である。
FIG. 12 is a schematic view showing a process of forming a metal carrier by the method of the present invention.

第13図は第12図の方法で形成されたメタル担体を示す
平面図である。
FIG. 13 is a plan view showing a metal carrier formed by the method of FIG.

第14図は本発明のメタル担体で構成した触媒コンバー
タの断面正面図である。
FIG. 14 is a sectional front view of a catalytic converter constituted by the metal carrier of the present invention.

発明を実施するための最良の形態 以下、本発明を実施するための最良の形態について説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described.

耐熱合金間を絶縁するには、波板と平板の少なくとも
一方に絶縁皮膜を被覆すればよい。絶縁被覆には公知技
術であるPVD,CVD,セラミック溶射あるいはセラミック粉
末塗布の方法を用いることができるが、さらに好ましく
は、耐熱合金としてAlを含有しているものを用い、それ
を1000℃以上(融点未満)の温度で高温酸化処理して表
面に酸化皮膜を形成させる方法がよい。Alを含有する耐
熱合金に高温酸化処理を施すと、緻密でかつ密着性がよ
く、高い絶縁機能を有するアルミナを主成分とする酸化
皮膜が生成する。しかし、絶縁被覆耐熱合金と耐熱合金
間、あるいは絶縁被覆耐熱合金同士の接合は、前述した
ように一般的に用いられるろう付けによる接合は不可能
である。
To insulate between the heat-resistant alloys, at least one of the corrugated plate and the flat plate may be coated with an insulating film. For the insulating coating, a known technique such as PVD, CVD, ceramic spraying or ceramic powder coating can be used. More preferably, a heat-resistant alloy containing Al is used, and the heat-resistant alloy is used at 1000 ° C or higher ( (Lower than the melting point) at a temperature of high temperature to form an oxide film on the surface. When a high-temperature oxidation treatment is applied to a heat-resistant alloy containing Al, an oxide film containing alumina as a main component, which is dense and has good adhesion and has a high insulating function, is generated. However, as described above, it is impossible to join between the heat-resistant insulating coating alloy and the heat-resistant alloy or between the heat-resistant insulating coating alloys, as described above.

そこで本発明者等は実験研究を重ねた結果、絶縁被覆
耐熱合金と耐熱合金の間に絶縁皮膜を熱力学的に還元し
うる金属(以下強還元金属と称する)とろう材を積層し
た接合材を前記強還元金属(例えば箔)が絶縁被覆耐熱
合金に接するように配置して非酸化雰囲気中で加熱する
と、強還元金属箔が絶縁皮膜を還元することを知見し
た。そして絶縁被覆がない耐熱合金同士をろう付けした
場合と同等の接合強度を得ることができるとともに、該
接合部が導電路となるという結果を得た。
Therefore, as a result of repeated experiments and researches, the present inventors have found that a joining material in which a metal capable of thermodynamically reducing an insulating film (hereinafter referred to as a strong reducing metal) and a brazing material are laminated between a heat-resistant insulating coating alloy and a heat-resistant alloy. It has been found that when the strong reducing metal (for example, foil) is arranged in contact with the heat-resistant insulating coating alloy and heated in a non-oxidizing atmosphere, the strong reducing metal foil reduces the insulating film. In addition, it was possible to obtain a joining strength equivalent to that obtained by brazing heat-resistant alloys having no insulating coating to each other, and to obtain a result that the joining portion becomes a conductive path.

前記接合の機構を、絶縁被膜としてアルミナを主成分
とする酸化被膜を用い、強還元金属としてZrを用いた場
合について説明する。まず絶縁皮膜の主成分であるアル
ミナとZr箔が 2/3Al2O3+Zr=4/3Al+ZrO2 で表される置換反応を起こす。同時にろう材を溶融す
る。生成したZrO2は溶融したろう材中に分散析出する。
溶融したろう材はZrと合金化し、分散析出したZrO2の隙
間を通って、絶縁被覆耐熱合金の素地まで到達し、通常
のろう付けと同様の機構で接合される。同時に生成した
Alはろう材中に溶解するか、あるいは絶縁被覆耐熱合金
中に拡散する。該機構により、絶縁被覆耐熱合金の接合
がなされしかも接合部が導電性を有するものである。
The joining mechanism will be described for a case where an oxide film containing alumina as a main component is used as an insulating film and Zr is used as a strong reducing metal. First, alumina and Zr foil, which are the main components of the insulating film, cause a substitution reaction represented by 2 / 3Al 2 O 3 + Zr = 4 / 3Al + ZrO 2 . At the same time, the brazing material is melted. The generated ZrO 2 is dispersed and precipitated in the molten brazing material.
The molten brazing alloy is alloyed with Zr, passes through the gap of ZrO 2 dispersed and deposited, reaches the base material of the heat-resistant insulating coating, and is joined by the same mechanism as ordinary brazing. Generated at the same time
Al dissolves in the brazing filler metal or diffuses into the insulation-coated heat-resistant alloy. By this mechanism, the insulating coated heat-resistant alloy is joined, and the joint has conductivity.

さて、本発明の具体的構成を述べる。第2図は本発明
に基づく接合方法の一例を説明するための積層体の一部
断面模式図であり、第3図は第2図の積層体に基づいて
生成された接合体の一例を示す一部断面図である。
Now, a specific configuration of the present invention will be described. FIG. 2 is a schematic partial cross-sectional view of a laminate for explaining an example of a joining method according to the present invention, and FIG. 3 shows an example of a joined body generated based on the laminate of FIG. It is a partial sectional view.

第2図において、2は表面にアルミナを主成分とする
絶縁皮膜3(以下単に酸化皮膜と称す)を形成した絶縁
被覆耐熱合金である。4は表面を酸化していない耐熱合
金(以下耐熱合金と称す)である。酸化皮膜3は製造法
の簡便さから酸化性雰囲気中で加熱して得ることが好ま
しく、特に大気中で加熱する方法が最も好ましい。その
場合は絶縁被覆耐熱合金2にAlが含有されている必要が
ある。
In FIG. 2, reference numeral 2 denotes an insulating-coated heat-resistant alloy having an insulating film 3 (hereinafter simply referred to as an oxide film) mainly composed of alumina formed on the surface. Reference numeral 4 denotes a heat-resistant alloy whose surface is not oxidized (hereinafter referred to as a heat-resistant alloy). The oxide film 3 is preferably obtained by heating in an oxidizing atmosphere because of the simplicity of the manufacturing method, and the method of heating in the air is most preferable. In that case, it is necessary that Al is contained in the insulating coating heat-resistant alloy 2.

7は強還元金属5とろう材6を積層して形成された接
合材である。該接合材7は強還元金属5が酸化皮膜3と
相接するように配置され、絶縁被覆耐熱合金2と耐熱合
金4とで積層体1が構成される。強還元金属5は、アル
ミナを還元しうる金属、具体的にはZr,Li,Be,Mg,Ca,Sr,
Sc,Y,および原子番号が57−71のランタノイド元素の少
くとも1種を用いる。なお、酸化皮膜3を還元しうる程
度に、上記元素以外の元素が含有されていてもよい。特
にZrは他の元素と比較して箔圧延が容易であり、従って
接合材の形成が容易であるという利点がある。
Reference numeral 7 denotes a joining material formed by laminating the strong reducing metal 5 and the brazing material 6. The bonding material 7 is disposed such that the strongly reduced metal 5 is in contact with the oxide film 3, and the laminated body 1 is composed of the heat-resistant alloy 2 and the heat-resistant alloy 4. The strong reducing metal 5 is a metal capable of reducing alumina, specifically, Zr, Li, Be, Mg, Ca, Sr,
Sc, Y, and at least one of the lanthanoid elements with atomic numbers 57-71 are used. Note that elements other than the above elements may be contained to the extent that the oxide film 3 can be reduced. In particular, Zr is advantageous in that foil rolling is easy as compared with other elements, and therefore, formation of a bonding material is easy.

積層体1は非酸化雰囲気中で加熱される。この加熱操
作によりろう材6は溶融し、また酸化皮膜3が強還元金
属5によって還元される。冷却後は、第3図に示すよう
に、ろう付け部9中に強還元金属酸化物10が分散析出し
た組織の接合部11が形成される。また接合部11において
酸化皮膜3は消失している。ろう付け部9は強還元金属
とろう材成分が合金化した組織となる。Ni−Si−Cr系の
ろう材と、強還元金属としてZrを用いた場合は、ろう付
け部9は主としてNi−Si−Zrからなる相とCrからなる相
の2相からなる組織を呈する。
The laminate 1 is heated in a non-oxidizing atmosphere. By this heating operation, the brazing material 6 is melted, and the oxide film 3 is reduced by the strong reducing metal 5. After the cooling, as shown in FIG. 3, a joint portion 11 having a structure in which the strongly reduced metal oxide 10 is dispersed and precipitated is formed in the brazing portion 9. In addition, the oxide film 3 has disappeared at the joint 11. The brazing portion 9 has a structure in which the strongly reduced metal and the brazing filler metal are alloyed. When a Ni-Si-Cr brazing material and Zr as a strong reducing metal are used, the brazing portion 9 exhibits a structure mainly composed of two phases of a phase composed of Ni-Si-Zr and a phase composed of Cr.

而して絶縁被覆耐熱合金2と耐熱合金4は接合部11に
よって接合され接合体8を構成する。接合部11は金属成
分であるろう付け部9がマトリックスであることから通
電が可能であり導電路としての機能も発揮する。
Thus, the insulating coating heat-resistant alloy 2 and the heat-resistant alloy 4 are joined by the joint 11 to form a joined body 8. Since the brazing portion 9, which is a metal component, is a matrix, the joining portion 11 can be energized and also functions as a conductive path.

ここまでは絶縁被覆耐熱合金2と耐熱合金4の接合に
ついて述べたが、絶縁被覆耐熱合金同士の接合に対して
も同様の技術手段が適用できる。この場合は接合材とし
て2枚の強還元金属の間にろう材を挟み込んだものを用
いればよい。接合機構は前述と同様である。
Up to this point, the joining of the heat-resistant insulating coating alloy 2 and the heat-resistant alloy 4 has been described, but the same technical means can be applied to the joining of the heat-resistant insulating coating alloys. In this case, a joining material in which a brazing material is sandwiched between two strongly reduced metals may be used. The joining mechanism is the same as described above.

また、本発明の技術手段を用いて、前述した予加熱型
排ガス浄化用メタル担体を製造することができる。第4
図(a)は上記メタル担体の平面模式図、第4図(b)
は第4図(a)のA−A断面図である。メタル担体12
は、例えば絶縁被覆耐熱合金の波板13と、耐熱合金の平
板14から構成されるハニカム構造15、中心電極棒16、外
筒17から構成されており、ハニカム構造内の排ガス入り
側部分に接合部11を有する。
Further, by using the technical means of the present invention, the above-mentioned preheated metal carrier for purifying exhaust gas can be manufactured. 4th
Figure (a) is a schematic plan view of the metal carrier, and Figure 4 (b)
FIG. 4 is a sectional view taken along the line AA in FIG. Metal carrier 12
Is composed of a honeycomb structure 15 composed of, for example, a corrugated sheet 13 of an insulation-coated heat-resistant alloy, and a flat plate 14 of a heat-resistant alloy, a center electrode rod 16, and an outer cylinder 17, which are joined to an exhaust gas entering side portion in the honeycomb structure. It has a part 11.

接合部11を形成するためには、波板13と平板14の間の
導電路を形成したい箇所に、強還元金属5とろう材6か
らなる接合材7を、ろう付けするための加熱処理前にあ
らかじめ配置しておけばよい。
In order to form the bonding portion 11, a bonding material 7 composed of a strong reducing metal 5 and a brazing material 6 is applied to a portion where a conductive path between the corrugated plate 13 and the flat plate 14 is to be formed before the heat treatment for brazing. In advance.

第5図は第4図(a)、第4図(b)の接合部11付近
を拡大した模式図である。前記説明と同様に、ろう付け
部9中に強還元金属酸化物10が分散析出した形態とな
る。第4図(a)、第4図(b)のメタル担体12の中心
電極棒16と外筒17の間に電圧を印加すると該接合部11が
導電路Eとなっているため、電流が矢印Yの方向に流
れ、導電路Eの部分のみが発熱される。メタル担体全体
を加熱する方式と比較して加熱される容積が非常に小さ
いため、短時間で触媒活性温度に達することができる。
FIG. 5 is an enlarged schematic view of the vicinity of the joint 11 in FIGS. 4 (a) and 4 (b). As in the above description, a strong reduced metal oxide 10 is dispersed and precipitated in the brazing portion 9. When a voltage is applied between the center electrode rod 16 and the outer cylinder 17 of the metal carrier 12 shown in FIGS. 4 (a) and 4 (b), the current flows in the direction indicated by an arrow because the junction 11 is a conductive path E. It flows in the Y direction, and only the portion of the conductive path E generates heat. Since the volume to be heated is very small as compared with the method of heating the entire metal carrier, the catalyst activation temperature can be reached in a short time.

該メタル担体12に実際に触媒を担持し、排ガスを流す
と同時に通電を開始すると通電後間もなく短時間で反応
が開始し、その後は反応熱により接合部11から他の部分
へも速やかに反応が広がる。
When the catalyst is actually loaded on the metal carrier 12 and the exhaust gas is flown and the energization is started at the same time, the reaction starts shortly after the energization, and the reaction quickly proceeds from the joint 11 to other parts due to the reaction heat. spread.

ろう付け法を用いるもう一つの利点は、狙い通りの形
状およびサイズの接合部が得られることである。例えば
接合材を配置せずにハニカム構造15を構成し、しかる後
に第6図に示すようにレーザービーム200等でハニカム
構造15の端面18を溶接すると、やはり導電路が形成され
るが、この場合は溶接深さが一定ではなく、従って接合
部ごとに導通抵抗が異なり、発生する熱量が異なるた
め、部分的に異常発熱し接合部が焼き切れてしまう。
Another advantage of using the brazing method is that a joint of the desired shape and size is obtained. For example, when the honeycomb structure 15 is formed without disposing the joining material, and then the end face 18 of the honeycomb structure 15 is welded with a laser beam 200 or the like as shown in FIG. 6, a conductive path is also formed. Since the welding depth is not constant, the conduction resistance differs for each joint and the amount of generated heat differs, so that abnormal heat is partially generated and the joint burns out.

ここまで波板13が絶縁被覆耐熱合金、平板14が耐熱合
金の場合について説明してきたが、波板13が耐熱合金で
あり、平板14が絶縁被覆耐熱極金である組み合わせ、あ
るいは波板、平板がともに絶縁被覆耐熱合金である組み
合わせも考えられるが、強還元金属5と酸化皮膜13−1
が相接するような接合材を選択して接合部11を形成すれ
ば、同様の性能をもつメタル担体12を製造できる。
Although the case where the corrugated plate 13 is a heat-resistant alloy and the flat plate 14 is a heat-resistant alloy has been described above, a combination in which the corrugated plate 13 is a heat-resistant alloy and the flat plate 14 is a heat-resistant insulating metal plate, or a corrugated plate or a flat plate Can be considered a combination in which both are heat-resistant insulating coatings, but strongly reduced metal 5 and oxide film 13-1
By selecting a bonding material that makes contact with each other and forming the bonding portion 11, a metal carrier 12 having the same performance can be manufactured.

実施例 実施例1 本発明の期待効果である接合部の強さと通電性を把握
するため、以下の試験を実施した。
EXAMPLES Example 1 The following test was performed to grasp the strength and electrical conductivity of the joint, which are expected effects of the present invention.

第7図に示すように、1mm厚、長さ100mm、幅17mmの耐
熱合金であるSUS430板40、長さ15mm、幅15mm、厚さ25μ
mのBNi−5規格のろう材箔(Ni−19Cr−10Si系)60、
長さ15mm、幅15mm、厚さ5μmの強還元金属であるZr箔
50、および大気中1100℃で60分間加熱し、表面に1μm
厚のアルミナを主体とする酸化皮膜30を形成させた、長
さ100mm、幅17mm、厚さ1mmのFe−20Cr−5Al系の絶縁被
覆耐熱合金板20を順次積層して、積層体80を作製した。
その後、積層体80を治具で固定し、真空雰囲気中におい
て1200℃の温度で10分間加熱し、第8図に示す接合体90
を作製した。100は強還元金属酸化物、110は接合部であ
る。
As shown in FIG. 7, a 1 mm thick, 100 mm long, 17 mm wide heat-resistant alloy SUS430 plate 40, 15 mm long, 15 mm wide, 25 μm thick
m BNi-5 brazing material foil (Ni-19Cr-10Si) 60,
Zr foil, a strong reducing metal with a length of 15mm, a width of 15mm and a thickness of 5μm
50 and heated at 1100 ° C for 60 minutes in air, 1μm on the surface
Thick alumina-based oxide film 30 was formed, a length of 100 mm, a width of 17 mm, and a 1 mm-thick Fe-20Cr-5Al-based insulating coated heat-resistant alloy plate 20 were sequentially laminated to produce a laminate 80. did.
Thereafter, the laminate 80 is fixed with a jig, and heated at a temperature of 1200 ° C. for 10 minutes in a vacuum atmosphere.
Was prepared. 100 is a strongly reduced metal oxide and 110 is a joint.

その後、接合体90、すなわち耐熱合金40および絶縁被
覆耐熱合金20に対し矢印の方向に荷重を印加し、接合性
を測定したところ、約1000kgの荷重で耐熱合金40が破壊
され、接合部110は健全であった。また絶縁被覆耐熱合
金20の接合部110と反対側の酸化皮膜30を除去して通電
試験したところ、抵抗値は1mΩ以下であり、高い導電性
を示した。
Thereafter, a load was applied in the direction of the arrow to the joined body 90, that is, the heat-resistant alloy 40 and the insulating coating heat-resistant alloy 20, and the bondability was measured.The heat-resistant alloy 40 was destroyed by a load of about 1000 kg, and the joint 110 was formed. It was sound. When the oxide film 30 on the side opposite to the joint 110 of the insulating coating heat-resistant alloy 20 was removed and a current test was performed, the resistance value was 1 mΩ or less, indicating high conductivity.

また、接合部110を顕微鏡観察したところ、酸化皮膜3
0は完全に消失しており、Zr酸化物100の分散析出が認め
られた。
When the joint 110 was observed under a microscope, the oxide film 3 was observed.
0 completely disappeared, and dispersion precipitation of Zr oxide 100 was observed.

比較例として第9図の如くZr箔50を配置せず、ろう材
60のみを用いてろう付けした場合は、第10図に示すよう
に接合部210における酸化皮膜30の消失が認められず、
また約100kgの低荷重で破壊し、しかも破壊部位は接合
部110aと酸化皮膜30の界面であった。
As a comparative example, the Zr foil 50 was not arranged as shown in FIG.
When brazing was performed using only 60, the disappearance of the oxide film 30 at the joint 210 was not recognized as shown in FIG.
It was broken by a low load of about 100 kg, and the broken part was the interface between the joint 110a and the oxide film 30.

実施例2 実施例1と同様の構成において、強還元金属として、
アルミナを熱力学的に還元し得る元素であるMgの粉末
を、バインダで固めて厚さ20μm程度の板状に成形した
ものを用いて、実施例1と同様の試験を施したところ、
強度試験では1000kgの荷重で耐熱合金40が破壊された。
また、抵抗値も1mm以下であった。接合部の組織はアル
ミナ皮膜が消失し、Mg酸化物が分散析出していた。
Example 2 In the same configuration as in Example 1, as a strong reducing metal,
When the same test as in Example 1 was performed using a powder of Mg, which is an element capable of thermodynamically reducing alumina, solidified with a binder and formed into a plate having a thickness of about 20 μm,
In the strength test, the heat-resistant alloy 40 was broken by a load of 1000 kg.
Also, the resistance value was 1 mm or less. In the joint structure, the alumina film had disappeared and Mg oxide was dispersed and precipitated.

また比較例として、強還元金属の位置に、熱力学的に
アルミナを還元し得ない元素である厚さ5μmのNi箔を
用いた場合は、その接合部の組織においてアルミナの還
元反応が生じず、耐熱合金は強度試験で100kgの低荷重
で破壊された。
As a comparative example, when a Ni foil having a thickness of 5 μm, which is an element that cannot thermodynamically reduce alumina, was used at the position of the strong reducing metal, the reduction reaction of alumina did not occur in the structure of the joint. In the strength test, the heat-resistant alloy was broken at a low load of 100 kg.

実施例3 第11図に示すように、1μmの酸化皮膜30を有する一
対のFe−20Cr−5Al系の絶縁被覆耐熱合金板20の間に一
対のZr箔50を装入し、さらに一対のZr箔50の中間にBNi
−5規格のろう材箔60をはさみ、実施例1と同様の形状
の積層体80aを作製し、実施例1と同様の処理をして接
合体を作製し試験したところ、強度試験ではやはり絶縁
被覆耐熱合金箔20が破壊され、接合部は健全であった。
また抵抗値も1mΩ以下であった。
Example 3 As shown in FIG. 11, a pair of Zr foils 50 were inserted between a pair of Fe-20Cr-5Al-based insulating coated heat-resistant alloy plates 20 having a 1 μm oxide film 30, and a pair of Zr BNi in the middle of foil 50
A laminated body 80a having the same shape as in Example 1 was prepared by sandwiching a brazing filler metal foil 60 of -5 standard, and a bonded body was prepared and tested in the same manner as in Example 1. The coated heat-resistant alloy foil 20 was broken, and the joint was sound.
Also, the resistance value was 1 mΩ or less.

実施例4 次に前述した接合手段によるメタル担体の製造工程な
らびに効果について説明する。第12図において、20bは
厚さ1μm程度の酸化皮膜を形成させた、波高さ1mm程
度の幅17mm、厚さ50μm程度のFe−Cr−Al系等の絶縁被
覆耐熱合金波箔、40bはFe−Cr−Al系やFe−Cr系等の耐
熱合金平箔であり、130は中心電極である。絶縁被覆耐
熱合金20bと耐熱合金箔40bは中心電極棒130に溶接等の
手段により固定される。
Embodiment 4 Next, a description will be given of a manufacturing process and an effect of a metal carrier by the above-described joining means. In FIG. 12, reference numeral 20b denotes an insulating coating heat-resistant alloy corrugated foil of an Fe-Cr-Al type or the like having a width of about 1 mm and a width of about 17 mm and a thickness of about 50 μm on which an oxide film having a thickness of about 1 μm is formed, and 40b represents Fe. -Cr-Al-based or Fe-Cr-based heat-resistant alloy flat foil, and 130 is a center electrode. The insulating coating heat-resistant alloy 20b and the heat-resistant alloy foil 40b are fixed to the center electrode rod 130 by means such as welding.

ついで、中心電極棒130に絶縁被覆耐熱合金波箔20bと
耐熱合金平箔40bを巻き付けて、第13図に示すハニカム
構造150を形成する。その際、ハニカム構造150において
接合部110bを形成しようとする位置に予め、長さ10mm、
幅1mm、厚さ5μm程度の強還元金属箔50bと厚さ25μm
のBNi−5規格等のろう材箔60bからなる接合材70bを強
還元金属箔が絶縁被覆耐熱合金箔に相接するようにして
適宜配置していく。配置の仕方は巻き付ける前に、耐熱
合金箔40b等に予め固定していてもよく、巻き付ける過
程において順次挟み込んでもよい。
Next, the insulating coated heat-resistant alloy corrugated foil 20b and the heat-resistant alloy flat foil 40b are wound around the center electrode rod 130 to form the honeycomb structure 150 shown in FIG. At this time, a length of 10 mm is previously set at a position where the bonding portion 110b is to be formed in the honeycomb structure 150.
Strong reducing metal foil 50b with width of 1mm and thickness of about 5μm and thickness of 25μm
The bonding material 70b made of the brazing material foil 60b conforming to the BNi-5 standard or the like is appropriately arranged such that the strongly reduced metal foil is in contact with the insulating coated heat-resistant alloy foil. Before the winding, the arrangement may be fixed to the heat-resistant alloy foil 40b or the like in advance, or may be sequentially sandwiched in the winding process.

ハニカム構造150の形成が完了した後は、外筒140をハ
ニカム構造の外側に配置し、しかる後にろう付けのため
の加熱処理を真空中で施す。加熱温度はろう材の組成に
適した温度(ろう材の溶融温度)にする。例えばBNi−
5系ろう材(Ni−19Cr−10Si系)の場合は1150〜1250℃
程度である。
After the formation of the honeycomb structure 150 is completed, the outer cylinder 140 is disposed outside the honeycomb structure, and then heat treatment for brazing is performed in a vacuum. The heating temperature is set to a temperature suitable for the composition of the brazing material (melting temperature of the brazing material). For example, BNi-
1150 ~ 1250 ℃ for 5 series brazing material (Ni-19Cr-10Si)
It is about.

加熱処理後、中心電極棒130の端部を外筒140の外に取
り出し(取出し電極131)、メタル担体120が完成する。
このとき取出し電極131と外筒140は電気的に絶縁されて
いなければならない。メタル担体120が完成された後、
ハニカム構造に触媒が担持される。
After the heat treatment, the end of the center electrode rod 130 is taken out of the outer cylinder 140 (extraction electrode 131), and the metal carrier 120 is completed.
At this time, the extraction electrode 131 and the outer cylinder 140 must be electrically insulated. After the metal carrier 120 is completed,
A catalyst is supported on the honeycomb structure.

ハニカム構造150を構成する絶縁被覆耐熱合金箔20bと
耐熱合金箔40bは、互いに絶縁されており、排ガスの入
り側に位置する接合部110bにおいて接合されている。1
つの接合部のサイズは排ガスの入り側からみて、例えば
幅10mm、深さ1mm程度になるように形成されている。ハ
ニカム構造150の容積は例えば100cc程度が適している。
このようにして形成したメタル担体の接合部110bは、強
還元金属酸化物が分散析出した組織になる。
The insulation-coated heat-resistant alloy foil 20b and the heat-resistant alloy foil 40b that constitute the honeycomb structure 150 are insulated from each other and are joined at a joint 110b located on the exhaust gas entry side. 1
The size of the two joints is, for example, about 10 mm in width and about 1 mm in depth when viewed from the exhaust gas entry side. The volume of the honeycomb structure 150 is preferably, for example, about 100 cc.
The bonding portion 110b of the metal carrier thus formed has a structure in which the strongly reduced metal oxide is dispersed and precipitated.

さて、実際にメタル担体120に通電を開始すると同時
に排ガスを通過させると、接合部110bは約1秒で触媒活
性温度に達し、該部分で発熱反応を生じる。すると該部
分からの反応熱により接合部110bの周囲が加熱され、触
媒活性領域が迅速に広がり、短時間でメタル担体120全
体が触媒活性温度に到達する。
Now, when the exhaust gas is passed at the same time as the metal carrier 120 is actually energized, the junction 110b reaches the catalyst activation temperature in about 1 second, and an exothermic reaction occurs in this portion. Then, the periphery of the joint 110b is heated by the reaction heat from the portion, the catalytically active region is quickly expanded, and the entire metal carrier 120 reaches the catalytically active temperature in a short time.

第14図に示すように、触媒コンバータ170の全体は、
前記方法で製造したメタル担体120の後段に、1000cc程
度の容量の主触媒担体160が配置された構成になる。前
段のメタル担体120は、それ自体が排ガスを浄化する機
能を有するほかに、発熱反応により高温になった排ガス
により、主触媒担体160の触媒が活性になるまでの時間
をも短縮する効果がある。
As shown in FIG. 14, the entire catalytic converter 170
The main catalyst carrier 160 having a capacity of about 1000 cc is disposed downstream of the metal carrier 120 manufactured by the above method. In addition to the function of purifying the exhaust gas itself, the former-stage metal carrier 120 also has an effect of shortening the time until the catalyst of the main catalyst carrier 160 becomes active due to the exhaust gas heated by the exothermic reaction. .

実施例5 さて、幅10mm、深さ1mmの導電路を8本もち、ハニカ
ム構造の容量が100ccであるメタル担体120を有する触媒
コンバータ170に対し、以下の試験を実施した。電極130
と外筒140の間に750Wの電力を印加し、その時の昇温性
能、および排ガス中のハイドロカーボン(HC)の浄化性
能を調査した。昇温性能は接合部110bが400℃に到達す
る時間を、浄化性能は、通電開始後20秒間で浄化された
HCの浄化率をもって評価した。比較例として、第1図で
示すハニカム構造全体を加熱する構成の、容量100ccの
メタル担体に750Wの電力を印加した時の昇温性能および
浄化性能も調査した。
Example 5 The following test was performed on a catalytic converter 170 having eight conductive paths each having a width of 10 mm and a depth of 1 mm and having a metal carrier 120 having a honeycomb structure having a capacity of 100 cc. Electrode 130
A power of 750 W was applied between the outer cylinder 140 and the outer cylinder 140, and the heating performance at that time and the purification performance of hydrocarbon (HC) in exhaust gas were investigated. The temperature rise performance was the time required for the junction 110b to reach 400 ° C., and the purification performance was purified in 20 seconds after the start of energization.
The evaluation was based on the HC purification rate. As a comparative example, the heating performance and the purification performance when a power of 750 W was applied to a metal carrier having a capacity of 100 cc and configured to heat the entire honeycomb structure shown in FIG. 1 were also investigated.

その試験結果を第1表に示す。本発明に基づく触媒メ
タル担体では、通電開始後およそ1秒後に接合部110bの
みが発熱し、約400℃の温度に達した。またHCの浄化率
は、通電開始後20秒間で48%であり、通電しない場合の
浄化率は33%であり、5割近いHC浄化率の向上が認めら
れた。比較例では400℃到達に約12秒要し、HC浄化率も3
7%であり無通電に比較して向上率は2割に満たなかっ
た。
Table 1 shows the test results. In the catalytic metal carrier according to the present invention, only about one second after the start of energization, only the joint 110b generated heat and reached a temperature of about 400 ° C. The purification rate of HC was 48% for 20 seconds after the start of energization, and the purification rate without electricity was 33%, indicating an improvement in the HC purification rate of nearly 50%. In the comparative example, it took about 12 seconds to reach 400 ° C and the HC purification rate was 3
The rate of improvement was 7%, which was less than 20% as compared with the case where no current was supplied.

実施例6 また実施例4における本発明に基づくメタル担体120
の耐熱サイクル性を調査した。電流の750W電力を10秒間
印加して接合部を加熱し、ついで10分間冷却するON−OF
Fサイクルを繰り返した。比較例として、第6図に基づ
いてろう材を用いずにハニカム構造端面をレーザービー
ム溶接して導電路を形成したものに対して同様の試験を
行った。
Example 6 The metal carrier 120 according to the invention in Example 4
Was examined for heat cycle resistance. ON-OF to apply 750W electric power for 10 seconds to heat the joint and then cool for 10 minutes
The F cycle was repeated. As a comparative example, a similar test was performed on a honeycomb structure end face formed with a conductive path by laser beam welding without using a brazing material based on FIG.

結果を第2表に示す。本発明のメタル担体では5000回
のON−OFFサイクルを負荷しても接合部に劣化が認めら
れなかったのに対し、比較例ではON−OFFサイクル10回
で導電路で焼き切れ、通電不能になった。
The results are shown in Table 2. In the metal carrier of the present invention, no deterioration was observed in the joint even after 5000 ON-OFF cycles were loaded, whereas in the comparative example, the ON-OFF cycle was burned out in the conductive path in 10 times, and the current could not be supplied. became.

実施例7 また、平板として絶縁被覆耐熱合金箔、波板として耐
熱合金箔を用いる場合、あるひは、平板、波板ともに絶
縁被覆耐熱合金を用いる場合について、酸化皮膜とZr箔
が接するように接合材を選択して、実施例4と同様の試
験を行ったところ、得られたハニカム構造が実施例4と
殆ど同じ通電機能およびハイドロカーボンの浄化性能を
有していることが確認された。
Example 7 In addition, when using a heat-resistant alloy foil as an insulating coating as a flat plate and a heat-resistant alloy foil as a corrugated sheet, in a case where an insulating coated heat-resistant alloy is used for both the flat plate and the corrugated sheet, the oxide film and the Zr foil are in contact with each other. When a bonding material was selected and the same test as in Example 4 was performed, it was confirmed that the obtained honeycomb structure had almost the same current-carrying function and hydrocarbon purification performance as in Example 4.

産業上の利用可能性 以上述べたように、少電力で高い浄化性能をもつメタ
ル担体を製造するに際し、従来は不可能であった、絶縁
被覆耐熱合金の接合が本発明により可能になり、従って
導電路を形成したい箇所のみを接合できるため、非常に
高い浄化性能を発揮する予加熱型排ガス浄化用メタル担
体を得ることができる。
INDUSTRIAL APPLICABILITY As described above, when manufacturing a metal carrier having high purification performance with low power, joining of an insulating coated heat-resistant alloy, which was not possible conventionally, becomes possible by the present invention, Since only the portion where the conductive path is desired to be formed can be joined, a preheated exhaust gas purifying metal carrier exhibiting extremely high purification performance can be obtained.

フロントページの続き (51)Int.Cl.6 識別記号 FI B23K 1/20 B01D 53/36 C (56)参考文献 特開 平2−26643(JP,A) 特開 平5−200305(JP,A) 特開 平5−200306(JP,A) 特表 平3−501363(JP,A) (58)調査した分野(Int.Cl.6,DB名) B23K 1/00 - 3/08 B01J 35/04 311 B01D 53/36 Continuation of the front page (51) Int.Cl. 6 Identification symbol FI B23K 1/20 B01D 53/36 C (56) References JP-A-2-26643 (JP, A) JP-A-5-200305 (JP, A JP-A-5-200306 (JP, A) JP-A-3-501363 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B23K 1/00-3/08 B01J 35 / 04 311 B01D 53/36

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁被覆耐熱合金と耐熱合金を接合するに
際し、強還元金属とろう材を積層した接合材を、該強還
元金属面が前記絶縁被覆耐熱合金面に接する状態で前記
絶縁被覆耐熱合金と耐熱合金の間に挿入して積層体を形
成し、該積層体を非酸化性雰囲気中で加熱し、ろう付け
することを特徴とする耐熱合金のろう付け方法。
When joining a heat-resistant alloy with an insulation-coated heat-resistant alloy, a bonding material obtained by laminating a strongly reduced metal and a brazing material is bonded to the insulation-coated heat-resistant alloy in a state in which the strongly reduced metal surface is in contact with the surface of the insulation-coated heat-resistant alloy. A method of brazing a heat-resistant alloy, comprising inserting a laminate between the alloy and a heat-resistant alloy to form a laminate, heating the laminate in a non-oxidizing atmosphere, and brazing.
【請求項2】絶縁被覆耐熱合金同士を接合するに際し、
一対の強還元金属の間にろう材を介挿した接合材を、前
記絶縁被覆耐熱合金の間に挿入して積層体を形成し、該
積層体を非酸化性雰囲気中で加熱し、ろう付けすること
を特徴とする耐熱合金のろう付け方法。
2. The method of joining insulating coated heat-resistant alloys,
A bonding material in which a brazing material is interposed between a pair of strong reducing metals is inserted between the insulating-coated heat-resistant alloy to form a laminate, and the laminate is heated in a non-oxidizing atmosphere and brazed. A brazing method for heat-resistant alloys, comprising:
【請求項3】絶縁被覆耐熱合金が、Alを含有する耐熱合
金を酸化雰囲気中で高温加熱することにより生成される
ことを特徴とする請求の範囲1または2記載の耐熱合金
のろう付け方法。
3. The method for brazing a heat-resistant alloy according to claim 1, wherein the heat-resistant alloy with an insulating coating is produced by heating a heat-resistant alloy containing Al at a high temperature in an oxidizing atmosphere.
【請求項4】強還元金属がZr,Li,Be,Mg,Ca,Sr,Sc,Yまた
は原子番号が57〜71のランタノイド元素の少くとも1種
であることを特徴とする請求の範囲1,2または3に記載
の耐熱合金のろう付け方法。
4. The method according to claim 1, wherein the strongly reduced metal is at least one of Zr, Li, Be, Mg, Ca, Sr, Sc, Y or a lanthanoid element having an atomic number of 57 to 71. , 2 or 3.
【請求項5】絶縁被覆耐熱合金または耐熱合金が板ある
いは箔であることを特徴とする請求の範囲1ないし4に
記載の耐熱合金のろう付け方法。
5. The method for brazing a heat-resistant alloy according to claim 1, wherein the heat-resistant alloy or the heat-resistant alloy is a plate or a foil.
【請求項6】絶縁被覆耐熱合金または耐熱合金の1つが
波板であることを特徴とする請求の範囲1ないし5に記
載の耐熱合金のろう付け方法。
6. The brazing method for a heat-resistant alloy according to claim 1, wherein one of the heat-resistant insulating coating alloy and the heat-resistant alloy is a corrugated sheet.
【請求項7】少くとも一方の表面が絶縁皮膜で被覆され
た平板と波板が相互に積層された状態で中心電極棒に巻
込まれ、かつ前記平板と波板の間の導電路に相当する部
分が、強還元金属酸化物が分散析出したろう付け部で接
合されたハニカム構造と、該ハニカム構造が挿入される
外筒から構成される予加熱型排ガス浄化用メタル担体。
7. A flat plate whose at least one surface is covered with an insulating film and a corrugated plate are wound around a center electrode rod in a state of being laminated on each other, and a portion corresponding to a conductive path between the flat plate and the corrugated plate is provided. A preheated exhaust gas purifying metal carrier comprising a honeycomb structure joined at a brazing portion in which a strongly reduced metal oxide is dispersed and deposited, and an outer cylinder into which the honeycomb structure is inserted.
【請求項8】少くとも一方の表面に絶縁皮膜が被覆され
た平板と波板を相互に積層しつゝ、取出し電極を有する
中心電極棒に巻付けるとともに、前記平板と波板の間の
導電路に相当する部分に、強還元金属とろう材からなる
接合材を該強還元金属が前記絶縁皮膜に接する状態で配
設してハニカム構造を形成すること、 該ハニカム構造を外筒に挿入してメタル担体を製造する
こと、 次いで、該メタル担体を非酸化性雰囲気中で加熱してろ
う付け処理を行うこと、 以上からなる予加熱型排ガス浄化用メタル担体の製造方
法。
8. A flat plate having at least one surface coated with an insulating film and a corrugated plate are laminated on each other, wound around a center electrode rod having an extraction electrode, and provided on a conductive path between the flat plate and the corrugated plate. In a corresponding portion, a bonding material made of a strong reducing metal and a brazing material is disposed in a state where the strong reducing metal is in contact with the insulating film to form a honeycomb structure. The honeycomb structure is inserted into an outer cylinder to form a metal. Producing a carrier; and then performing a brazing process by heating the metal carrier in a non-oxidizing atmosphere, comprising the steps of:
JP6525237A 1993-05-12 1994-05-12 Brazing method for heat-resistant alloy having insulating oxide film on surface, preheated metal carrier for exhaust gas purification, and method for producing the same Expired - Lifetime JP2933392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6525237A JP2933392B2 (en) 1993-05-12 1994-05-12 Brazing method for heat-resistant alloy having insulating oxide film on surface, preheated metal carrier for exhaust gas purification, and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11046893 1993-05-12
JP5-110468 1993-05-12
PCT/JP1994/000772 WO1994026455A1 (en) 1993-05-12 1994-05-12 Method of soldering heat resisting alloy having insulating oxide film on its surface, and preheated type exhaust gas cleaning metal support and method of manufacturing the same
JP6525237A JP2933392B2 (en) 1993-05-12 1994-05-12 Brazing method for heat-resistant alloy having insulating oxide film on surface, preheated metal carrier for exhaust gas purification, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2933392B2 true JP2933392B2 (en) 1999-08-09

Family

ID=26450099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6525237A Expired - Lifetime JP2933392B2 (en) 1993-05-12 1994-05-12 Brazing method for heat-resistant alloy having insulating oxide film on surface, preheated metal carrier for exhaust gas purification, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2933392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780735B1 (en) * 2015-12-11 2017-09-21 희성정밀 주식회사 Cooling plate producing method for battery stack of electric vehicle and cooling plate by the same
US11024899B2 (en) 2015-12-11 2021-06-01 Lt Precision Co., Ltd. Method for manufacturing battery stack cooling plate for electric vehicle and cooling plate manufactured thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780735B1 (en) * 2015-12-11 2017-09-21 희성정밀 주식회사 Cooling plate producing method for battery stack of electric vehicle and cooling plate by the same
US11024899B2 (en) 2015-12-11 2021-06-01 Lt Precision Co., Ltd. Method for manufacturing battery stack cooling plate for electric vehicle and cooling plate manufactured thereby

Similar Documents

Publication Publication Date Title
EP0653264B1 (en) Method of soldering heat resisting alloy having insulating oxide film on its surface, and preheated type exhaust gas cleaning metal support and method of manufacturing the same
JP2919987B2 (en) Resistance adjustment type heater
EP0419906B1 (en) Core element and core for electrically heatable catalytic converter
JPH0463737B2 (en)
JP3277655B2 (en) Electric heating type catalyst device
JP2666192B2 (en) Honeycomb body with internal structure held in frame
JP3345222B2 (en) Honeycomb body and honeycomb unit for energized heating
US5680503A (en) Honeycomb heater having a portion that is locally quickly heated
KR19980701881A (en) Brazing Method of Catalytic Converter Body
JP2933392B2 (en) Brazing method for heat-resistant alloy having insulating oxide film on surface, preheated metal carrier for exhaust gas purification, and method for producing the same
JP3318470B2 (en) Method of brazing metal foil and honeycomb body
US5532453A (en) Process for welding a stack of thin metal sheets
EP0526984B1 (en) Metallic catalyst support and production method thereof
JP3119280B2 (en) Heated honeycomb structure
JPH11253815A (en) Metallic carrier for electrically heating type catalytic device
US9242445B2 (en) Method for producing bonded body
JP3268817B2 (en) Metal carrier for automobile exhaust gas purification catalyst
JP2015059080A (en) Method of manufacturing assembly
JP3337612B2 (en) Electric heating type catalyst device
JP3058991B2 (en) Multi-stage honeycomb heater and method of operating the same
JPH0824671A (en) Metallic carrier for preheating type exhaust purification catalyst
JPH06170243A (en) Production of metallic catalyst carrier
JP3337591B2 (en) Electric heating type catalyst device
JPH04290554A (en) Metallic catalyst carrier
JPH0947665A (en) Electric heating type metallic catalytic carrier with excellent structural durability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 15

EXPY Cancellation because of completion of term