JP2931927B2 - Battery charging method - Google Patents

Battery charging method

Info

Publication number
JP2931927B2
JP2931927B2 JP2280053A JP28005390A JP2931927B2 JP 2931927 B2 JP2931927 B2 JP 2931927B2 JP 2280053 A JP2280053 A JP 2280053A JP 28005390 A JP28005390 A JP 28005390A JP 2931927 B2 JP2931927 B2 JP 2931927B2
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
comparator
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2280053A
Other languages
Japanese (ja)
Other versions
JPH04154053A (en
Inventor
正三 吉川
昭彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2280053A priority Critical patent/JP2931927B2/en
Publication of JPH04154053A publication Critical patent/JPH04154053A/en
Application granted granted Critical
Publication of JP2931927B2 publication Critical patent/JP2931927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はニッケル・カドミウム電池のような二次電池
を自蔵する電子機器、例えば可充電式可搬型無線通信機
において、入信待受け状態とするため常時通電される受
信機を第1の負荷とし、交信時に第2の負荷となる送信
機に上記電池から更に給電する実用状態の許で放電した
自蔵電池をその温度変化率を利用して電池のみか、負荷
を接いだ浮動充電により電池を完全に満充電するための
充電方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention sets an incoming standby state in an electronic device having a secondary battery such as a nickel-cadmium battery, for example, a rechargeable portable wireless communication device. Therefore, a self-contained battery discharged in a practical state in which a receiver that is always energized is used as a first load, and a transmitter that is a second load during communication is further supplied with power from the battery by using the temperature change rate is used. The present invention relates to a charging method for fully charging a battery by floating charging with only a battery or a load connected thereto.

「従来の技術」 今、第5図に示す従来例においては、電池3をコネク
タによって着脱できる電池パックと例えば無線機のCPU
等を含む受信部を第1の負荷RL1及び送信機を第2の負
荷RL2とする負荷とが、電源用の第1のスイッチK1を介
して充電装置1を主体とする充電スタンドに接続され
て、充電した上記電池を充電しようとする場合、電池の
充電電流の大きさから決まる充電時間Hに対する電池電
圧Eの変化を示す第6図より判るように、例えばニッケ
ル・カドミウム電池では定電流充電の進行に伴って、電
池の端子電圧が漸時上昇し、充電の末期に端子電圧が急
激に上昇して山状のピーク値が顕われる。
[Prior Art] In the conventional example shown in FIG. 5, a battery pack in which the battery 3 can be attached and detached by a connector and a CPU of a wireless device are used.
The load including the receiving unit including the first load R L1 and the transmitter as the second load R L2 is connected to the charging stand mainly including the charging device 1 via the first switch K 1 for power supply. In the case of connecting and charging the charged battery, as shown in FIG. 6 showing the change of the battery voltage E with respect to the charging time H determined by the magnitude of the charging current of the battery, for example, in the case of a nickel-cadmium battery, As the current charging progresses, the terminal voltage of the battery gradually increases, and at the end of charging, the terminal voltage sharply increases, and a mountain-like peak value appears.

上記電池の充電特性において充電時間に対する電池電
圧の変化パターンに合わせるために、上記定電流特性に
よる充電装置の出力電圧のみを一方の入力とし、スイッ
チK0をt1時に入接、t2期間開離してコンデンサC1に電荷
を蓄積するサンプリング・ホールド回路を他方の入力に
もつ比較器2を設けて、充電電圧を検出し、前記ピーク
値に達して立下り領域に入るとき、上記比較器の論理出
力が“H"から“L"に転換する信号によって、上記充電装
置の定電流機能を解除し、単なる直流電源機能に切換え
るようにした充電方式が知られている。
To match the variation pattern of a battery voltage with respect to the charging time in the charging characteristics of the battery, only the output voltage of the charging device according to the constant current characteristic as one input, the switch K 0 t 1 at Nyuse', t 2 period opens release is provided a comparator 2 having a sampling hold circuit for accumulating charges in the capacitor C 1 to the other input, detects a charging voltage, when it reaches the peak value into the falling region of the comparator There is known a charging method in which a constant current function of the charging device is released by a signal whose logic output changes from "H" to "L", and the function is switched to a mere DC power supply function.

上記比較器の入,出力側各部の電位は、上記スイッチ
K0をサンプリング周期で断続することによって得られる
充電時間に対する電圧として第6図の,,,の
グラフのように変化し、電池の特性曲線と上記比較器の
±入力の差電圧ΔVの差を保って推移し、点のステッ
プパターンがピーク値から降下する領域つまり立下りに
入る時点での電位でピークホールドされて、点での電
位より高くなるため、比較器の論理出力が“H"から“L"
に反転して電池が満充電に達したものと認識している。
The potentials at the input and output sides of the comparator are
As a voltage with respect to the charging time obtained by intermittently changing K 0 at the sampling period, the voltage changes as shown in the graphs of FIG. 6, and the difference between the characteristic curve of the battery and the difference voltage ΔV between the ± input of the comparator is obtained. The potential is held at the potential at the point when the step pattern of the point falls from the peak value, that is, at the time of falling, and becomes higher than the potential at the point. Therefore, the logical output of the comparator changes from “H” to “H”. “L”
And that the battery has reached full charge.

しかしながら前記従来の充電方式によると、かような
無線機の実用下で電池を介して微弱電流を常時給電する
第1の負荷と、送信のために給電される第2の負荷とを
充電装置により放電状態にある電池を介して定電流によ
り浮動充電する場合、 電源用 第1のスイッチK1を最初に切離状態で電池の
みに給電中に上記K1を入接した時点、 上記K1の入接状態で第1の負荷と電池とに給電中に、
第2のスイッチK2を入接した(本実施例では送信機に荷
電して動作状態とする)時点が偶々サンプリング・ホー
ルド回路のピーク・ホールド期間に合致すると、上記比
較器の検出電圧即ち点の電位が低下するため、比較器
出力即ち点の論理出力が“H"から“L"に転換して充電
装置の定電流機能を解除してしまう。換言すれば電池が
充電中であって満充電に達していないにも拘わらず充電
の進行を中途で停止してしまうという障害を包蔵してい
る。
However, according to the conventional charging method, the first load that always supplies a weak current via a battery and the second load that is supplied for transmission by a charging device under the practical use of such a wireless device are used by the charging device. If floating charged by the constant current through the battery in a discharged state, when the first switch K 1 for power supply initially during feeding only battery disconnection state against entering the K 1, of the K 1 While supplying power to the first load and the battery in the connected state,
When the second switch K 2 is in contact input (In this embodiment, the operating state charged to the transmitter) when matches the peak hold period even people sampling hold circuit, the detection voltage or the point of the comparator , The comparator output, that is, the logical output of the point, is changed from “H” to “L”, and the constant current function of the charging device is released. In other words, the problem that the progress of the charging is stopped halfway even though the battery is being charged and not fully charged is included.

また負荷を切離して電池単体のみの充電においても、
充電特性曲線に沿ってサンプル・ホールドをかけるタイ
ミングでの微分係数が逐次漸減していき、実際の充電特
性曲線と見掛け上の曲線(一点鎖線で示す)との差分が
小さくなって遂にその差分電圧が検出不能に陥るといっ
た欠点がある。
Also, when charging the battery alone by disconnecting the load,
The differential coefficient at the timing of applying the sample and hold along the charging characteristic curve gradually decreases, and the difference between the actual charging characteristic curve and the apparent curve (indicated by a dashed line) becomes smaller, and finally the difference voltage Has the drawback of being undetectable.

「発明が解決しようとする問題点」 本発明は前記従来の充電方式における障害、欠点を払
拭することによって、かかる障害に基づく電池の充電不
足又は過充電を防止することを目的とする。
"Problems to be Solved by the Invention" It is an object of the present invention to eliminate shortcomings and shortcomings in the conventional charging method, thereby preventing insufficient charging or overcharging of a battery based on such obstacles.

「問題点を解決するための手段」 しかして本発明は、充電されるべき電池の充電特性に
おける満充電近辺での内部温度の急上昇を検知し、真の
充電特性曲線から一定の差電圧の幅を保って一定周期の
サンプリングを繰返すことによって充電電圧の変化分を
検出し、充電末期のピークホールド後の立下り時点で充
電装置の定電流給電方式を解除して通常の直流給電機能
に切換える電池の内部温度の変化率を利用しようとする
ものである。
"Means for Solving the Problem" The present invention detects a sudden rise in internal temperature near full charge in the charging characteristics of a battery to be charged, and detects a range of a certain difference voltage from a true charging characteristic curve. A battery that detects the change in charging voltage by repeating sampling at a fixed cycle while maintaining the current, and releases the constant current power supply method of the charging device at the falling point after the peak hold at the end of charging and switches to the normal DC power supply function It is intended to utilize the rate of change of the internal temperature.

以下第1図乃至第4図を用いて本発明について詳述す
る。
Hereinafter, the present invention will be described in detail with reference to FIGS.

「実施例」 第1図は本発明の充電方式を実施するための回路構成
図であり、従来装置を示す第5図中の同一相当部分に同
一記号、表記を施してある。
[Embodiment] FIG. 1 is a circuit configuration diagram for carrying out the charging system of the present invention, and the same symbols and notations are given to the same corresponding parts in FIG.

第2図は電池の充電時間に対する電池内部の温度変化
並びに充電電圧の変化を表わすグラフ、第3図は電池の
内容温度を検出する検温素子の抵抗値及び検温素子の検
出電圧の周囲温度に対する変化を表わすグラフ、第4図
は本発明の充電方式による充電時間に対する電池の端子
電圧の変化つまり充電特性を表わすグラフである。
FIG. 2 is a graph showing a change in the temperature inside the battery and a change in the charging voltage with respect to the charging time of the battery. FIG. FIG. 4 is a graph showing the change in the terminal voltage of the battery with respect to the charging time in the charging method of the present invention, that is, the charging characteristic.

先づ第1図において、電池と負荷を浮動充電する例を
示し、1は定電流機能を備えた充電装置で例えば直列ト
ランジスタ制御型回路で構成され、出力端に定電圧素子
とスイッチとを並設し、このスイッチを入接して定電圧
素子の両端を短絡するだけで定電流機能を解除して通常
の直流変換器とすることができるものである。5は電池
の内部温度を検出する例えばサーミスタのごとき検温素
子4の端子電圧を1つの入力とし、基準電位を与える他
方の入力とする差動増幅器、Vccは該増幅器、比較器2
に兼用の直流電源、△Vは比較器の±入力端子,間
の抵抗器R7,R8によって生起する差電圧、は比較器の
一定レベルを“H"又は“L"論理出力とする比較器出力、
は前記検温素子の検出電圧を加える増幅器の一入力
点、DBは逆流阻止ダイオード、I1は第1の負荷RL1への
流入電流、I2は第2の負荷RL2への流入電流、ICは電池
3への流入電流、ID(=IC+I1+I2)は充電装置の全出
力電流、即ち全負荷電流である。K1,K2は夫々第1,第2
のスイッチで電子機器等に内蔵される負荷側に属し、電
池3は端子部で充電装置及び負荷との間が着脱自在にで
きる電池パックに属し、充電装置1及び増幅器並びに比
較器は充電スタンドに一括してまとめられている。
First, FIG. 1 shows an example of floating charging of a battery and a load. Reference numeral 1 denotes a charging device having a constant current function, which is constituted by, for example, a series transistor control type circuit, and has a constant voltage element and a switch arranged at the output terminal. By simply connecting and disconnecting this switch and short-circuiting both ends of the constant voltage element, the constant current function can be released and a normal DC converter can be obtained. Reference numeral 5 denotes a differential amplifier for detecting the internal temperature of the battery, for example, a terminal voltage of a temperature detecting element 4 such as a thermistor as one input and the other input for providing a reference potential, Vcc being the amplifier, the comparator 2
直流 V is the difference voltage generated by the resistors R7 and R8 between the ± input terminals of the comparator, and the comparator output which makes the constant level of the comparator “H” or “L” logic output ,
Current flowing one input point of the amplifier adding the detection voltage of the temperature detection element, DB is blocking diode, I 1 is the current flowing into the first load R L1, I 2 is the second load R L2, I C is the inflow current to the battery 3, and I D (= I C + I 1 + I 2 ) is the total output current of the charging device, that is, the full load current. K 1 and K 2 are the first and second respectively
The battery 3 belongs to a battery pack that can be detachably connected to a charging device and a load at a terminal portion, and the charging device 1, the amplifier, and the comparator belong to a charging stand. It is put together in a lump.

前記の構成によって、電池の内部温度が検温素子から
増幅器に入力され、上記検温素子の抵抗値に基づく電圧
が増幅器の出力点にV0が現われ、比較器の入力中間点
と接続されて同一抵抗値R7,R8とにより差電圧△Vがつ
くられる。この△Vは抵抗器R7,R8(=R)、抵抗器R6,
R9(=)と共通電源Vccの電圧との関係が、 △V=/+R×Vcc=一定 ……(1) になるように、上記抵抗器の抵抗値を夫々任意に選ばれ
る。
According to the above configuration, the internal temperature of the battery is input from the temperature sensing element to the amplifier, and a voltage based on the resistance value of the temperature sensing element appears at the output point of the amplifier at V 0 , and is connected to the input intermediate point of the comparator to have the same resistance. A difference voltage ΔV is created by the values R 7 and R 8 . This ΔV is determined by resistors R 7 and R 8 (= R), resistors R 6 and
The resistance values of the resistors are arbitrarily selected so that the relationship between R 9 (=) and the voltage of the common power supply Vcc is as follows: ΔV = / + R × Vcc = constant (1)

ここに比較器の+側入力は、 V0+(Vcc−V0)/+R ……(2) 、一側入力は ×V0/+R ……(3) であるから、上式(2),(3)の差が(1)式とな
る。
Here, the + side input of the comparator is V 0 + (Vcc−V 0 ) / + R (2) and the one side input is × V 0 / + R (3). , (3) is given by equation (1).

かくして充電装置から放電した電池を含む第1及び第
2の負荷へ定電流充電を続けると、電池内部の温度が刻
々検知されて増幅器入力として導入されるとともに、比
較器の入力側で、第4図に示すようにt1時点で入接、t2
期間開離のサンプリング条件をスイッチK0の断続によっ
て充電特性曲線に沿った微分係数をチエックし、満充電
に近づいたときに第2図に示すように急激に電池温度の
上昇による検温電圧の上昇が顕われ、比較器の一方の入
力点の電位が急降下し、更に充電の信号に伴ってピー
クホールドされた他方の入力点の電位よりも高くなっ
て、比較器出力点はこれまでのHレベルからLレベル
に転換されるので、充電装置の定電流機能が外され、終
局的に満充電に達することとなる。
When the constant current charging is continued to the first and second loads including the battery discharged from the charging device, the temperature inside the battery is detected every moment and introduced as an amplifier input. input contact with time point t 1, as shown in FIG, t 2
The period opening of the sampling condition to check the differential coefficient along the charging characteristic curve by intermittent switch K 0, increase in the temperature detecting voltage due to a sudden rise of the battery temperature as shown in FIG. 2 when approaching the fully charged Appears, the potential of one input point of the comparator drops sharply, and becomes higher than the potential of the other input point, which has been peak-held with the charge signal, and the output point of the comparator becomes the H level. From the low level to the low level, the constant current function of the charging device is removed, and the battery eventually reaches full charge.

以上の満充電を検出した直後に再充電しようとして
も、電池内容の温度が依然上昇しているため検温電圧が
下らず、充電継続の条件が整わないため充電装置からの
給電は、細流充電状態のまゝであって過充電の懸念は全
くなく、逆に電池の真の充電特性に追従してサンプリン
グ・ホールドをかけるために見掛け上の電池電圧に惑わ
されず、充電不足を来すこともなくなる。
Even if an attempt is made to recharge immediately after the detection of the above full charge, the temperature of the battery is still rising, the temperature detection voltage does not drop, and the conditions for continuing charging are not satisfied. There is no fear of overcharging in the state of the state, and conversely, since sampling and holding is performed according to the true charging characteristics of the battery, insufficient charging may occur without being confused by the apparent battery voltage. Disappears.

本発明においては、電池内部の温度を検出する検温素
子としてサーミスタを用いており、電池の定電流充電に
よる電池の充電量がその内部温度の変化に対応し、結局
電池の端子電圧を適確に捕捉するのに十分寄与している
ものである。
In the present invention, a thermistor is used as a temperature detecting element for detecting the temperature inside the battery, and the amount of charge of the battery due to constant current charging of the battery corresponds to the change in the internal temperature, and eventually the terminal voltage of the battery is accurately adjusted. It has contributed enough to capture.

また本発明は、電池のみの充電はもとより、負荷を接
いだ浮動充電に対しても適用して好結果を得ることがで
きる。
Further, the present invention can be applied not only to the charging of the battery alone but also to the floating charging with a load connected thereto to obtain good results.

「効 果」 本発明の充電方式によれば、電池の充電進行に伴って
変化する電池の内部温度を検知しつつ、電池の真の充電
特性曲線に沿ってサンプリング・ホールドをかける微分
係数を刻々チエックしているので、電池単体又は負荷と
なる電子機器を電池と一体に、定電流による充電を行な
うことにより、負荷の変動に拘わらず電池の内部温度に
依存して充電管理を行なうので、電池を過不足なく満充
電することができ、突発的に電池切れを起すこともな
く、電池の期待寿命を充分に長く保つことができる等、
実用上簡易且つ確実な高信頼の充電方式とすることがで
きる。
[Effect] According to the charging method of the present invention, while detecting the internal temperature of the battery that changes with the progress of the charging of the battery, the differential coefficient for sampling and holding along the true charging characteristic curve of the battery is instantaneously calculated. Since the check is performed, the battery alone or the electronic device serving as a load is integrated with the battery and charged with a constant current, so that the charge is managed depending on the internal temperature of the battery regardless of the load fluctuation. The battery can be fully charged without excess or shortage, without suddenly running out of battery, the expected life of the battery can be kept sufficiently long, etc.
A practically simple and reliable high-reliability charging method can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の充電方式を実施するための回路構成
図、第2図は充電時間Hに対する電池の内部温度TC及び
充電電圧Eの変化を表わすグラフ、第3図は周囲温度TA
に対する検温素子の抵抗値及びその検出電圧の変化を表
わすグラフ、第4図は充電時間に対する電池電圧特性曲
線に沿った差電圧△V隔ててサンプリングした特性パタ
ーンを表わすグラフ、第5図は従来の充電方式を実施す
る回路構成図、第6図は第5図の構成による電池の充電
方式の説明グラフである。 1:充電装置、2:比較器、3:電池、4:検温素子、5:増幅
器、K1:第1のスイッチ、K2:第2のスイッチ、RL1:第1
の負荷、RL2:第2の負荷。
Circuit diagram for implementing the charging method of the first figure invention, the graph FIG. 2 which represents a change in the internal temperature T C and the charging voltage E of the battery with respect to charging time H, Figure 3 is ambient temperature T A
FIG. 4 is a graph showing a characteristic pattern sampled at a difference voltage ΔV along a battery voltage characteristic curve with respect to a charging time, and FIG. FIG. 6 is a circuit configuration diagram for implementing the charging method, and FIG. 6 is an explanatory graph of the battery charging method according to the configuration of FIG. 1: charging device, 2: comparator, 3: cell, 4: thermometric element, 5: amplifier, K 1: a first switch, K 2: second switch, R L1: first
Load, R L2 : second load.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電池内部の温度変化に応じて充電装置を制
御するようにした二次電池の充電方式において、充電さ
れるべき上記電池の両端子間に、上記充電装置を接離す
る電源用第1のスイッチの入接により常時通電状態に維
持される第1の負荷と、第2のスイッチに直列接続した
第2の負荷とを夫々並列に設けるとともに、上記充電装
置から上記電池のみか、該電池及び上記第1と第2の負
荷に対して定電流給電し、上記電池の充電進行に伴なう
内部温度を検出する検温電圧と基準電位とを増幅手段に
入力し、直流電源の分割電圧と、上記電池の充電進行に
伴なう充電電圧の変化分を断続的に連続検出した電圧と
を比較器に入力して時々刻々のピーク値を保持せしめ、
上記増幅手段と上記比較器を縦続接続して上記比較器入
力の差電圧が逆転時に逆転出力されたことにより上記充
電装置の定電流機能を解除して通常の直流給電に切換え
る電池の温度変化率を利用したことを特徴とする電池の
充電方式。
In a charging system for a secondary battery, wherein a charging device is controlled in accordance with a change in temperature inside the battery, a power supply for connecting and disconnecting the charging device between both terminals of the battery to be charged. A first load, which is always maintained in an energized state by connecting and disconnecting the first switch, and a second load, which is connected in series to the second switch, are provided in parallel with each other. A constant-current power is supplied to the battery and the first and second loads, a temperature detection voltage for detecting an internal temperature accompanying the progress of charging of the battery and a reference potential are input to amplifying means, and a DC power supply is divided. The voltage and the voltage obtained by intermittently detecting the change in the charging voltage accompanying the progress of the charging of the battery are input to the comparator and the momentary peak value is held.
The amplifying means and the comparator are connected in cascade, and the difference voltage at the input of the comparator is output in reverse at the time of reverse rotation, thereby releasing the constant current function of the charging device and switching to the normal DC power supply. A battery charging method characterized by using a battery.
JP2280053A 1990-10-17 1990-10-17 Battery charging method Expired - Lifetime JP2931927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280053A JP2931927B2 (en) 1990-10-17 1990-10-17 Battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280053A JP2931927B2 (en) 1990-10-17 1990-10-17 Battery charging method

Publications (2)

Publication Number Publication Date
JPH04154053A JPH04154053A (en) 1992-05-27
JP2931927B2 true JP2931927B2 (en) 1999-08-09

Family

ID=17619649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280053A Expired - Lifetime JP2931927B2 (en) 1990-10-17 1990-10-17 Battery charging method

Country Status (1)

Country Link
JP (1) JP2931927B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034425A (en) * 2010-07-28 2012-02-16 Panasonic Corp Charging/discharging control circuit of secondary battery, battery pack, and battery power supply system
JP7322817B2 (en) * 2020-06-02 2023-08-08 トヨタ自動車株式会社 Battery cell short circuit detection device, method, program, and vehicle

Also Published As

Publication number Publication date
JPH04154053A (en) 1992-05-27

Similar Documents

Publication Publication Date Title
EP0657982B1 (en) Battery system for portable electric equipment
JP4432985B2 (en) Battery pack
US5859481A (en) Auxiliary battery sensor switch
JP3777022B2 (en) Battery charger
US5717314A (en) Apparatus and method of monitoring battery temperature during charging
US5747970A (en) Battery charger charging time control
JPH10136578A (en) Battery charge device
EP0752748B1 (en) Multiple function battery charger, self-configuring as supply voltage regulator for battery powered apparatuses
EP1096638A1 (en) Electronic device and method of controlling electronic devices
EP1584941A1 (en) Device for measuring a battery energy in particular during charge/discharge of a battery
JP3104747U (en) Solar battery charger
CA2278704C (en) Power supply monitoring ic and battery pack
JP2931927B2 (en) Battery charging method
KR100790285B1 (en) Method for controlling an accumulator charge and device for implementing such method
JP3202761B2 (en) Charge control device
CA2083813A1 (en) Battery charging
US5691624A (en) Method and apparatus for detecting a full-charge condition while charging a battery
US4210854A (en) Method and device for charging secondary electric batteries by primary sources
FR2670953B1 (en) METHOD AND DEVICE FOR CHARGING A BATTERY.
EP1381138A1 (en) Electronic apparatus having charging function
US6472849B1 (en) Reverse blocking function integrated into charging circuit
JPH07123604A (en) Charger for secondary battery
CN111934399A (en) Charging chip and electronic equipment
JPH10304586A (en) Secondary battery charging device
JP3642105B2 (en) Battery pack