JP2930228B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP2930228B2
JP2930228B2 JP21322993A JP21322993A JP2930228B2 JP 2930228 B2 JP2930228 B2 JP 2930228B2 JP 21322993 A JP21322993 A JP 21322993A JP 21322993 A JP21322993 A JP 21322993A JP 2930228 B2 JP2930228 B2 JP 2930228B2
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment film
crystal display
unevenness
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21322993A
Other languages
Japanese (ja)
Other versions
JPH0764094A (en
Inventor
貢祥 平田
繁光 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP21322993A priority Critical patent/JP2930228B2/en
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to CA002114459A priority patent/CA2114459C/en
Priority to US08/187,547 priority patent/US5657102A/en
Priority to DE69433928T priority patent/DE69433928T2/en
Priority to EP99203650A priority patent/EP0977078B1/en
Priority to DE69427202T priority patent/DE69427202T2/en
Priority to KR1019940001652A priority patent/KR940018686A/en
Publication of JPH0764094A publication Critical patent/JPH0764094A/en
Priority to US08/449,115 priority patent/US5691792A/en
Priority to US08/449,740 priority patent/US5627667A/en
Application granted granted Critical
Publication of JP2930228B2 publication Critical patent/JP2930228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液晶分子のチルト角が制
御を受けた液晶表示装置に関するものである。特に、本
発明は、同一液晶セル内においてチルト角の異なる配向
状態が形成され、異なる視角特性を持つ領域が任意の位
置に形成されて任意の視角特性を持つ液晶表示装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device in which the tilt angle of liquid crystal molecules is controlled. In particular, the present invention relates to a liquid crystal display device having an arbitrary viewing angle characteristic in which alignment states having different tilt angles are formed in the same liquid crystal cell, and regions having different viewing angle characteristics are formed at arbitrary positions.

【0002】[0002]

【従来の技術】液晶表示装置(LCD)は一対の基板間
にある液晶セル内の液晶分子の配向を変え、そのことに
より生じる液晶セル内の光学的屈折率変化を利用した表
示装置である。したがって、液晶セル内の液晶分子がで
きる限り規則正しく初期配列していることが重要であ
る。このように規則正しく液晶分子を配列させるために
液晶セルを挟む基板の表面状態が液晶分子の相互作用を
規制している。
2. Description of the Related Art A liquid crystal display device (LCD) is a display device that changes the orientation of liquid crystal molecules in a liquid crystal cell between a pair of substrates, and uses the resulting change in the optical refractive index in the liquid crystal cell. Therefore, it is important that the liquid crystal molecules in the liquid crystal cell are initially arranged as regularly as possible. Thus, in order to arrange the liquid crystal molecules regularly, the surface state of the substrate sandwiching the liquid crystal cell regulates the interaction of the liquid crystal molecules.

【0003】液晶分子を一定方向に初期配列させる方法
として現在最も広く使用されている方法は、一対の基板
の相対する表面に液晶配向膜材料を塗布し、塗布した材
料を乾燥硬化することにより配向膜を形成した後、その
配向膜の表面をラビング処理することにより行われてい
る。
The most widely used method for initially aligning liquid crystal molecules in a certain direction is to apply a liquid crystal alignment film material to opposing surfaces of a pair of substrates, and dry and cure the applied material. After the formation of the film, the surface of the alignment film is rubbed.

【0004】液晶の配向を規制する配向膜としては無機
配向膜と有機配向膜の2種類が挙げられる。無機配向膜
の材料としては酸化物、無機シラン、金属、金属錯体が
あげられる。有機配向膜の材料としてはポリイミドがあ
げられる。現在用いられている液晶配向膜材料の代表的
な例はポリイミド樹脂である。ポリイミド樹脂は全芳香
系ポリイミド(全芳香系PI)の前駆体であるポリアミ
ック酸を基板に塗布した後、加熱によってポリイミド反
応を起こさせ、それによってポリアミック酸をポリイミ
ド樹脂に転換させることで形成される。液晶配向膜材料
としてポリイミド樹脂が広く使用される理由としてポリ
アミック酸の状態において溶解性が良好であるため濃度
及び粘膜などの調製が容易であること、塗布性が良好で
あること、膜厚制御が容易であること等が挙げられる。
作製されるポリイミド樹脂はポリアミック酸よりエネル
ギー的に安定しており、水で洗浄しても可逆反応は起こ
らない。
There are two types of alignment films for regulating the alignment of the liquid crystal: inorganic alignment films and organic alignment films. Examples of the material for the inorganic alignment film include an oxide, an inorganic silane, a metal, and a metal complex. Examples of the material for the organic alignment film include polyimide. A typical example of a liquid crystal alignment film material currently used is a polyimide resin. A polyimide resin is formed by applying a polyamic acid, which is a precursor of a wholly aromatic polyimide (a wholly aromatic PI), to a substrate and then causing a polyimide reaction by heating, thereby converting the polyamic acid into a polyimide resin. . The reason why polyimide resin is widely used as a liquid crystal alignment film material is that it has good solubility in the state of polyamic acid, so that concentration and mucous membrane can be easily prepared, coating properties are good, and film thickness is controlled. It is easy.
The produced polyimide resin is more energetically stable than polyamic acid, and does not cause a reversible reaction even when washed with water.

【0005】このようにして基板上に形成されたポリイ
ミド膜を琢磨布等でラビング処理することによりラビン
グ方向に沿って液晶分子を配向させることができる。ラ
ビング処理は基板上において均一な方向に行われるの
で、液晶セル内に於て液晶分子が配向膜と接する液晶分
子の傾斜角、すなわちプレチルト角はすべて均一にな
る。したがって、マトリクス型表示パターンの単位ドッ
トを構成する各絵素内においてもプレチルト角は全てほ
ぼ同一角度となる。
By subjecting the polyimide film thus formed on the substrate to a rubbing treatment with a polishing cloth or the like, the liquid crystal molecules can be oriented along the rubbing direction. Since the rubbing process is performed in a uniform direction on the substrate, the tilt angles of the liquid crystal molecules in contact with the alignment film, ie, the pretilt angles, are all uniform in the liquid crystal cell. Therefore, the pretilt angles are substantially the same in each picture element constituting the unit dot of the matrix display pattern.

【0006】表示パターンの一絵素となる各絵素電極に
接続されるスイッチング素子として薄膜トランジスタを
使用するアクティブマトリクス型液晶表示装置(TFT
−LCD)においては、ツイストティッドネマッティッ
ク(TN)型の液晶セルの構成が採用される(TNモー
ドの液晶表示装置)。この液晶セルの構成によれば、一
対の基板間で液晶分子は基板面に垂直な方向に沿って9
0゜ねじれるように配向させられる。液晶表示装置の視
角特性は液晶層の液晶分子の向き(配向方向とチルト
角)に従って最適視角方位と視角範囲が定められる。
An active matrix type liquid crystal display device (TFT) using a thin film transistor as a switching element connected to each picture element electrode serving as one picture element of a display pattern
-LCD) adopts a configuration of a twisted nematic (TN) type liquid crystal cell (TN mode liquid crystal display device). According to the configuration of the liquid crystal cell, the liquid crystal molecules move between the pair of substrates along the direction perpendicular to the substrate surface.
It is oriented to be twisted by 0 °. In the viewing angle characteristics of the liquid crystal display device, an optimum viewing angle azimuth and a viewing angle range are determined according to the orientation (alignment direction and tilt angle) of the liquid crystal molecules in the liquid crystal layer.

【0007】[0007]

【発明が解決しようとする課題】ツイスティッドネマッ
ティック型の液晶表示装置では、液晶分子が屈折率の異
方性(複屈折性)をもつため、人間(観察者)の液晶表
示装置を見る角度によってコントラストが変化するとい
う現象が生じる。一般に、電圧の非印加時に光が透過し
て白色表示となるノーマリホワイトモードの液晶表示装
置においては、液晶セルの両基板に形成された駆動電極
間に電圧を印加した状態で基板面に対して垂直な方向か
ら液晶表示装置を見ると、図9に実線L1で示すよう
に、印加電圧値が高くなるに連れて光の透過率が低下す
る。また、その値が飽和すると透過率がほぼ零となり、
それ以上印加電圧をあげても透過率はほぼ零のままであ
る。
In a twisted nematic type liquid crystal display device, since a liquid crystal molecule has anisotropic refractive index (birefringence), a human (observer) liquid crystal display device is viewed. The phenomenon that the contrast changes depending on the angle occurs. Generally, in a normally white mode liquid crystal display device in which light is transmitted when a voltage is not applied and a white display is performed, a voltage is applied between driving electrodes formed on both substrates of a liquid crystal cell, and a voltage is applied to a substrate surface. When the liquid crystal display device is viewed from a vertical direction, as shown by the solid line L1 in FIG. 9, the light transmittance decreases as the applied voltage value increases. When the value is saturated, the transmittance becomes almost zero,
Even if the applied voltage is further increased, the transmittance remains almost zero.

【0008】しかしながら、液晶表示画面を観察する視
角方向の変化により、図9に実線L1で示した印加電圧
−透過率特性が変化する。図10および図11を参照し
てこのことを説明する。
However, the applied voltage-transmittance characteristic indicated by a solid line L1 in FIG. 9 changes due to a change in the viewing angle direction for observing the liquid crystal display screen. This will be described with reference to FIGS.

【0009】図10および図11はそれぞれ一対の基板
31および32に挟まれた液晶セルの斜視図及び断面図
である。これらの図において、一方の基板31はガラス
基板31a、透明電極31b及び配向膜31cを有して
おり、他方の基板32は同様にガラス基板32a、透明
電極32bおよび配向膜32cを有している。液晶セル
中の液晶分子35は基板31び32の間で90゜ねじれ
ている。図10および図11において記号δはプレチル
ト角を示し、番号36は正視角方向36を示している。
上記液晶セルに電圧を印加しているときにおいて、基板
面に垂直な方向から正視角方向36に視角を傾けて行く
と、図9における実線L2に示されるように印加電圧−
透過率特性が変化する。すなわち、印加電圧が高くなる
につれて透過率がある程度低下した後、特定の電圧値を
越えると透過率が再び高くなり、その後再び徐々に低下
するという現象が生じる。このため、視角を正視角方向
36に向けて傾けた場合、特定の角度で画像の白黒(ネ
ガ、ポジ)が反転する現象(これを反転現象という)が
生じる。これは液晶層中の液晶分子がチルト角をもって
傾いており、視角によって屈折率が変化するために生じ
る現象である。この現象は、画像を視る人にとって大き
な障害になる。このことを図12に基づいて説明する
と、図12(a)に示すように、印加電圧は零または比
較的低電圧のとき、正視角方向に位置する観測者37に
は液晶層中の中央分子35は楕円に見えるが、徐々に印
加電圧を高くすると、中央分子35がその長軸方向を電
界の方向、すなわち基板面に垂直な方向に並ぶように移
動していく。このため、図12(b)に示すように、観
測者37には中央分子35が真円に見える瞬間がある。
さらに電圧を高くすると、中央分子35は電界方向にほ
ぼ平行となり、図12(c)に示すように観測者37に
は中央分子35が再び楕円に見える。
FIGS. 10 and 11 are a perspective view and a sectional view of a liquid crystal cell sandwiched between a pair of substrates 31 and 32, respectively. In these figures, one substrate 31 has a glass substrate 31a, a transparent electrode 31b, and an alignment film 31c, and the other substrate 32 has a glass substrate 32a, a transparent electrode 32b, and an alignment film 32c. . The liquid crystal molecules 35 in the liquid crystal cell are twisted 90 ° between the substrates 31 and 32. 10 and 11, the symbol δ indicates the pretilt angle, and the number 36 indicates the normal viewing angle direction 36.
When the viewing angle is inclined in the normal viewing direction 36 from a direction perpendicular to the substrate surface while a voltage is applied to the liquid crystal cell, the applied voltage is reduced as shown by a solid line L2 in FIG.
The transmittance characteristics change. That is, a phenomenon occurs in which the transmittance decreases to some extent as the applied voltage increases, and then increases again when the voltage exceeds a specific voltage value, and thereafter gradually decreases again. Therefore, when the viewing angle is inclined in the normal viewing angle direction 36, a phenomenon occurs in which the black and white (negative or positive) of the image is inverted at a specific angle (this is called an inversion phenomenon). This is a phenomenon that occurs because the liquid crystal molecules in the liquid crystal layer are inclined with a tilt angle, and the refractive index changes depending on the viewing angle. This phenomenon is a major obstacle for the viewer of the image. This will be described with reference to FIG. 12. As shown in FIG. 12 (a), when the applied voltage is zero or a relatively low voltage, an observer 37 located in the normal viewing angle direction receives a central molecule in the liquid crystal layer. Although 35 looks elliptical, when the applied voltage is gradually increased, the central molecule 35 moves so that its major axis direction is arranged in the direction of the electric field, that is, in the direction perpendicular to the substrate surface. Therefore, as shown in FIG. 12B, the observer 37 has a moment when the central molecule 35 looks like a perfect circle.
When the voltage is further increased, the central molecule 35 becomes substantially parallel to the direction of the electric field, and as shown in FIG.

【0010】同様の現象で、正視角方向36以外の視角
方向においても、透過率−電圧特性の相違から反転現象
が生じない場合であっても、視角を深くしていくと白黒
のコントラスト比が低くなるという視角特性を持つこと
になる。
In a similar phenomenon, even in a viewing angle direction other than the normal viewing angle direction 36, even if the reversal phenomenon does not occur due to the difference in transmittance-voltage characteristics, the black-and-white contrast ratio increases as the viewing angle increases. It has a viewing angle characteristic of being lowered.

【0011】TNモードの液晶表示装置において、この
ような正視角方向で観測される反転現象は見る人にとっ
て大きな障害となり、液晶表示装置の表示特性そのもの
を低下させる結果となる。
In a TN mode liquid crystal display device, the inversion phenomenon observed in the normal viewing angle direction is a great obstacle for a viewer, and results in deteriorating the display characteristics of the liquid crystal display device itself.

【0012】本発明の目的は、このような大きな問題と
なる視角特性が効果的に制御された、低コストで、表示
品位の向上した広視野角液晶表示装置を提供することに
ある。
It is an object of the present invention to provide a low-cost wide-viewing-angle liquid crystal display device with improved display quality, in which the viewing angle characteristic, which is a major problem, is effectively controlled.

【0013】[0013]

【課題を解決するための手段】本発明の液晶表示装置
は、一対の基板に液晶層が挟持された液晶表示装置にお
いて、該一対の基板の少なくとも一方の基板に配向膜が
形成され、該配向膜の表面には該配向膜の表面に接する
該液晶層の液晶分子のプレチルト角を制御するための凹
凸が形成されており、該凹凸の程度が複数の所定の領域
の間で異なる液晶表示装置であって、そのことにより上
記目的が達成される。
According to a liquid crystal display device of the present invention, in a liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of substrates, an alignment film is formed on at least one of the pair of substrates. An unevenness for controlling a pretilt angle of liquid crystal molecules of the liquid crystal layer in contact with the surface of the alignment film is formed on the surface of the film, and the degree of the unevenness is different between a plurality of predetermined regions. Thus, the above object is achieved.

【0014】ある実施例では、前記凹凸の程度が大きい
前記配向膜表面の領域でプレチルト角が小さく、該凹凸
の程度が小さい該配向膜表面の領域でプレチルト角が大
きく設定されている。
In one embodiment, the pretilt angle is set small in a region of the alignment film surface where the degree of the unevenness is large, and the pretilt angle is set large in a region of the alignment film surface where the degree of the unevenness is small.

【0015】ある実施例では、前記凹凸の程度の異なる
複数の領域の内、少なくとも二つ以上の領域が各々異な
る視角特性を有する。
In one embodiment, at least two or more of the plurality of regions having different degrees of unevenness have different viewing angle characteristics.

【0016】ある実施例では、前記配向膜と該配向膜が
形成された基板との間に下地膜が形成されており、該下
地膜の該配向膜と接する表面には凹凸が形成されてお
り、該凹凸の程度が複数の所定の領域の間で異なる。
In one embodiment, a base film is formed between the alignment film and the substrate on which the alignment film is formed, and irregularities are formed on a surface of the base film in contact with the alignment film. The degree of the unevenness differs between the plurality of predetermined regions.

【0017】ある実施例では、前記凹凸の程度が大きい
前記配向膜表面の領域でプレチルト角が小さく、該凹凸
の程度が小さい該配向膜表面の領域でプレチルト角が大
きく設定されている。
In one embodiment, the pretilt angle is set small in a region of the alignment film surface where the degree of the unevenness is large, and the pretilt angle is set large in a region of the alignment film surface where the degree of the unevenness is small.

【0018】ある実施例では、前記凹凸の程度の異なる
複数の領域の内、少なくとも二つ以上の領域が各々異な
る視角特性を有する。
In one embodiment, at least two or more of the plurality of regions having different degrees of unevenness have different viewing angle characteristics.

【0019】ある実施例では、前記下地膜を覆って形成
された前記配向膜の膜厚が場所によって異なる。
In one embodiment, the thickness of the alignment film formed so as to cover the base film varies depending on the location.

【0020】[0020]

【作用】本発明の液晶表示装置においては、基板表面に
形成された配向膜の配向特性が複数の所定の領域毎に異
なっている。この配向特性は配向膜表面の凹凸によって
配向膜にもたらされているものである。配向膜表面の凹
凸に従って、配向膜表面に接する液晶層の液晶分子の傾
き、すなわち、プレチルト角が決められる。従って、凹
凸の程度を所定の領域毎に変化させると、その所定の領
域毎に液晶層のプレチルト角も変化する。この場合、図
13(a)に示すように、凹凸の程度が大きいと、配向
膜表面の液晶分子と配向膜表面から離れた位置に存在す
る液晶分子のプレチルト角の違いが大きく、ダイナミッ
クな液晶分子の制御が行える。図13(b)は配向膜表
面の凹凸が小さい場合のプレチルト角の液晶層方向への
伝達を示している。
In the liquid crystal display device of the present invention, the alignment characteristics of the alignment film formed on the substrate surface are different for each of a plurality of predetermined regions. This alignment characteristic is provided to the alignment film by the unevenness of the alignment film surface. The inclination of the liquid crystal molecules of the liquid crystal layer in contact with the alignment film surface, that is, the pretilt angle is determined according to the unevenness of the alignment film surface. Therefore, when the degree of the unevenness is changed for each predetermined region, the pretilt angle of the liquid crystal layer also changes for each predetermined region. In this case, as shown in FIG. 13A, when the degree of the unevenness is large, the difference in the pretilt angle between the liquid crystal molecules on the surface of the alignment film and the liquid crystal molecules located at a position distant from the surface of the alignment film is large, and the dynamic liquid crystal Can control molecules. FIG. 13B shows the transmission of the pretilt angle in the direction of the liquid crystal layer when the unevenness of the alignment film surface is small.

【0021】このように、同一基板内でプレチルト角が
異なる領域を複数形成し、一対の基板間でプレチルト角
の大きい領域と小さい領域とを組み合わせると、配向状
態はプレチルト角の大きい側で規制される。この現象を
利用すれば任意の領域に任意の方向の配向を形成するこ
とができる。このように、同一液晶セル内における液晶
の配向状態を少なくとも2種類にすることにより正視角
方向の屈折率の変化を小さくし、視角を広くするだけで
なく、逆の視角特性も改善される。
As described above, when a plurality of regions having different pretilt angles are formed in the same substrate and a region having a large pretilt angle and a region having a small pretilt angle are combined between a pair of substrates, the alignment state is regulated on the side having a large pretilt angle. You. By utilizing this phenomenon, it is possible to form an orientation in an arbitrary direction in an arbitrary region. As described above, by changing the alignment state of the liquid crystal in the same liquid crystal cell into at least two types, not only the change in the refractive index in the normal viewing angle direction is reduced and the viewing angle is widened, but also the opposite viewing angle characteristic is improved.

【0022】また、本発明は散乱モードの液晶表示装置
にも適用できる。同一液晶セル中に複数の微小不連続配
向領域が形成された本発明に係る液晶表示装置に入射し
た光は、配向特性が相互に異なる多数の微小領域により
散乱されることとなる(液晶セルに無印加の場合)。し
かし、相対する基板間(液晶セル内)に所定の電圧を印
加すると、液晶分子を均一に配向させることができる。
The present invention is also applicable to a scattering mode liquid crystal display device. Light incident on the liquid crystal display device according to the present invention in which a plurality of minute discontinuous alignment regions are formed in the same liquid crystal cell is scattered by a large number of minute regions having different alignment characteristics from each other. When no voltage is applied). However, when a predetermined voltage is applied between opposing substrates (in a liquid crystal cell), liquid crystal molecules can be uniformly aligned.

【0023】[0023]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0024】(実施例1)図1に実施例1に係る液晶表
示装置の基板構造を模式的に示す。ガラス等の絶縁性の
基板16上の各絵素部12、13、14に絵素電極1
2'、13'、14'が形成されている。この絵素電極1
2'、13'、14'を覆って配向膜10が基板16表面
上全面に形成されている。具体的な基板構造はセグメン
ト構造、ドットマトリクス構造等が適用可能である。ま
た、本発明は従来から液晶表示装置に使用されている全
ての基板構造に適用可能である。このような液晶表示装
置の基板は以下のようにして作製される。
(Embodiment 1) FIG. 1 schematically shows a substrate structure of a liquid crystal display device according to Embodiment 1. The picture element electrodes 1, 13 and 14 on an insulating substrate 16 such as glass
2 ', 13' and 14 'are formed. This picture element electrode 1
An alignment film 10 is formed on the entire surface of the substrate 16 so as to cover 2 ′, 13 ′, and 14 ′. As a specific substrate structure, a segment structure, a dot matrix structure, or the like can be applied. Further, the present invention is applicable to all substrate structures conventionally used in liquid crystal display devices. The substrate of such a liquid crystal display device is manufactured as follows.

【0025】まず、公知の方法により基板16表面上に
絵素電極12'、13'、14'を形成し、絵素部12、
13、14を形造る。
First, the pixel electrodes 12 ', 13', and 14 'are formed on the surface of the substrate 16 by a known method.
Form 13 and 14.

【0026】次に、この絵素部12、13、14を覆っ
て基板16表面上全面に配向膜10を形成する。本実施
例1では配向膜10として有機高分子膜の一つであるポ
リイミド(PI)膜を使用した。ポリイミド系高分子は
高分子鎖を有しており、ポリイミド膜の表面の高分子鎖
の長鎖方向がラビング工程によりラビング方向に配向す
るため、ポリイミド膜からなる配向膜10と接触する液
晶分子はそのラビング方向に配向すると考えられてい
る。
Next, an alignment film 10 is formed on the entire surface of the substrate 16 so as to cover the picture element portions 12, 13, and 14. In Example 1, a polyimide (PI) film, which is one of organic polymer films, was used as the alignment film 10. Since the polyimide-based polymer has a polymer chain, and the long chain direction of the polymer chain on the surface of the polyimide film is oriented in the rubbing direction by the rubbing process, the liquid crystal molecules in contact with the alignment film 10 made of the polyimide film are It is considered to be oriented in the rubbing direction.

【0027】配向膜10を形成した後、光を配向膜10
に照射する。配向膜10の表面に光を照射することによ
り配向膜10の表面に凹凸を形成する。配向膜10に光
を照射すると、ポリイミド分子の結合鎖が切断され、そ
の部分が粗らされて凹凸が形成されるが、このことは実
験的にも確かめられている。そして、この配向膜10表
面の凹凸の度合の変化によってプレチルト角が変化する
ことも実験的に確かめられている。このことを以下に示
す。
After forming the alignment film 10, light is applied to the alignment film 10.
Irradiation. Irradiation of light on the surface of the alignment film 10 forms irregularities on the surface of the alignment film 10. When the alignment film 10 is irradiated with light, the bonding chains of the polyimide molecules are cut and the portions are roughened to form irregularities. This has been experimentally confirmed. It has also been experimentally confirmed that the pretilt angle changes due to the change in the degree of unevenness on the surface of the alignment film 10. This is shown below.

【0028】膜の表面の凹凸の状態を示す一法として、
図2(a)に示す平均粗さを定義する。図2(a)の実
線の曲線で表されるのは配向膜の実表面であり、一点鎖
線はこの実表面の凹凸の中心平面である。この中心平面
は実表面の各凸部の面積をAn(nは自然数)、凹部をB
nとして下記式を満たすとともに実表面との差の二乗
が最小となる平面に平行な面として定義される。
As one method for indicating the state of unevenness on the surface of the film,
The average roughness shown in FIG. 2A is defined. The solid line curve shown in FIG. 2A is the actual surface of the alignment film, and the dashed line is the center plane of the irregularities on the actual surface. The center plane is defined as An (n is a natural number) and B is defined as the area of each projection on the real surface.
n is defined as a plane that satisfies the following equation and is parallel to a plane that minimizes the square of the difference from the real surface.

【0029】 (A1+A2+・・・+An)=(B1+B2+・・・+Bn)・・・ 膜表面の平均粗さはこの中心平面と実平面との差の絶対
値の算術平均で定義される。図2(b)にこの平均粗さ
を横軸にとり、縦軸にプレチルト角をプロットしたグラ
フを示す。本実施例1では配向膜の材料にポリイミド膜
を用いたが、図から理解されるように、配向膜の表面の
平均粗さが大きくなるにつれてプレチルト角が直線的に
減少していることが解る。このように光の照射量を制御
して、従って、配向膜表面の凹凸を制御することにより
液晶のプレチルト角を0゜〜約15゜の範囲で任意に制
御できる。すなわち、プレチルト角の異なる種々の液晶
表示装置を作製することができる。この場合、以下に説
明するように光照射を場所的に選択して行うことができ
る。選択的に光照射を行う一法としてマスクを配置して
光を照射する方法がある。
(A1 + A2 +... + An) = (B1 + B2 +... + Bn) The average roughness of the film surface is defined by the arithmetic average of the absolute value of the difference between the central plane and the real plane. FIG. 2B is a graph in which the average roughness is plotted on the horizontal axis and the pretilt angle is plotted on the vertical axis. In Example 1, a polyimide film was used as the material of the alignment film. However, as can be understood from the drawing, it can be seen that the pretilt angle decreases linearly as the average roughness of the surface of the alignment film increases. . Thus, by controlling the light irradiation amount, and thus controlling the unevenness of the alignment film surface, the pretilt angle of the liquid crystal can be arbitrarily controlled in the range of 0 ° to about 15 °. That is, various liquid crystal display devices having different pretilt angles can be manufactured. In this case, as described below, light irradiation can be selectively performed in place. As one method of selectively performing light irradiation, there is a method of irradiating light by disposing a mask.

【0030】図3にマスクを用いて配向膜に場所的に選
択的に光を照射する場合の模式図を示す。図3に示すよ
うなマスク11を用いて光15を照射した場合、斜線で
示される部分11aは光15を実質的に透過しない遮光
部分である。マスク11において斜線が施されていない
部分11bは光15を実質的に透過する透過部分であ
る。マスク11としては、例えば、フォトリソグラフィ
技術において通常使用されるフォトマスクと同様のマス
クを使用することができる。直接、フォトリソグラフィ
技術を用いて配向膜10上にマスクパターンを形成し、
光を照射した後、マスクを剥離してもよい。しかし、レ
ジストのパターニングを用いた場合は配向膜10の汚染
度が大きい。
FIG. 3 is a schematic diagram showing a case where the alignment film is selectively and selectively irradiated with light using a mask. When the light 15 is irradiated using the mask 11 as shown in FIG. 3, a portion 11a indicated by oblique lines is a light-shielding portion that does not substantially transmit the light 15. Portions 11b of the mask 11 that are not shaded are transmission portions that substantially transmit the light 15. As the mask 11, for example, a mask similar to a photomask usually used in photolithography technology can be used. Directly forming a mask pattern on the alignment film 10 using a photolithography technique,
After irradiation with light, the mask may be peeled off. However, when resist patterning is used, the degree of contamination of the alignment film 10 is large.

【0031】遮光部分は完全に光15を遮断する必要は
ない。遮光部と非遮光部との間に遮断の程度の差があれ
ばよい。例えば、基板16上に光透過性の異なる二種類
以上の領域を有する材料をマスク11として設けてもよ
い。こうすれば、相互に配向性の異なる二種類以上の領
域を同一液晶セル内に形成することも可能である。
It is not necessary for the light shielding portion to completely block the light 15. It suffices if there is a difference in the degree of blocking between the light shielding part and the non-light shielding part. For example, a material having two or more types of regions having different light transmittances on the substrate 16 may be provided as the mask 11. In this case, two or more types of regions having different orientations can be formed in the same liquid crystal cell.

【0032】図4は光が照射された領域における液晶の
プレチルト角と、光が照射されなかった領域における液
晶のプレチルト角とは異なることを示している。光が照
射されなかった絵素部12、14においては液晶のプレ
チルト角はα゜となり、光が照射された絵素部13にお
いてはプレチルト角はα゜とは異なるβ゜となる。
FIG. 4 shows that the pretilt angle of the liquid crystal in the region irradiated with light is different from the pretilt angle of the liquid crystal in the region not irradiated with light. The pretilt angle of the liquid crystal becomes α ゜ in the picture element portions 12 and 14 to which the light has not been irradiated, and the pretilt angle becomes β ゜ different from α ゜ in the picture element portion 13 to which the light has been irradiated.

【0033】図5は本実施例1の配向制御方法を適用し
た一対の基板17及び18を備えた液晶表示装置の主要
部断面を模式的に示している。図5に示すように同一液
晶セル内の領域A、A’、B、及びB’において配向膜
10表面の液晶のプレチルト角δが異なっている。
FIG. 5 schematically shows a cross section of a main part of a liquid crystal display device provided with a pair of substrates 17 and 18 to which the alignment control method of the first embodiment is applied. As shown in FIG. 5, the pretilt angle δ of the liquid crystal on the surface of the alignment film 10 is different in the regions A, A ′, B, and B ′ in the same liquid crystal cell.

【0034】場所的に選択して光を照射する方法として
は、上記のようにマスクを用いる方法以外に、集光され
た光を用いて所定の領域に選択的に光照射を行う方法が
ある。 また、ポリイミド膜からなる配向膜10に対し
て照射する光としては紫外光、可視光、赤外光またはこ
れらの組合せのいずれを用いてもよいが、配向状態を変
化させるための高エネルギーが容易に得られる光源とし
て、波長が400nm以下の紫外光が好ましい。このよ
うな波長の光の照射は、例えば高圧水銀灯を用いること
で容易に実施される。紫外光(UV光)を照射する場
合、1000(mJ/cm2 )から10000(mJ/
cm2)の条件のもとで照射を行うことが好ましい。
As a method of selectively irradiating light with a place, there is a method of selectively irradiating light to a predetermined area using condensed light, in addition to the method using a mask as described above. . In addition, any of ultraviolet light, visible light, infrared light, or a combination thereof may be used as light for irradiating the alignment film 10 made of a polyimide film, but high energy for changing the alignment state is easily obtained. UV light having a wavelength of 400 nm or less is preferable. Irradiation of light of such a wavelength is easily performed by using, for example, a high-pressure mercury lamp. When irradiating with ultraviolet light (UV light), 1000 (mJ / cm 2 ) to 10,000 (mJ /
Irradiation is preferably performed under the condition of cm 2 ).

【0035】紫外光の他に、可視光、赤外光またはこれ
らの組合せの波長のレーザー光を用いてもよい。この場
合、光の波長のエネルギーに加えてレーザーのエネルギ
ーが加わるので効率が高い。
In addition to ultraviolet light, laser light having a wavelength of visible light, infrared light, or a combination thereof may be used. In this case, the efficiency is high because the energy of the laser is added in addition to the energy of the wavelength of light.

【0036】光の照射に替えて、他のエネルギービーム
の照射によって配向膜10の表面の凹凸の程度を変化さ
せることも可能である。例えば、電子ビーム、イオンビ
ーム、X線などの照射によって配向膜10の表面の凹凸
の程度を変化させることも可能である。
Instead of light irradiation, it is also possible to change the degree of unevenness on the surface of the alignment film 10 by irradiation with another energy beam. For example, the degree of unevenness on the surface of the alignment film 10 can be changed by irradiation with an electron beam, an ion beam, X-rays, or the like.

【0037】マスクや集光光を用いた微細加工は数ミク
ロン程度まで可能であるので、このような方法を用いて
凹凸の程度の異なる微細領域を配向膜10中に任意の平
面形状にて形成することができる。例えば、本実施例1
では図3に示すように、マスク11により単位絵素毎に
選択的に光を照射したが、単位絵素内において光15を
照射しない領域と照射する領域を形成してもい。また、
光の照射、非照射だけで違いを付けるのではなく、照射
部間での光強度を異ならせてもよい。様々な光の照射パ
ターンでより緻密に場所的に配向特性を変化させること
ができる。
Since fine processing using a mask or condensed light can be performed down to several microns, fine regions having different degrees of unevenness are formed in the alignment film 10 in an arbitrary plane shape using such a method. can do. For example, the first embodiment
In FIG. 3, as shown in FIG. 3, light is selectively irradiated for each unit picture element by the mask 11, but a region to which the light 15 is not irradiated and a region to be irradiated may be formed in the unit picture element. Also,
Instead of making a difference only between light irradiation and non-light irradiation, the light intensity between irradiation parts may be made different. The orientation characteristics can be changed more precisely and locally by various light irradiation patterns.

【0038】この光15の照射工程は配向膜10形成後
の任意の時点で実施してよい。具体的には配向膜10塗
布後、仮焼成後、ラビング後、ラビング後の基板16の
洗浄後、のいつでも良い。基板16に対向基板(図示せ
ず)を貼り合わせた後であっても良いが、その場合は対
向基板越しに光を照射することになるため基板(例え
ば、ガラス)を透過する波長の光を使用する必要があ
る。
The step of irradiating the light 15 may be performed at any time after the formation of the alignment film 10. Specifically, it may be at any time after application of the alignment film 10, after calcination, after rubbing, or after cleaning of the substrate 16 after rubbing. After the opposing substrate (not shown) is bonded to the substrate 16, the light may be irradiated through the opposing substrate. Must be used.

【0039】本実施例1では配向膜10としてポリイミ
ド膜を用いたが、他の材料からなる配向膜10を使用し
てもよい。材料の種類に応じて照射するべき光の適切な
波長が選択される。
Although a polyimide film is used as the alignment film 10 in the first embodiment, an alignment film 10 made of another material may be used. An appropriate wavelength of light to be irradiated is selected according to the type of the material.

【0040】また、窒化ケイ素、酸化ケイ素、フッ化マ
グネシウムまたは金等を主成分とした無機質の配向膜を
用いてもよいが、この場合には紫外線レーザー、電子線
ビーム等の高エネルギーの光の照射が必要である。
Further, an inorganic alignment film containing silicon nitride, silicon oxide, magnesium fluoride, gold or the like as a main component may be used. In this case, a high energy light such as an ultraviolet laser or an electron beam is used. Irradiation is required.

【0041】(実施例2)実施例2の基板構造は実施例
1の場合と同様である。本実施例2においても配向膜表
面に凹凸の形成された基板を採用するが、凹凸の形成法
として、光照射に替わり、配向膜表面に溶液を接触さ
せ、溶液の配向膜に対する溶解作用の不均一性を利用し
て配向膜表面に任意の大きさの凹凸を形成する方法を取
り挙げる。本実施例2では配向膜の材料としてポリイミ
ドを用い、スピンコートまたは印刷方等により配向膜を
形成した。この配向膜の材料としては他にポリアミド、
ポリスチレン、ポリアミドイミド、エポキシアクリレー
ト、スピランアクリレートまたはポリウレタン等の有機
膜を用いることができる。
(Embodiment 2) The substrate structure of Embodiment 2 is the same as that of Embodiment 1. In Example 2, a substrate having unevenness on the alignment film surface is also used. However, as a method for forming unevenness, a solution is brought into contact with the alignment film surface instead of light irradiation, and the solution does not dissolve the alignment film. A method of forming irregularities of an arbitrary size on the surface of the alignment film using uniformity will be described. In Example 2, polyimide was used as the material of the alignment film, and the alignment film was formed by spin coating or printing. Other materials for this alignment film include polyamide,
An organic film such as polystyrene, polyamide imide, epoxy acrylate, spirane acrylate, or polyurethane can be used.

【0042】まず、実施例1と同様に基板表面の所定の
領域に複数の絵素電極を形成し、この絵素電極を覆って
配向膜を焼成する。
First, similarly to the first embodiment, a plurality of picture element electrodes are formed in a predetermined area on the substrate surface, and the orientation film is baked so as to cover the picture element electrodes.

【0043】続いて、配向膜表面を琢磨布でラビングし
た。
Subsequently, the surface of the alignment film was rubbed with a polishing cloth.

【0044】次に、配向膜表面をアルカリ溶液に接触さ
せ、上記したように溶液の配向膜に対する溶解作用の不
均一性を利用して配向膜表面に凹凸を形成した。アルカ
リ溶液としては0.5%NaOH水溶液、または、2.3
8%TMAH水溶液等が使用できる。
Next, the surface of the alignment film was brought into contact with an alkaline solution, and irregularities were formed on the surface of the alignment film by utilizing the non-uniformity of the dissolving action of the solution on the alignment film as described above. As an alkaline solution, a 0.5% NaOH aqueous solution or 2.3%
An 8% TMAH aqueous solution or the like can be used.

【0045】表面に凹凸を形成するために配向膜に接触
させる流体としては他にフッ酸、硝酸または両方を主成
分とした酸溶液を用いてもよい。反応性ガスであるオゾ
ンまたはアンモニアガスを用いてもよい。酸素、アルゴ
ンまたはクリプトン等を主成分としたプラズマ状態のガ
スを用いてもよい。
As a fluid to be brought into contact with the alignment film in order to form irregularities on the surface, hydrofluoric acid, nitric acid, or an acid solution containing both as main components may be used. Ozone or ammonia gas, which is a reactive gas, may be used. A gas in a plasma state containing oxygen, argon, krypton, or the like as a main component may be used.

【0046】(実施例3)実施例3では配向膜の下層に
形成された透明導電膜に凹凸が形成されており、その凹
凸が上層の配向膜に伝達され、配向膜表面に凹凸が形成
された液晶表示装置を採用する。そして本実施例3では
透明導電膜上に選択的に凹凸を形成する方法として、従
来のフォトリソグラフィーを用いたレジストを透明導電
膜上の一部にパターニングし、この状態で光を照射して
光の照射の有無により場所的な凹凸の変化を形成する方
法を採用する。図6に本実施例4に係る液晶表示装置の
配向膜表面に凹凸を形成する工程を模式的に示す。
(Example 3) In Example 3, irregularities are formed in the transparent conductive film formed below the alignment film, and the irregularities are transmitted to the upper alignment film to form irregularities on the alignment film surface. Liquid crystal display device. In the third embodiment, as a method of selectively forming unevenness on the transparent conductive film, a resist using conventional photolithography is patterned on a part of the transparent conductive film, and light is irradiated in this state to irradiate light. A method of forming a change in locational unevenness depending on the presence or absence of irradiation is adopted. FIG. 6 schematically shows a process of forming irregularities on the surface of the alignment film of the liquid crystal display device according to the fourth embodiment.

【0047】先ず、図6(a)に示すように、基板16
の上に透明導電膜20を形成する。次に、図6(b)に
示すように、この透明導電膜20の一部にレジスト21
を形成する。この状態で図6(c)に示すように、基板
16に垂直に透明導電膜20形成側から光15を照射す
る。透明導電膜20のレジスト21で覆われた部分は光
照射を受けないので、図6(d)に示すように、透明導
電膜20形成時と表面状態が変わらない。他方、光照射
を受けた部分は表面の化学構造が変化して凹凸が生じ
る。
First, as shown in FIG.
A transparent conductive film 20 is formed thereon. Next, as shown in FIG. 6B, a resist 21 is formed on a part of the transparent conductive film 20.
To form In this state, as shown in FIG. 6C, light 15 is irradiated perpendicularly to the substrate 16 from the side where the transparent conductive film 20 is formed. Since the portion of the transparent conductive film 20 covered with the resist 21 is not irradiated with light, the surface state does not change from that at the time of forming the transparent conductive film 20, as shown in FIG. On the other hand, in the portion that has been irradiated with light, the chemical structure of the surface changes and irregularities occur.

【0048】光照射の後、図6(d)に示すようにレジ
スト21を除去する。
After the light irradiation, the resist 21 is removed as shown in FIG.

【0049】最後に、図6(e)に示すようにレジスト
21を除去した後の基板16表面に透明導電膜20を覆
って配向膜10を積層形成する。透明導電膜20が光照
射を受けた部分と光照射を受けなかった部分とでは、透
明導電膜20の表面状態がその上層に形成された配向膜
10の表面状態にも反映され、凹凸が形成された部分と
形成されなかった部分とが形成される。
Finally, as shown in FIG. 6E, an alignment film 10 is formed on the surface of the substrate 16 after removing the resist 21 so as to cover the transparent conductive film 20. The surface state of the transparent conductive film 20 is also reflected on the surface state of the alignment film 10 formed thereover in a portion where the transparent conductive film 20 has been irradiated with light and a portion where the transparent conductive film 20 has not been irradiated with light. A portion that has been formed and a portion that has not been formed are formed.

【0050】(実施例4)実施例4でも配向膜の下地膜
である透明導電膜に凹凸が形成されており、その凹凸が
上層の配向膜に伝達され、配向膜表面に凹凸が形成され
た液晶表示装置を採用する。
Example 4 Also in Example 4, irregularities were formed in the transparent conductive film as the base film of the alignment film, and the irregularities were transmitted to the upper alignment film, and the unevenness was formed on the alignment film surface. Adopt a liquid crystal display device.

【0051】本実施例4においては上記実施例3のレジ
ストの代わりに絶縁膜を用いて下地膜の凹凸の一部とし
た。図7に絶縁膜を用いた場合の概略の作製工程を示
す。レジストの場合の除去工程がなくなっていること以
外は上記のレジストを用いた場合と同様である。絶縁膜
22を透明導電膜20上に残したままでこれらを覆って
配向膜10を形成するので、絶縁膜22が形成された領
域では絶縁膜22と透明導電膜20の表面状態の違いだ
けでなく、絶縁膜22表面と透明導電膜20表面の高低
差も配向膜10に伝達される凹凸形状の要素に加味され
る。
In the fourth embodiment, an insulating film is used instead of the resist of the third embodiment to form a part of the unevenness of the underlying film. FIG. 7 shows a schematic manufacturing process when an insulating film is used. This is the same as the case where the resist is used, except that the removing step in the case of the resist is eliminated. Since the alignment film 10 is formed by covering the insulating film 22 while leaving the insulating film 22 on the transparent conductive film 20, not only the difference between the surface states of the insulating film 22 and the transparent conductive film 20 but also the region where the insulating film 22 is formed. In addition, the height difference between the surface of the insulating film 22 and the surface of the transparent conductive film 20 is also considered as an element of the concavo-convex shape transmitted to the alignment film 10.

【0052】絶縁膜22の形成された部分では凹凸形状
がゆるやかになる。絶縁膜22を用いた場合、レジスト
を用いた場合の除去工程がなくなるので工程が簡略化さ
れる。また、絶縁処理と配向制御を兼ねて行うという意
味においても作製工程が簡略化され、広い視角特性を有
する液晶表示装置を低コストで得ることができる。
In the portion where the insulating film 22 is formed, the uneven shape becomes gentle. When the insulating film 22 is used, the removal step in the case of using a resist is eliminated, so that the process is simplified. In addition, the manufacturing process is simplified in terms of performing both the insulating treatment and the alignment control, and a liquid crystal display device having a wide viewing angle characteristic can be obtained at low cost.

【0053】また、レジスト21や絶縁膜22形成領域
以外の透明導電膜20領域に凹凸を形成するのに、透明
導電膜20に酸もしくはアルカリ溶液を接触させる方法
または反応性ガスもしくはプラズマ状態のガスを接触さ
せる方法を用いてもよい。
In order to form irregularities on the transparent conductive film 20 other than the resist 21 and insulating film 22 forming regions, a method of contacting the transparent conductive film 20 with an acid or alkali solution or a reactive gas or a gas in a plasma state is used. May be used.

【0054】レジスト21や絶縁膜22の形成領域を先
の実施例のように絵素毎に定めたり、一絵素内での複数
の領域毎に定めたり、様々なパターンでの凹凸の形成が
可能である。
The regions where the resist 21 and the insulating film 22 are formed can be determined for each picture element as in the previous embodiment, or for each of a plurality of areas within one picture element, and the formation of unevenness in various patterns can be performed. It is possible.

【0055】(実施例5)実施例5としては前記実施例
3、4と同様、配向膜の下地膜に凹凸が形成され、この
凹凸形状が上層の配向膜に伝達されており配向膜表面に
凹凸が形成された液晶表示装置を採用するが、凹凸は透
明導電膜上に絶縁膜を形成し、透明導電膜と絶縁膜の材
質の違いにより、それぞれの表面で異なる凹凸の形状が
配向膜に伝えられたものである。このような液晶表示装
置は以下のようにして作製される。先ず、図8(a)に
示すように、基板16の上に透明導電膜20を形成す
る。次に、図8(b)に示すように、この透明導電膜2
0の表面の一部に絶縁膜22を形成する。絶縁膜22と
しては窒化ケイ素または酸化ケイ素等を用いることがで
きる。
(Example 5) In Example 5, as in Examples 3 and 4, irregularities were formed on the base film of the alignment film, and the irregularities were transmitted to the upper alignment film. A liquid crystal display device with irregularities is adopted, but the irregularities are formed by forming an insulating film on the transparent conductive film, and the shape of the irregularities on each surface varies depending on the material of the transparent conductive film and the insulating film. It has been passed down. Such a liquid crystal display device is manufactured as follows. First, a transparent conductive film 20 is formed on a substrate 16 as shown in FIG. Next, as shown in FIG.
An insulating film 22 is formed on a part of the surface of No. 0. As the insulating film 22, silicon nitride, silicon oxide, or the like can be used.

【0056】最後に、図8(c)に示すように、透明導
電膜20と絶縁膜22とを覆って基板16の表面に配向
膜10を形成する。
Finally, as shown in FIG. 8C, an alignment film 10 is formed on the surface of the substrate 16 so as to cover the transparent conductive film 20 and the insulating film 22.

【0057】絶縁膜22が形成された領域では絶縁膜2
2と透明導電膜20の表面状態の違いだけでなく、絶縁
膜22表面と透明導電膜20表面の高低差も配向膜10
に伝達される凹凸形状の要素に加味される。絶縁膜22
の形成された部分では凹凸形状がゆるやかになる。
In the region where the insulating film 22 is formed, the insulating film 2
2 and the transparent conductive film 20, as well as the height difference between the surface of the insulating film 22 and the surface of the transparent conductive film 20.
It is taken into account the uneven shape elements transmitted to Insulating film 22
In the portion where is formed, the uneven shape becomes gentle.

【0058】本実施例5においては絶縁膜22形成前に
凹凸の形成のための光照射や他の操作を行わず、絶縁処
理と配向制御を兼ねて行うので作製工程が非常に簡略化
され、広い視野角特性を有し、低コストで信頼性の高い
液晶表示装置を提供することができる。
In the fifth embodiment, since light irradiation and other operations for forming irregularities are not performed before forming the insulating film 22 and the insulating process and the orientation control are performed, the manufacturing process is greatly simplified. A low-cost and highly reliable liquid crystal display device having a wide viewing angle characteristic can be provided.

【0059】(実施例6)実施例6としては前記実施例
3、4、5と同様、配向膜の下地膜に凹凸を形成し、こ
の凹凸形状を上層の配向膜に伝えて配向膜表面に凹凸が
形成されている基板構造を採用するが、下地膜に形成す
る凹凸の程度はこれまでの実施例のように領域毎に制限
を加えるのではなく、場所的にはほぼ任意に形成されて
いる。最終的に配向膜近辺の液晶分子のプレチルト角を
制御するための凹凸の程度の違いの形成は配向膜の膜厚
によって制御する。すなわち、配向膜の膜厚の薄い部分
は下地膜の凹凸形状の伝わり方が強く、膜厚の厚い部分
よりも凹凸の程度が大きくなっている基板構造である。
(Embodiment 6) As in Embodiments 3, 4, and 5, as in Embodiments 3, 4, and 5, irregularities are formed on the base film of the alignment film, and the irregularities are transmitted to the upper alignment film to form a surface of the alignment film. Although a substrate structure in which unevenness is formed is adopted, the degree of unevenness formed in the base film is not limited to each region as in the previous embodiments, but is formed almost arbitrarily in place. I have. Finally, the formation of the difference in the degree of unevenness for controlling the pretilt angle of the liquid crystal molecules near the alignment film is controlled by the thickness of the alignment film. In other words, the substrate structure is such that the portion of the alignment film having a small thickness has a stronger transmission of the unevenness of the underlying film, and the degree of the unevenness is larger than that of the thicker portion.

【0060】この膜厚の制御法としては配向膜に光を照
射する方法がある。配向膜に光を照射すると、光照射を
受けた部分のポリイミドの分子の結合鎖が引きちぎら
れ、凹凸の形成を通り越して、あたかも光照射の部分が
エッチングで削除されたようになる。この配向膜の膜厚
制御の方法としては、光照射以外に酸やアルカリ等の溶
液との接触、反応性ガスとの接触、または、プラズマと
の接触等によっても可能である。
As a method of controlling the film thickness, there is a method of irradiating the alignment film with light. When the alignment film is irradiated with light, the bond chains of the polyimide molecules in the light-irradiated portion are torn off, passing through the formation of the irregularities, and as if the light-irradiated portion was removed by etching. As a method of controlling the film thickness of the alignment film, it is possible to contact with a solution such as an acid or an alkali, contact with a reactive gas, or contact with plasma in addition to light irradiation.

【0061】以上、各実施例で示した本発明に係る液晶
表示装置においては、同一液晶セル内に配向状態が異な
る、従って、視野角特性が異なる領域が形成されてい
る。この異なる視野角特性が複数存在することによりT
NモードやSTNモードの視角が改善される。例えば、
TNモード型の液晶表示装置を一対の偏光板間に配置し
た場合において液晶表示の反転現象という視角特性を改
善するためには、液晶分子のもつ縦方向(観測者に対し
て垂直方向)の屈折率を視角によらず一定にすればよい
と考えられる。すなわち、正視角方向で考えると、液晶
表示装置の真上(基板面に対して垂直方向)から視角を
深くして行くに従って縦方向の屈折率の異方性(△n)
が、「大」→「0」→「大(逆方向)」と変化するのを
抑制すれば良い。本発明の液晶表示装置においては、液
晶分子の屈折率の異方性を押さえ△nの変化が小さくな
っている。
As described above, in the liquid crystal display device according to the present invention described in each embodiment, regions having different alignment states and therefore different viewing angle characteristics are formed in the same liquid crystal cell. Due to the presence of a plurality of different viewing angle characteristics, T
The viewing angle in the N mode or the STN mode is improved. For example,
When a TN mode liquid crystal display device is disposed between a pair of polarizers, in order to improve the viewing angle characteristic of inversion of liquid crystal display, refraction of liquid crystal molecules in the vertical direction (perpendicular to the observer) is required. It is considered that the ratio should be constant regardless of the viewing angle. That is, when viewed from the normal viewing angle direction, the anisotropy (Δn) of the refractive index in the vertical direction increases as the viewing angle increases from directly above the liquid crystal display device (perpendicular to the substrate surface).
However, it is only necessary to suppress the change from “large” → “0” → “large (reverse direction)”. In the liquid crystal display device of the present invention, the change in Δn is reduced by suppressing the anisotropy of the refractive index of the liquid crystal molecules.

【0062】[0062]

【発明の効果】以上説明したように、本発明による液晶
表示装置においては配向膜表面に凹凸が形成されてお
り、その凹凸の程度が複数の領域の間で異なっている。
この凹凸により液晶分子のプレチルト角が制御され、所
定の場所毎に異なる配向状態が形成されているので、T
NモードやSTNモードの液晶表示装置の視角改善が実
現される。この液晶表示素子においては液晶セルの厚み
方向に生じる液晶の屈折率変化を低減することがきる。
その結果、正視角方向の反転現象(特定の視角で画像の
白黒(ネガ・ポジ)が反転する現象)を改善することが
できる。
As described above, in the liquid crystal display device according to the present invention, unevenness is formed on the surface of the alignment film, and the degree of the unevenness is different between a plurality of regions.
The pre-tilt angle of the liquid crystal molecules is controlled by the unevenness, and different alignment states are formed at predetermined positions.
The viewing angle of the N mode or STN mode liquid crystal display device can be improved. In this liquid crystal display element, the change in the refractive index of the liquid crystal, which occurs in the thickness direction of the liquid crystal cell, can be reduced.
As a result, the reversal phenomenon of the normal viewing angle direction (the phenomenon that the black and white (negative / positive) of the image is reversed at a specific viewing angle) can be improved.

【0063】このようなチルト角が制御されて配向が制
御された本発明に係る液晶表示装置は高コントラストで
高品質の表示を提供することのできる表示装置となる。
The liquid crystal display device according to the present invention in which the tilt angle is controlled and the orientation is controlled is a display device capable of providing a high-contrast and high-quality display.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例1に係る液晶表示装置の基板の模式
図。
FIG. 1 is a schematic diagram of a substrate of a liquid crystal display device according to a first embodiment.

【図2】(a)は配向膜表面の平均粗(凹凸)さの定義
を示す図。(b)はプレチルト角の配向膜表面の平均粗
さ(凹凸)依存性を示す図。
FIG. 2A is a diagram showing a definition of an average roughness (irregularity) of an alignment film surface. (B) is a diagram showing the dependence of the pretilt angle on the average roughness (irregularity) of the alignment film surface.

【図3】本実施例1に係る液晶表示装置の基板の配向膜
表面に凹凸を形成するための光照射工程の模式図。
FIG. 3 is a schematic view of a light irradiation step for forming irregularities on the surface of the alignment film of the substrate of the liquid crystal display device according to the first embodiment.

【図4】光照射により絵素部毎にプレチルト角が変化し
ている様子を示す断面図。
FIG. 4 is a cross-sectional view showing a state where a pretilt angle is changed for each picture element portion by light irradiation.

【図5】プレチルト角制御された本発明に係る液晶表示
装置の基板間の液晶層を模式的に示す断面図である。
FIG. 5 is a cross-sectional view schematically showing a liquid crystal layer between substrates of a liquid crystal display device according to the present invention in which a pretilt angle is controlled.

【図6】本発明に係る実施例3を示す図。FIG. 6 is a diagram showing a third embodiment according to the present invention.

【図7】本発明に係る実施例4を示す図。FIG. 7 is a diagram showing a fourth embodiment according to the present invention.

【図8】本発明に係る実施例5を示す図。FIG. 8 is a diagram showing a fifth embodiment according to the present invention.

【図9】液晶表示装置における印加電圧−透過率特性を
示すグラフである。
FIG. 9 is a graph showing an applied voltage-transmittance characteristic in a liquid crystal display device.

【図10】液晶表示装置に於ける視角特性を説明するた
め斜視図である。
FIG. 10 is a perspective view for explaining viewing angle characteristics in a liquid crystal display device.

【図11】液晶表示装置に於ける視角特性を説明するた
め断面図である。
FIG. 11 is a sectional view for explaining viewing angle characteristics in a liquid crystal display device.

【図12】(a)、(b)及び(c)は、液晶表示装置
に於ける反転現象を説明するための図である。
FIGS. 12A, 12B, and 12C are diagrams for explaining an inversion phenomenon in a liquid crystal display device.

【図13】配向膜表面の凹凸の程度によるプレチルト角
の液晶層への伝達の様子を示す模式図。(a)は凹凸の
程度の激しい場合を示す図。(b)は凹凸の程度が小さ
い場合を示す図。
FIG. 13 is a schematic diagram showing how a pretilt angle is transmitted to a liquid crystal layer depending on the degree of unevenness of the alignment film surface. (A) is a figure which shows the case where the degree of unevenness is severe. (B) is a diagram showing a case where the degree of unevenness is small.

【符号の説明】[Explanation of symbols]

10、31c、32c 配向膜 11 マスク 11a 遮光部 11b 透過部 12、13、14 絵素部 15 光 16、31、32 基板 20 透明導電膜 22 絶縁膜 21 レジスト 31a、32a ガラス基板 31b、32b 透明電極 33、34 液晶表示素子のラビング方向 35 中央分子 36 視角方向 37 観測者 δ プレチルト角 10, 31c, 32c Alignment film 11 Mask 11a Shielding part 11b Transmission part 12, 13, 14 Picture element part 15 Light 16, 31, 32 Substrate 20 Transparent conductive film 22 Insulating film 21 Resist 31a, 32a Glass substrate 31b, 32b Transparent electrode 33, 34 Rubbing direction of liquid crystal display element 35 Central molecule 36 Viewing angle direction 37 Observer δ Pretilt angle

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の基板に液晶層が挟持された液晶表示
装置において、 該一対の基板の少なくとも一方の基板に配向膜が形成さ
れ、 該配向膜の表面には該配向膜の表面に接する該液晶層の
液晶分子のプレチルト角を制御するための凹凸が形成さ
れており、 該凹凸の程度が複数の所定の領域の間で異なる液晶表示
装置。
In a liquid crystal display device having a liquid crystal layer sandwiched between a pair of substrates, an alignment film is formed on at least one of the pair of substrates, and a surface of the alignment film is in contact with a surface of the alignment film. A liquid crystal display device in which unevenness for controlling a pretilt angle of liquid crystal molecules of the liquid crystal layer is formed, and the degree of the unevenness is different between a plurality of predetermined regions.
【請求項2】前記凹凸の程度が大きい前記配向膜表面の
領域でプレチルト角が小さく、該凹凸の程度が小さい該
配向膜表面の領域でプレチルト角が大きく設定されてい
る請求項1に記載の液晶表示装置。
2. The pretilt angle is set to be small in a region of the alignment film surface where the degree of the unevenness is large, and to be large in a region of the alignment film surface where the degree of the unevenness is small. Liquid crystal display.
【請求項3】前記凹凸の程度の異なる複数の領域の内、
少なくとも二つ以上の領域が各々異なる視角特性を有す
る請求項1又は2に記載の液晶表示装置。
3. The method according to claim 2, wherein the plurality of regions having different degrees of unevenness are:
3. The liquid crystal display device according to claim 1, wherein at least two or more regions have different viewing angle characteristics.
【請求項4】前記配向膜と該配向膜が形成された基板と
の間に下地膜が形成されており、該下地膜の該配向膜と
接する表面には凹凸が形成されており、該凹凸の程度が
複数の所定の領域の間で異なる請求項1に記載の液晶表
示装置。
4. An underlayer is formed between the alignment film and the substrate on which the alignment film is formed, and irregularities are formed on a surface of the underlayer that is in contact with the alignment film. The liquid crystal display device according to claim 1, wherein the degree of the difference is different between the plurality of predetermined regions.
【請求項5】前記凹凸の程度が大きい前記配向膜表面の
領域でプレチルト角が小さく、該凹凸の程度が小さい該
配向膜表面の領域でプレチルト角が大きく設定されてい
る請求項4に記載の液晶表示装置。
5. The pretilt angle is set to be small in a region of the alignment film surface where the degree of the unevenness is large, and is set to be large in a region of the alignment film surface where the degree of the unevenness is small. Liquid crystal display.
【請求項6】前記凹凸の程度の異なる複数の領域の内、
少なくとも二つ以上の領域が各々異なる視角特性を有す
る請求項4に記載の液晶表示装置。
6. A method according to claim 1, wherein said plurality of regions having different degrees of unevenness are:
The liquid crystal display device according to claim 4, wherein at least two or more regions have different viewing angle characteristics.
【請求項7】前記下地膜を覆って形成された前記配向膜
の膜厚が場所によって異なる請求項4に記載の液晶表示
装置。
7. The liquid crystal display device according to claim 4, wherein the thickness of the alignment film formed so as to cover the base film varies depending on a location.
JP21322993A 1993-01-29 1993-08-27 Liquid crystal display Expired - Lifetime JP2930228B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP21322993A JP2930228B2 (en) 1993-08-27 1993-08-27 Liquid crystal display
US08/187,547 US5657102A (en) 1993-01-29 1994-01-28 Liquid crystal display apparatus, a method for producing the same, and a substrate having an alignment layer with different degrees of roughness
DE69433928T DE69433928T2 (en) 1993-01-29 1994-01-28 Process for producing a liquid crystal display device
EP99203650A EP0977078B1 (en) 1993-01-29 1994-01-28 A method of manufacturing a liquid crystal display apparatus
CA002114459A CA2114459C (en) 1993-01-29 1994-01-28 Liquid crystal display apparatus with a substrate having a rough alignment layer, and a method for producing the same
DE69427202T DE69427202T2 (en) 1993-01-29 1994-01-28 Liquid crystal display device, method of manufacturing the same, and a substrate
KR1019940001652A KR940018686A (en) 1993-01-29 1994-01-29 Liquid crystal display device, manufacturing method and substrate thereof
US08/449,115 US5691792A (en) 1993-01-29 1995-05-24 Method for producing a liquid crystal display apparatus by irradiating an aligning film with light to reduce pretilt angles of liquid crystal molecules thereof
US08/449,740 US5627667A (en) 1993-01-29 1995-05-25 Liquid crystal display apparatus, a method for producing the same, and a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21322993A JP2930228B2 (en) 1993-08-27 1993-08-27 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0764094A JPH0764094A (en) 1995-03-10
JP2930228B2 true JP2930228B2 (en) 1999-08-03

Family

ID=16635675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21322993A Expired - Lifetime JP2930228B2 (en) 1993-01-29 1993-08-27 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2930228B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
JP2006195111A (en) * 2005-01-13 2006-07-27 International Display Technology Kk Ips liquid crystal display panel
JP5067862B2 (en) * 2007-11-19 2012-11-07 スタンレー電気株式会社 Liquid crystal display device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0764094A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
JP3068376B2 (en) Manufacturing method of liquid crystal display device
US5657102A (en) Liquid crystal display apparatus, a method for producing the same, and a substrate having an alignment layer with different degrees of roughness
KR100216156B1 (en) Liquid crystal display device
JP4166250B2 (en) Liquid crystal display
JP3167716B2 (en) Electro-optical device
EP0613037B1 (en) A liquid crystal display apparatus,a method for producing the same,and a substrate
JP2930228B2 (en) Liquid crystal display
JP3127069B2 (en) Manufacturing method of liquid crystal display device
JP2806673B2 (en) Liquid crystal display device and method of manufacturing the same
JP2000122065A (en) Liquid crystal display device and its production
JP3021246B2 (en) Manufacturing method of liquid crystal display device
JP2965829B2 (en) Liquid crystal display
JP2828128B2 (en) Liquid crystal display
JP3063764B2 (en) Manufacturing method of electro-optical device
JP2965826B2 (en) Manufacturing method of liquid crystal display device
JPH07281190A (en) Liquid crystal display device and its production
JP2006330601A (en) Method for manufacturing liquid crystal display device
JP3141886B2 (en) Manufacturing method of electro-optical device
JP2705634B2 (en) Liquid crystal display panel and method of manufacturing the same
JPH09211456A (en) Method for controlling orientation direction of liquid crystal cell
JPH06347794A (en) Liquid crystal display device
JPH10186365A (en) Liquid crystal display element, and manufacture of oriented substrate to be used therefor
JPH11142854A (en) Liquid crystal display device and its production
JP3255605B2 (en) Liquid crystal display device and manufacturing method thereof
JP3306407B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 15

EXPY Cancellation because of completion of term