JP2928586B2 - Highly active catalyst powder and highly active electrode for hydrogen-air fuel cells - Google Patents

Highly active catalyst powder and highly active electrode for hydrogen-air fuel cells

Info

Publication number
JP2928586B2
JP2928586B2 JP2120069A JP12006990A JP2928586B2 JP 2928586 B2 JP2928586 B2 JP 2928586B2 JP 2120069 A JP2120069 A JP 2120069A JP 12006990 A JP12006990 A JP 12006990A JP 2928586 B2 JP2928586 B2 JP 2928586B2
Authority
JP
Japan
Prior art keywords
highly active
hydrogen
electrode
active catalyst
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2120069A
Other languages
Japanese (ja)
Other versions
JPH0418933A (en
Inventor
功二 橋本
幸宏 早川
朝日 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKI ENJINIARINGU KK
Original Assignee
DAIKI ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKI ENJINIARINGU KK filed Critical DAIKI ENJINIARINGU KK
Priority to JP2120069A priority Critical patent/JP2928586B2/en
Publication of JPH0418933A publication Critical patent/JPH0418933A/en
Application granted granted Critical
Publication of JP2928586B2 publication Critical patent/JP2928586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、作製法が極めて簡単な高活性触媒粉末とそ
れを用いて作製した水素−空気燃料電池用高活性電極に
関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly active catalyst powder whose production method is extremely simple, and a highly active electrode for a hydrogen-air fuel cell produced using the same.

従来の技術 従来、水素ガスを燃料として用いる水素−空気燃料電
池には、主として高価な白金担持カーボンが電極として
用いられており、したがって、安価で高活性な触媒が求
められている。
2. Description of the Related Art Conventionally, in a hydrogen-air fuel cell using hydrogen gas as a fuel, expensive platinum-supported carbon is mainly used as an electrode. Therefore, an inexpensive and highly active catalyst is required.

一方本発明者の1人は特願昭60−123111号によりNi−
Ta−白金族金属を必須成分とするメタノール系燃料電池
電極用表面活性化アルモファス合金を出願した。
On the other hand, one of the present inventors reported that Ni-
We have filed an application for a surface activated aluminum alloy for a methanol fuel cell electrode containing a Ta-platinum group metal as an essential component.

更に、本発明者の2人はメタノール、ホルムアルデヒ
ドおよび蟻酸などメタノールとその分解生成物である液
体を燃料とするメタノール系燃料電池用高活性触媒粉末
と高活性電極を見いだし特願昭62−122199号として出願
した。
Further, the present inventors have found a highly active catalyst powder and a highly active electrode for a methanol fuel cell using methanol, such as methanol, formaldehyde and formic acid, and a liquid which is a decomposition product thereof as a fuel, and have filed Japanese Patent Application No. 62-122199. Filed as

発明が解決しようとする問題点 従来、水素を燃料として用いる水素−空気燃料電池に
は、主として白金担持カーボンが電極として用いられて
いる。しかしその性能は必ずしも高いとは言い難く高活
性で安価な電極の出現が待たれている。これに対し、本
発明者らは特願昭62−122199号としてメタノール系燃料
電池電極用高活性触媒粉末と高活性電極を出願した。こ
れらは液体燃料を用いる電極であって、触媒は電解質と
燃料の2つの液体と触媒して、二酸化炭素という気体を
発生するものであった。これに対し、水素ガスを燃料と
する燃料電池では、固体の電極が気体である燃料と液体
である電解質の2相に接する気・液・固3相の接触反応
を必要とするので、電極は液体電解質に接しながらも気
体に接触できる撥水性を備えていなければならない。更
に電極は、水素燃料を電気化学的に酸化して水素イオン
に変える高い電極触媒活性を備えていなければならな
い。
Problems to be Solved by the Invention Conventionally, in a hydrogen-air fuel cell using hydrogen as a fuel, platinum-supported carbon is mainly used as an electrode. However, its performance is not necessarily high, and the appearance of highly active and inexpensive electrodes is expected. On the other hand, the present inventors applied for a highly active catalyst powder for a methanol fuel cell electrode and a highly active electrode as Japanese Patent Application No. 62-122199. These are electrodes using a liquid fuel, and the catalyst catalyzes two liquids of an electrolyte and a fuel to generate a gas called carbon dioxide. On the other hand, in a fuel cell using hydrogen gas as a fuel, a solid electrode requires a gas-liquid-solid three-phase contact reaction in contact with two phases of a gaseous fuel and a liquid electrolyte. It must have a water-repellent property capable of contacting a gas while contacting a liquid electrolyte. In addition, the electrodes must have a high electrocatalytic activity to electrochemically oxidize the hydrogen fuel into hydrogen ions.

問題点を解決するための手段 本発明は、水素ガスを燃料とする水素・酸素燃料電池
の燃料極として用いた場合極めて高活性で製造が容易で
安価な高活性電極を提供するものである。金属電極に期
待される機能は、水素を解離吸着させるに十分な吸着力
を持つが電解酸化された水素イオンは容易に脱離させな
ければならず、吸着と脱離の微妙なバランスを保証する
ものでなければならない。吸着と脱離のバランスのとる
のは、金属触媒の場合電子状態の制御である。電子状態
の制御は合金化によって行える。
Means for Solving the Problems The present invention provides a highly active electrode which is extremely active, easy to manufacture and inexpensive when used as a fuel electrode of a hydrogen / oxygen fuel cell using hydrogen gas as fuel. The expected function of the metal electrode is that it has sufficient adsorption power to dissociate and adsorb hydrogen, but it must easily desorb electrolytically oxidized hydrogen ions, ensuring a delicate balance between adsorption and desorption Must be something. Balancing adsorption and desorption is the control of the electronic state in the case of metal catalysts. The control of the electronic state can be performed by alloying.

本発明者らは合金化によって高性能触媒を得ることを
目的として研究を行い、少量の白金族金属を含む所定の
組成のアモルファス合金あるいは過飽和固溶体合金を作
製し、更にこれに活性化処理を施すことによって、高活
性、高耐食性の水溶液電解用電極材料を見出した。これ
らは、特願昭60−123111号に水溶液電解における酸素発
生電極材料として出願され、また、特願昭60−169764
号、60−169765号、60−169766号および60−169767号に
塩化ナトリウム水溶液の電解における塩素発生電極材料
として出願された。
The present inventors conducted research for the purpose of obtaining a high-performance catalyst by alloying, produced an amorphous alloy or a supersaturated solid solution alloy having a predetermined composition containing a small amount of a platinum group metal, and further subjected to activation treatment. As a result, an electrode material for aqueous solution electrolysis having high activity and high corrosion resistance was found. These are filed in Japanese Patent Application No. 60-123111 as an oxygen-generating electrode material for aqueous solution electrolysis, and are also disclosed in Japanese Patent Application No. 60-169764.
Nos. 60-169765, 60-169766 and 60-169767 were filed as chlorine generating electrode materials in the electrolysis of aqueous sodium chloride solution.

更に、本発明者らはメタノールの電解酸化に有効な電
極材料を得る目的で研究を行った結果、NiおよびCoの少
なくとも1種とTi、Zr、Nb、Taのバルブメタルとからな
るアモルファス金属−金属合金に少量のPtを加え、更に
必要に応じてPtの作用を助けるPt以外の白金族元素およ
びTi、Si、Ge、Sn、Pb、Siを添加したアモルファス合金
にフッ化水素酸浸漬処理を施すとメタノールの電解酸化
に高活性な金属電極が得られることを見いだし特願昭61
−154570号として出願した。
Further, the present inventors have conducted research for the purpose of obtaining an electrode material effective for electrolytic oxidation of methanol. As a result, an amorphous metal comprising at least one of Ni and Co and a valve metal of Ti, Zr, Nb, and Ta was obtained. A small amount of Pt is added to the metal alloy, and if necessary, a platinum group element other than Pt to help the action of Pt and an amorphous alloy containing Ti, Si, Ge, Sn, Pb, and Si are subjected to hydrofluoric acid immersion treatment. Application shows that a metal electrode with high activity for the electrolytic oxidation of methanol can be obtained.
-154570.

しかし、液体急冷によって作製するアモルファス合金
は急冷の必要から厚さが通常数10μmしかなく、表面が
如何に高活性であっても集電体として働く金属が薄く電
気抵抗が高くなる。したがって、集電体にはもっと厚い
導電体を用いこれに高活性触媒粉末を被覆して用いるこ
とを目的として、前記アモルファス合金から作られる活
性な表面触媒相を粉末として得ることを試みた。その結
果、表面活性化に用いたフッ化水素酸浸漬処理におい
て、Ni、Coおよびバルブメタルの優先溶解に伴う水素の
発生が終了するまで浸漬処理を継続することによって、
活性な触媒相を粉末として得られることを見いだした。
更にこの触媒粉末を炭素粉末と共に炭素紙上に疎水性フ
ッ素樹脂を用いて被覆することによってメタノール−空
気燃料電池用電極として極めて高活性な電極が得られる
ことを見いだし特願昭62−122199号として出願した。
However, an amorphous alloy produced by liquid quenching usually has a thickness of only a few tens of μm due to the need for rapid quenching, and the metal that acts as a current collector is thin and has a high electric resistance, no matter how active the surface is. Therefore, for the purpose of using a thicker conductor as the current collector and coating it with a highly active catalyst powder, an attempt was made to obtain an active surface catalyst phase made of the amorphous alloy as a powder. As a result, in the hydrofluoric acid immersion treatment used for surface activation, by continuing the immersion treatment until the generation of hydrogen accompanying the preferential dissolution of Ni, Co and valve metal is completed,
It has been found that the active catalyst phase can be obtained as a powder.
Further, it has been found that an extremely highly active electrode as an electrode for a methanol-air fuel cell can be obtained by coating this catalyst powder together with a carbon powder on a carbon paper with a hydrophobic fluororesin, and filed as Japanese Patent Application No. 62-122199. did.

メタノール燃料電池においては、水溶液電解質と燃料
であるメタノールが共に液体であって、両液体が電極に
接触して電極反応が進行する。これに対し、水素燃料電
池では、固体の電極が気体である燃料と液体である電解
質の2相に接する気・液・固の3相の接触反応を必要と
するので、水素燃料電池用電極は、高い電極触媒活性、
耐食性と共に撥水性を備えていなければならない。この
ような観点から、本発明者らは更に研究を続けた結果、
特にアモルファス構造を必要とせず、結晶合金であって
も、本発明者らがこれまで出願してきた6種の出願に記
載した平均組成の合金は、何れも十分な時間フッ化水素
酸に浸漬すると、活性な触媒合金粉末にかわり、この触
媒合金粉末を用いて電極を作製すると、水素燃料を電気
化学的に酸化する高い電極触媒活性を備えていることを
見いだし、本発明を達成した。
In a methanol fuel cell, both the aqueous electrolyte and the fuel, methanol, are liquid, and both liquids come into contact with the electrodes, and the electrode reaction proceeds. In contrast, in a hydrogen fuel cell, a solid electrode requires a three-phase contact reaction of gas, liquid, and solid in contact with two phases of gaseous fuel and liquid electrolyte. , High electrocatalytic activity,
Must have water resistance as well as corrosion resistance. From such a viewpoint, the present inventors have further studied and found that
In particular, even if it is a crystalline alloy, which does not require an amorphous structure, the alloys having the average composition described in the six applications filed by the present inventors can be immersed in hydrofluoric acid for a sufficient time. When an electrode was produced using this catalyst alloy powder instead of the active catalyst alloy powder, it was found that the electrode had high electrode catalyst activity for electrochemically oxidizing hydrogen fuel, and the present invention was achieved.

本発明は特許請求の範囲第1項乃至第3項から成るも
のであり、CoあるいはNiとバルブメタルとの合金に水素
の電解酸化に必要な白金族元素を添加し、必要に応じて
白金族元素の触媒作用を助ける元素を添加した合金にフ
ッ化水素酸処理を施すことによって作られる高活性触媒
粉末とこれを導電体に被覆した高活性電極である。
The present invention comprises claims 1 to 3, wherein a platinum group element necessary for electrolytic oxidation of hydrogen is added to an alloy of Co or Ni and a valve metal, and if necessary, a platinum group element is added. A highly active catalyst powder produced by subjecting an alloy to which an element assisting the catalytic action of an element is added to a hydrofluoric acid treatment, and a highly active electrode in which this is coated on a conductor.

作 用 元来、特定の電気化学反応に対する選択的電極触媒活
性とその反応条件に耐える高耐食性を金属電極に付与す
るためには、有効元素を必要量含む合金を作る必要があ
る。本発明の合金を前躯体とし、これをフッ化水素酸に
浸漬する活性化処理を施すと、電極活性にあまり有効で
ないNi、Coおよびバルブメタル元素が溶解し、電極触媒
能に富んだ白金族元素が濃縮した高活性触媒合金粉末が
得られる。この場合、合金中に含まれる白金族元素がカ
ソードとして働き、白金族元素上で水素発生が盛んに起
こる。この水素発生が電極活性にあまり有効でない元素
の溶解を保証するため、電極活性にあまり有効でない元
素で溶解し、電極活性に有効な白金族元素の濃縮した高
活性触媒合金粉末が生じる。更にこれを導電体の上に被
覆すると高活性電極が得られる。
Action Originally, in order to provide a metal electrode with selective electrocatalytic activity for a specific electrochemical reaction and high corrosion resistance to withstand the reaction conditions, it is necessary to make an alloy containing a necessary amount of an effective element. When the alloy of the present invention is used as a precursor and subjected to an activation treatment in which it is immersed in hydrofluoric acid, Ni, Co and a valve metal element which are not very effective in electrode activity are dissolved, and a platinum group rich in electrode catalyst ability is dissolved. A highly active catalyst alloy powder enriched with elements is obtained. In this case, the platinum group element contained in the alloy functions as a cathode, and hydrogen generation actively occurs on the platinum group element. This hydrogen generation guarantees the dissolution of the element that is not very effective in the electrode activity, so that the element is dissolved in the element that is not very effective in the electrode activity, resulting in a highly active catalyst alloy powder enriched in the platinum group element that is effective in the electrode activity. When this is further coated on a conductor, a highly active electrode is obtained.

次ぎに本発明の各項目を説明する。 Next, each item of the present invention will be described.

本発明の第1の発明は、Ti、Zr、NbおよびTaからなる
群から選ばれる少なくとも1種とNi、Coのいずれか1種
または2種およびRu、Rh、Pd、IrおよびPtのいずれか1
種または2種以上からなる特願昭60−123111号、60−16
9764号、60−169765号、60−169767号、60−169766号お
よび61−154570号に記載の各種アモルファス合金とこれ
らに対応する平均組成の結晶質合金を用い、これらを水
素発生が停止するまでフッ化水素酸に浸漬してCo、Niお
よびバルブメタルを優先溶解させることによって得られ
る高活性触媒粉末である。
The first invention of the present invention relates to at least one selected from the group consisting of Ti, Zr, Nb and Ta, and any one or two of Ni and Co, and any one of Ru, Rh, Pd, Ir and Pt 1
Japanese Patent Application No. 60-123111, 60-16 consisting of two or more species
No. 9764, No. 60-169765, No. 60-169767, No. 60-169766 and No. 61-154570 using various amorphous alloys and crystalline alloys of the average composition corresponding to them, until they stop hydrogen generation. Highly active catalyst powder obtained by immersing in hydrofluoric acid to preferentially dissolve Co, Ni and valve metal.

本発明の第2の発明は、本発明の第1の発明で得られ
た高活性触媒粉末を炭素粉末および疎水性フッ素樹脂と
混合後導電性基盤に塗布し、加熱焼成して得られる高活
性電極である。
The second invention of the present invention relates to a high activity catalyst obtained by mixing the highly active catalyst powder obtained in the first invention of the present invention with carbon powder and a hydrophobic fluororesin, applying the mixture to a conductive substrate, and heating and calcining the mixture. Electrodes.

実施例1 市販の、Ni、Nb、Pt、Ruを所定の量秤量し、アルゴン
アーク溶解することによって結晶質母合金を作製した。
次いでアルゴン雰囲気中の単ロール法を用いてこの母合
金を再溶融急冷して、幅0.5〜1mm厚さ10〜40μmのリボ
ン状アモルファスNi−40原子%Nb−1.5原子%Ru−1.5原
子%Pt合金を得た。このリボン状合金を市販の46%フッ
化水素酸水溶液に水素の発生が終了するまで浸漬した。
この結果アモルファス合金リボンは黒色の粉末となっ
た。得られた粉末を水洗、吸引濾過し真空デシケーター
内で乾燥し、高活性触媒粉末を得た。透過電子顕微鏡観
察によれば高活性触媒粉末の粒径は1〜3nmであった。
高活性触媒粉末、炭素粉末、PTFEおよびショ糖を重量比
で7対3対3対10の割合で乳鉢に取り十分に練り合わせ
ペースト状混合物を得た。予め、PTFEに浸漬したのち10
0℃5分間の熱処理を施し撥水性をもたせた厚さ0.5mmの
炭素紙に上記ペースト状混合物を塗布し、窒素気流中37
0℃で20分間焼成し、撥水性を備えたガス透過性多孔質
電極を得た。
Example 1 A commercially available crystalline mother alloy was prepared by weighing a predetermined amount of commercially available Ni, Nb, Pt, and Ru and dissolving it with an argon arc.
Then, the master alloy was re-melted and quenched by a single roll method in an argon atmosphere to obtain a ribbon-like amorphous Ni-40 atomic% Nb-1.5 atomic% Ru-1.5 atomic% Pt having a width of 0.5 to 1 mm and a thickness of 10 to 40 μm. An alloy was obtained. This ribbon-shaped alloy was immersed in a commercially available 46% aqueous hydrofluoric acid solution until hydrogen generation was completed.
As a result, the amorphous alloy ribbon became black powder. The obtained powder was washed with water, filtered by suction, and dried in a vacuum desiccator to obtain a highly active catalyst powder. According to transmission electron microscope observation, the particle size of the highly active catalyst powder was 1 to 3 nm.
The highly active catalyst powder, carbon powder, PTFE and sucrose were put in a mortar at a weight ratio of 7: 3: 3: 10 to obtain a paste-like mixture. Before soaking in PTFE, 10
The above paste-like mixture is applied to water-repellent, 0.5 mm-thick carbon paper subjected to a heat treatment at 0 ° C. for 5 minutes, and then subjected to a 37 ° C.
It was baked at 0 ° C. for 20 minutes to obtain a gas-permeable porous electrode having water repellency.

このようにして作製した撥水性を備えたガス透過性多
孔質電極を用い、30℃の1M H2SO4水溶液を電解質とし
て、上記の撥水性を備えたガス透過性多孔質電極の触媒
を塗布した面を電解質に接触させ、炭素紙側に水素ガス
を導入し、水素ガスの電解酸化を行った。また白金黒と
炭素粉末から作製した同様の電極を用い、水素ガスの酸
化活性を比較した。その結果、本発明の高活性電極の水
素の酸化に対する電極触媒活性は白金黒電極に比べて著
しく高く、例えば−0.24V(SCE)における水素の酸化の
電流は電極中の白金族元素1モル当り4×107Aであっ
て、白金黒の水素酸化電極の10倍であった。したがっ
て、本発明の活性触媒粉末を用いて作製した高活性電極
は水素の電解酸化に対して著しく高い活性を備えている
ことが明かとなった。
Using the water-repellent gas-permeable porous electrode prepared in this manner, the above water-repellent gas-permeable porous electrode catalyst is applied using a 1 M H 2 SO 4 aqueous solution at 30 ° C. as an electrolyte. The contacted surface was brought into contact with the electrolyte, hydrogen gas was introduced into the carbon paper side, and electrolytic oxidation of the hydrogen gas was performed. The oxidation activity of hydrogen gas was compared using the same electrode made from platinum black and carbon powder. As a result, the electrocatalytic activity of the highly active electrode of the present invention with respect to the oxidation of hydrogen is significantly higher than that of the platinum black electrode. For example, the current of the oxidation of hydrogen at -0.24 V (SCE) is increased per mole of platinum group element in the electrode. It was 4 × 10 7 A, 10 times that of the platinum black hydrogen oxidation electrode. Therefore, it was revealed that a highly active electrode produced using the active catalyst powder of the present invention has a remarkably high activity for electrolytic oxidation of hydrogen.

実施例2 実施例1と同様にして作製した種々の高活性触媒粉末
を用い、実施例1と同様な方法で高活性電極を作製し
た。高活性触媒粉末の作製に用いたアモルファス合金と
得られた電極の触媒活性を第1表に示す。
Example 2 Various active catalyst powders produced in the same manner as in Example 1 were used to produce highly active electrodes in the same manner as in Example 1. Table 1 shows the amorphous alloys used for preparing the highly active catalyst powder and the catalytic activity of the obtained electrodes.

実施例3 市販のNi、Ti、Zr、Nb、Ta、Ru、Rh、Pd、Ir、Ptを所
定の量秤量し、アルゴンアーク溶解することによって結
晶質母合金を作製した。これをハンマーで粉砕したの
ち、市販の46%フッ化水素酸水溶液に水素の発生が終了
するまで浸漬した。この結果合金は黒色の粉末となっ
た。得られた粉末を水洗、吸引濾過し真空デシケーター
内で乾燥し、高活性触媒粉末を得た。なお、特に活性の
高い合金には2%のフッ化水素酸を用いたが、フッ化水
素酸に浸漬中あるいはその後の水洗中に、大気中の酸素
と反応して発火するので、これらの処理を窒素雰囲気で
行った。透過電子顕微鏡観察によれば高活性触媒粉末の
粒径は1〜3nmであった。高活性触媒粉末、炭素粉末、P
TFEおよびショ糖を重量比で7対3対3対10の割合で乳
鉢に取り十分に練り合わせペースト状混合物を得た。予
め、PTFEに浸漬したのち100℃5分間の熱処理を施し撥
水性をもたせた厚さ0.5mmの炭素紙に上記ペースト状混
合物を塗布し、窒素気流中370℃で20分間焼成し、撥水
性を備えたガス透過性多孔質電極を得た。
Example 3 Commercially available Ni, Ti, Zr, Nb, Ta, Ru, Rh, Pd, Ir, and Pt were weighed to a predetermined amount and melted with an argon arc to prepare a crystalline mother alloy. This was pulverized with a hammer and then immersed in a commercially available 46% aqueous hydrofluoric acid solution until the generation of hydrogen was completed. As a result, the alloy became a black powder. The obtained powder was washed with water, filtered by suction, and dried in a vacuum desiccator to obtain a highly active catalyst powder. Although 2% hydrofluoric acid was used for a particularly active alloy, it reacts with oxygen in the atmosphere during immersion in hydrofluoric acid or during subsequent washing with water. Was performed in a nitrogen atmosphere. According to transmission electron microscope observation, the particle size of the highly active catalyst powder was 1 to 3 nm. Highly active catalyst powder, carbon powder, P
TFE and sucrose were put in a mortar at a weight ratio of 7: 3: 3: 10 to obtain a paste-like mixture. Preliminarily immersed in PTFE, heat-treated at 100 ° C for 5 minutes, and applied the above paste-like mixture to water-repellent 0.5 mm thick carbon paper. The obtained gas permeable porous electrode was obtained.

このようにして作製した撥水性を備えたガス透過性多
孔質電極を用い、30℃の1M H2SO4水溶液を電解質とし
て、上記の撥水性を備えたガス透過性多孔質電極の触媒
を塗布した面を電解質に接触させ、炭素紙側に水素ガス
を導入し、水素ガスの電解酸化を行った。高活性触媒粉
末の作製に用いた合金と得られた電極の触媒活性を第2
表に示す。
Using the water-repellent gas-permeable porous electrode prepared in this manner, the above water-repellent gas-permeable porous electrode catalyst is applied using a 1 M H 2 SO 4 aqueous solution at 30 ° C. as an electrolyte. The contacted surface was brought into contact with the electrolyte, hydrogen gas was introduced into the carbon paper side, and electrolytic oxidation of the hydrogen gas was performed. The catalytic activity of the alloy used to prepare the highly active catalyst powder and the resulting electrode was
It is shown in the table.

この様に、本発明の種々の高活性触媒粉末を用いて作
製した本発明の高活性電極は何れも水素ガスの電解酸化
に対して著しく高い活性を備えていることが明かとなっ
た。
As described above, it was revealed that the highly active electrode of the present invention prepared using the various highly active catalyst powders of the present invention has remarkably high activity for electrolytic oxidation of hydrogen gas.

発明の効果 以上記述したとおり、本発明に用いた合金は、高価な
白金族元素がきわめて低温度であるにも拘らず、これを
用いて作製した高活性触媒粉末はきわめて高い触媒活性
を発揮し、このため、これら高活性触媒粉末から作製し
た高活性電極は水素ガスの電解酸化に対して著しく高い
電極触媒活性を備えている。
Effect of the Invention As described above, the alloy used in the present invention has an extremely high catalytic activity, even though the expensive platinum group element is at a very low temperature. Therefore, a highly active electrode produced from these highly active catalyst powders has a remarkably high electrocatalytic activity against electrolytic oxidation of hydrogen gas.

また、本発明は、合金の作製に一般に用いられる溶解
法などによって作製される通常の合金でもよく単ロール
法を始めとする液体急冷法で作られたリボン状アモルフ
ァス合金でもよい。これらをフッ化水素酸に浸漬するこ
とによって作られるため、アモルファス合金粉末を作製
するような特殊な装置を必要とせず、また粉末触媒を作
製するような組成上の制限を受けない。
Further, the present invention may be a normal alloy produced by a melting method generally used for producing an alloy, or a ribbon-like amorphous alloy produced by a liquid quenching method such as a single roll method. Since these are produced by immersing them in hydrofluoric acid, there is no need for a special device for producing an amorphous alloy powder, and there is no restriction on the composition for producing a powder catalyst.

したがって、本発明の高活性触媒粉末ならびに高活性
電極の作製には、特に複雑で高価な操作を必要とせず、
またこうして作られる本発明の高活性触媒粉末と高活性
電極は水素ガスの酸化に対して優れた触媒活性を備え実
用性に優れている。
Therefore, the preparation of the highly active catalyst powder and highly active electrode of the present invention does not require particularly complicated and expensive operations,
The highly active catalyst powder and the highly active electrode of the present invention thus produced have excellent catalytic activity against oxidation of hydrogen gas and are excellent in practicality.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01J 23/40,23/89 H01M 4/90 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) B01J 23 / 40,23 / 89 H01M 4/90

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ti、Zr、NbおよびTaのバルブメタルからな
る群から選ばれる少なくとも1種とRu、Rh、Pd、Irおよ
びPtの白金族金属の群から選ばれる少なくとも1種と残
部実質的にNiおよびCoの少なくとも1種からなる合金を
フッ化水素酸に浸漬し、バルブメタルならびにNiおよび
Coの優先溶解を水素の発生が終了するまで行うことによ
って得られる水素−空気燃料電池用高活性触媒粉末。
At least one selected from the group consisting of valve metals of Ti, Zr, Nb and Ta, at least one selected from the group of platinum group metals of Ru, Rh, Pd, Ir and Pt, and substantially the remainder. An alloy consisting of at least one of Ni and Co is immersed in hydrofluoric acid, and a valve metal and Ni and
Highly active catalyst powder for hydrogen-air fuel cells obtained by performing preferential dissolution of Co until hydrogen generation is completed.
【請求項2】前記合金が触媒活性に有効な元素を少量含
有する請求項1記載の水素−空気燃料電池用高活性触媒
粉末。
2. The highly active catalyst powder for a hydrogen-air fuel cell according to claim 1, wherein said alloy contains a small amount of an element effective for catalytic activity.
【請求項3】Ti、Zr、NbおよびTaのバルブメタルからな
る群から選ばれる少なくとも1種とRu、Rh、Pd、Irおよ
びPtの白金族金属の群から選ばれる少なくとも1種と残
部実質的にNiおよびCoの少なくとも1種からなり、更に
必要に応じて触媒活性に有効な元素を少量添加した合金
をフッ化水素酸に浸漬し、バルブメタルならびにNiおよ
びCoの優先溶解を水素の発生が終了するまで行うことに
よって得られる高活性触媒粉末を炭素粉末および疎水性
フッ素樹脂と混合後導電性基盤に被覆し、加熱して焼成
した高活性電極。
3. At least one selected from the group consisting of valve metals of Ti, Zr, Nb and Ta, at least one selected from the group of platinum group metals of Ru, Rh, Pd, Ir and Pt, and substantially the remainder. An alloy consisting of at least one of Ni and Co, and further containing a small amount of an element effective for catalytic activity, if necessary, is immersed in hydrofluoric acid to produce preferential dissolution of valve metal and Ni and Co. A highly active electrode obtained by mixing the highly active catalyst powder obtained by performing the process until completion with carbon powder and a hydrophobic fluororesin, coating the conductive substrate, heating and firing.
JP2120069A 1990-05-11 1990-05-11 Highly active catalyst powder and highly active electrode for hydrogen-air fuel cells Expired - Lifetime JP2928586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120069A JP2928586B2 (en) 1990-05-11 1990-05-11 Highly active catalyst powder and highly active electrode for hydrogen-air fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120069A JP2928586B2 (en) 1990-05-11 1990-05-11 Highly active catalyst powder and highly active electrode for hydrogen-air fuel cells

Publications (2)

Publication Number Publication Date
JPH0418933A JPH0418933A (en) 1992-01-23
JP2928586B2 true JP2928586B2 (en) 1999-08-03

Family

ID=14777123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120069A Expired - Lifetime JP2928586B2 (en) 1990-05-11 1990-05-11 Highly active catalyst powder and highly active electrode for hydrogen-air fuel cells

Country Status (1)

Country Link
JP (1) JP2928586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102568A (en) * 2004-09-30 2006-04-20 Toyota Central Res & Dev Lab Inc Electrode catalyst, its production method and fuel cell
WO2007114525A1 (en) 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode catalyst for fuel cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740975B2 (en) 2006-01-06 2010-06-22 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7318977B2 (en) 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
JP5425472B2 (en) * 2006-01-06 2014-02-26 本田技研工業株式会社 Electrocatalysts containing platinum and titanium
US7691522B2 (en) 2006-03-09 2010-04-06 Honda Motor Co., Ltd. Platinum, titanium and copper, manganese and iron containing electrocatalysts
US7704628B2 (en) 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
CN105409042B (en) * 2013-05-14 2019-06-04 庄信万丰燃料电池有限公司 Catalyst
JP6040954B2 (en) * 2014-04-16 2016-12-07 トヨタ自動車株式会社 Method for producing fuel cell catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102568A (en) * 2004-09-30 2006-04-20 Toyota Central Res & Dev Lab Inc Electrode catalyst, its production method and fuel cell
JP4494919B2 (en) * 2004-09-30 2010-06-30 株式会社豊田中央研究所 Electrode catalyst, method for producing the same, and fuel cell
WO2007114525A1 (en) 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode catalyst for fuel cell
US7910512B2 (en) 2006-03-31 2011-03-22 Cataler Corporation Production process of electrode catalyst for fuel cell

Also Published As

Publication number Publication date
JPH0418933A (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US5041195A (en) Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
Lu et al. An investigation of electrode materials for the anodic oxidation of sulfur dioxide in concentrated sulfuric acid
US5133842A (en) Electrochemical cell having electrode comprising gold containing electrocatalyst
Huot et al. Low hydrogen overpotential nanocrystalline Ni‐Mo cathodes for alkaline water electrolysis
EP2917952B1 (en) Method for producing a catalyst for fuel cells
US3291753A (en) Catalyst preparation
US4126934A (en) Method for the manufacture of an electrode for electrochemical cells
US20100233574A1 (en) Method for producing electrode material for fuel cell, electrode material for fuel cell,and fuel cell using the electrode material for fuel cell
JP2002100373A (en) Manufacturing method of catalyzed porous carbon electrode for fuel cell
Prakash et al. Investigations of ruthenium pyrochlores as bifunctional oxygen electrodes
US4868073A (en) Highly active catalyst and highly active electrode made of this catalyst
WO2008080227A1 (en) Electrochemical oxidation of formic acid using a noble metal based catalyst with admetals
Swathirajan et al. Electrochemical Oxidation of Methanol at Chemically Prepared Platinum‐Ruthenium Alloy Electrodes
Prabhuram et al. Effects of incorporation of Cu and Ag in Pd on electrochemical oxidation of methanol in alkaline solution
WO2011099957A1 (en) Platinum monolayer on hollow, porous nanoparticles with high surface areas and method of making
JP2002289208A (en) Electrode catalyst for fuel cell and its manufacturing method
WO2011099956A1 (en) Platinum monolayer on alloy nanoparticles with high surface areas and methods of making
JP2928586B2 (en) Highly active catalyst powder and highly active electrode for hydrogen-air fuel cells
Gebhardt et al. A special type of Raney-alloy catalyst used in compact biofuel cells
EP0444138B1 (en) Electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods for using them
JP2002100374A (en) Electrode for fuel cell and its manufacturing method
JPH07246336A (en) Anode electrode catalyst for fuel cell and production thereof
EP0899348B1 (en) Co-tolerant platinum-zinc alloy suitable for use in a fuel cell electrode
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
US3779812A (en) Hydrophilic treatment for hydrophobic gas electrodes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

EXPY Cancellation because of completion of term