JP2926532B2 - Distance measurement method for oscillating floating structures - Google Patents

Distance measurement method for oscillating floating structures

Info

Publication number
JP2926532B2
JP2926532B2 JP33366693A JP33366693A JP2926532B2 JP 2926532 B2 JP2926532 B2 JP 2926532B2 JP 33366693 A JP33366693 A JP 33366693A JP 33366693 A JP33366693 A JP 33366693A JP 2926532 B2 JP2926532 B2 JP 2926532B2
Authority
JP
Japan
Prior art keywords
signal
distance
angle
sensor
swinging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33366693A
Other languages
Japanese (ja)
Other versions
JPH07190758A (en
Inventor
俊行 南立
和博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP33366693A priority Critical patent/JP2926532B2/en
Publication of JPH07190758A publication Critical patent/JPH07190758A/en
Application granted granted Critical
Publication of JP2926532B2 publication Critical patent/JP2926532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、揺動する浮体構造物に
おける距離測定方法、更に詳しくは、例えば、消防艇の
ような比較的小型船で波浪、潮流又は放水銃などの反力
を受けて揺動し、火災を起こしている大型船等との距離
が変化するような場合において好適な距離測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a distance in an oscillating floating structure, and more particularly, to a relatively small boat such as a fire-fighting boat, which receives a reaction force such as a wave, a tide or a water discharge gun. The present invention relates to a distance measuring method suitable for a case in which the distance to a large ship or the like that is oscillating and causing a fire changes.

【0002】[0002]

【従来の技術】一般に、2物体間の距離を計測する装置
としてレーザや超音波、或いは赤外線を用いた距離検出
装置が知られている。これら距離検出装置においては、
測定点から被測定点に設けられた反射鏡に光や音波を当
てることによってその距離を測定するようになってい
る。
2. Description of the Related Art Generally, as a device for measuring a distance between two objects, a distance detecting device using a laser, an ultrasonic wave, or an infrared ray is known. In these distance detection devices,
The distance is measured by irradiating light or sound waves from a measurement point to a reflecting mirror provided at the point to be measured.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の距離
検出装置を消防艇の如き揺動する海洋構造物に搭載して
も火災中の大型船の如き被測定物との距離を正確に計測
することができない。すなわち、第1点は被測定物に反
射鏡等を設置することができないこと、第2点は距離検
出装置を搭載した海洋構造物がローリングやピッチング
により光や音波の発射角が常に変化し、正確な距離は測
定することができないからである。本発明の目的は、係
る従来の問題点を克服することにある。
However, even if the conventional distance detecting device is mounted on a swinging marine structure such as a fire boat, the distance to a measured object such as a large ship in fire can be accurately measured. Can not do. In other words, the first point is that the reflector or the like cannot be installed on the object to be measured, and the second point is that the marine structure equipped with the distance detection device constantly changes the launch angle of light or sound wave by rolling or pitching, The exact distance cannot be measured. An object of the present invention is to overcome such a conventional problem.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明の揺動
する浮体構造物における距離測定方法は、揺動する浮体
構造物に、傾斜計と、揺動角検出センサーを有しかつ駆
動装置により3次元的に揺動可能な可動台と、該可動台
に水平方向に角度調整可能でかつ角度検出センサーを取
付けた2基の距離センサーとを配置し、前記傾斜計の信
号と前記揺動角センサーの信号とにより前記駆動装置を
駆動して前記可動台を作動させ、更に、前記角度センサ
ーの信号と前記距離センサーの信号とを演算装置に入力
して演算処理するようにしたことを特徴とする。
That is, a method of measuring the distance of a swinging floating structure according to the present invention is characterized in that the swinging floating structure has an inclinometer and a swing angle detection sensor on the swinging floating structure, and uses a driving device. A movable base capable of swinging three-dimensionally, and two distance sensors capable of adjusting the angle in the horizontal direction and having an angle detection sensor mounted on the movable base are arranged, and the signal of the inclinometer and the swing angle are provided. The driving device is driven by the signal of the sensor to operate the movable table, and further, the signal of the angle sensor and the signal of the distance sensor are input to a calculation device to perform a calculation process. I do.

【0005】[0005]

【作用】傾斜計により計測された浮体構造物の傾斜角信
号はCPUに入力され、こゝで揺動角検出センサーによ
り計測された可動台傾斜角の信号と比較され、差異があ
るときは、駆動信号が駆動装置に与えられて可動台の傾
斜角が制御される。そして、傾斜角信号と可動台傾斜角
の信号とが合致したとき、即ち、可動台が水平となった
とき、角度センサーの信号と2基の距離センサーからの
信号とがCPUの演算装置に入力され、こゝで三角測定
法により距離が計測される。
The tilt angle signal of the floating structure measured by the inclinometer is input to the CPU and compared with the signal of the movable platform tilt angle measured by the swing angle detection sensor. A drive signal is provided to the drive device to control the tilt angle of the movable table. When the tilt angle signal and the movable base tilt angle signal match, that is, when the movable base is horizontal, the signal of the angle sensor and the signals from the two distance sensors are input to the arithmetic unit of the CPU. Then, the distance is measured by triangulation.

【0006】そして、実際消防艇においては、この距離
計測信号が所定の距離信号と比較され変位が生じている
ときは、推進器やスラスターを制御して船位を定点に位
置するよう制御される。
In the actual fire boat, the distance measurement signal is compared with a predetermined distance signal, and when displacement occurs, the propulsion unit and the thruster are controlled so that the boat position is positioned at a fixed point.

【0007】[0007]

【実施例】以下、図面を参照しながら本発明の実施例に
ついて説明する。図1において、1は消防艇の如き比較
的小型の揺動する海洋構造物、2は火災を起こしている
大型船舶の如き被測定物である。海洋構造1には、距離
センサー3a,3bを有する可動台4が設けられると共
に、ローリングによる横傾斜角a及びピッチングによる
縦傾斜角bを検出する傾斜計5が配置されている。そし
てCPU6が搭載されている。7はスラスター、8は推
進器である。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 denotes a relatively small swinging marine structure such as a fire boat, and reference numeral 2 denotes an object to be measured such as a large ship causing a fire. The marine structure 1 is provided with a movable base 4 having distance sensors 3a and 3b, and an inclinometer 5 for detecting a horizontal inclination angle a by rolling and a vertical inclination angle b by pitching. And CPU6 is mounted. 7 is a thruster and 8 is a propulsion device.

【0008】詳述すれば、図3に示すように、可動台4
はモーターの如き第1の駆動装置9に連結されたX軸1
0と、同じくモーターの如き第2の駆動装置11に連結
されたY軸12とにより支持され3次元的に傾動可能な
ように構成されている。この可動台4上には、支持軸1
3を中心として水平方向に回動する2枚の支持板14
a,14bが取付けられ、更に、各支持板14a,14
b上に、夫々、距離センサー3a,3bが配置されてい
る。15は角度センサーであって距離センサー3a,3
bの角αを検出するものである。
More specifically, as shown in FIG.
Is an X-axis 1 connected to a first drive 9 such as a motor
0 and a Y-axis 12 also connected to a second drive device 11 such as a motor, and is configured to be three-dimensionally tiltable. A support shaft 1 is provided on the movable base 4.
Two support plates 14 that rotate in the horizontal direction about 3
a, 14b are attached, and further, each support plate 14a, 14b
b, distance sensors 3a and 3b are arranged respectively. Reference numeral 15 denotes an angle sensor which is a distance sensor 3a, 3
This is to detect the angle α of b.

【0009】そして、可動台4にも縦傾斜角θ1 を検出
する第1の揺動角センサー16と、横傾斜角θ2 を検出
する第2の揺動角センサー17とが配置されている。上
記の傾斜計5で検出された海洋構造物1の横傾斜角aの
信号V1 と縦傾斜角bの信号V2 、角度センサー15の
信号V3 及び第1の揺動角センサー16の信号V4 、第
2の揺動角センサー17の信号V5 は、夫々、CPU6
に入力され、必要により制御信号V6 ,V7 が作成さ
れ、そして、この制御信号V6 ,V7 が第1の駆動装置
9及び第2の駆動装置11に与えられる。
The movable table 4 is also provided with a first swing angle sensor 16 for detecting the vertical tilt angle θ 1 and a second swing angle sensor 17 for detecting the horizontal tilt angle θ 2 . . Horizontal angle of inclination a signal V 1 and the longitudinal inclination angle b signal V 2 of the above-mentioned inclinometer 5 marine structure 1 detected by the angle sensor 15 signals V 3 and the signal of the first swinging angle sensor 16 V 4 and the signal V 5 of the second swing angle sensor 17 are output from the CPU 6
, And if necessary, control signals V 6 and V 7 are created, and the control signals V 6 and V 7 are given to the first driving device 9 and the second driving device 11.

【0010】即ち、図4に示されるように、傾斜計5か
らの信号V1 ,V2 は、CPU6の比較器18に入力さ
れ、この比較器18で第1の揺動角センサー16の信号
4及び第2の揺動角センサー17の信号V5 と夫々比
較される。具体的には、ローリングによる横傾斜角aと
可動台4の横傾斜角θ2 、ピッチングによる縦傾斜角b
と可動台4の縦傾斜角θ1 とが夫々比較され差があると
きは、夫々、制御信号でV6 ,V7 が作成され、第1の
駆動装置9及び第2の駆動装置11が制御され、可動台
4が水平となるよう傾動角が調整される。
That is, as shown in FIG. 4, the signals V 1 and V 2 from the inclinometer 5 are input to a comparator 18 of the CPU 6, and the comparator 18 outputs a signal of the first swing angle sensor 16. V 4 and the signal V 5 of the second swing angle sensor 17 are compared respectively. Specifically, the horizontal tilt angle a due to rolling, the horizontal tilt angle θ 2 of the movable base 4, and the vertical tilt angle b due to pitching
And the vertical tilt angle θ 1 of the movable base 4 are compared with each other, and if there is a difference, V 6 and V 7 are created by the control signals, respectively, and the first driving device 9 and the second driving device 11 The tilt angle is adjusted so that the movable table 4 is horizontal.

【0011】そして、この信号V1 ,V2 と上記の信号
4 ,V5 とが一致すると、制御信号V6 ,V7 は停止
され、第1の駆動装置9と第2の駆動装置11とが停止
する。そして、比較器18からの信号V8 が演算装置1
9に与えられる。このとき、角度センサー15の信号V
3 、即ち、距離センサー3a,3bの水平角αは、CP
U6の演算装置19に入力されているため、図2に示さ
れるように、この角度αと距離センサー3a,3bによ
り求められる大型船舶などの被測定物2の側壁2aとの
距離Lの信号V9 により三角測定法により距離L′が求
められ、その信号V10が出力される。この信号V10は、
船舶制御装置20に入力されスラスター7や推進器8の
制御信号として用いられるのである。
When the signals V 1 and V 2 match the above signals V 4 and V 5 , the control signals V 6 and V 7 are stopped, and the first driving device 9 and the second driving device 11 are stopped. Stops. Then, the signal V 8 from the comparator 18 is applied to the arithmetic unit 1
9 given. At this time, the signal V of the angle sensor 15
3 , that is, the horizontal angle α of the distance sensors 3a and 3b is CP
As shown in FIG. 2, the signal V of this angle α and the distance L between the angle α and the side wall 2a of the DUT 2 such as a large ship, which is obtained by the distance sensors 3a and 3b, is input to the arithmetic unit 19 of U6. distance L 'is determined by triangulation method by 9, that signal V 10 is outputted. This signal V 10 is,
It is input to the ship control device 20 and used as a control signal for the thruster 7 and the propulsion device 8.

【0012】この実施例においては、揺動する海洋構造
物を消防艇として説明したが、本発明は、これに限定さ
れるものではなく、一般の測量船としてもよく、また、
被測定物は垂直面がある海洋構造物や岸壁等であっても
適用可能である。
In this embodiment, the swinging marine structure has been described as a fire boat, but the present invention is not limited to this, and may be a general surveying vessel.
The object to be measured can be applied even to a marine structure or a quay having a vertical surface.

【0013】[0013]

【発明の効果】以上の説明から明らかなように、本発明
によれば、被測定物に特別の測定点を定める必要もな
く、しかも、動揺による傾斜角を補正した後に、その距
離が測定されるため、正確な距離測定が可能となり、こ
の測定結果に基づいて海洋構造物の定点保持の自動化を
計ることができるという効果がある。
As is apparent from the above description, according to the present invention, it is not necessary to set a special measurement point on the object to be measured, and the distance is measured after the inclination angle due to the shaking is corrected. Therefore, an accurate distance measurement can be performed, and it is possible to automate the maintenance of the fixed point of the marine structure based on the measurement result.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による揺動する海洋構造物と被測定物と
の概略側面図である。
FIG. 1 is a schematic side view of an oscillating marine structure and an object to be measured according to the present invention.

【図2】本発明による揺動する海洋構造物と被測定物と
の平面図である。
FIG. 2 is a plan view of a swinging marine structure and an object to be measured according to the present invention.

【図3】信号入出力系統図である。FIG. 3 is a signal input / output system diagram.

【図4】CPUの信号処理系統図である。FIG. 4 is a signal processing system diagram of a CPU.

【符号の説明】[Explanation of symbols]

1 海洋構造物 3 大型船舶 3a,3b 距離センサー 4 可動台 5 傾斜計 6 CPU 7 スラスター 8 推進器 9 第1の駆動装置 10 X軸 11 第2の駆動装置 12 Y軸 13 支持軸 14a,14b 支
持板 15 角度センサー 16 第1の揺動角
センサー 17 第2の揺動角センサー 18 比較器 19 演算装置 20 船舶制御装置
DESCRIPTION OF SYMBOLS 1 Offshore structure 3 Large vessel 3a, 3b Distance sensor 4 Movable table 5 Inclinometer 6 CPU 7 Thruster 8 Propeller 9 First drive unit 10 X axis 11 Second drive unit 12 Y axis 13 Support shaft 14a, 14b Support Plate 15 Angle sensor 16 First swing angle sensor 17 Second swing angle sensor 18 Comparator 19 Computing device 20 Ship control device

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01C 3/00 - 3/32 G01C 15/00 - 15/14 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01C 3/00-3/32 G01C 15/00-15/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 揺動する浮体構造物に、傾斜計と、揺動
角検出センサーを有しかつ駆動装置により3次元的に揺
動可能な可動台と、該可動台に水平方向に角度調整可能
でかつ角度検出センサーを取付けた2基の距離センサー
とを配置し、前記傾斜計の信号と前記揺動角センサーの
信号とにより前記駆動装置を駆動して前記可動台を作動
させ、更に、前記角度センサーの信号と前記距離センサ
ーの信号とを演算装置に入力して演算処理するようにし
たことを特徴とする揺動する浮体構造物における距離測
定方法。
1. A movable base having an inclinometer and a swing angle detection sensor on a swinging floating structure and capable of swinging three-dimensionally by a driving device, and adjusting an angle of the movable base in a horizontal direction. A possible distance sensor and two distance sensors mounted with an angle detection sensor are arranged, and the movable unit is operated by driving the driving device according to the signal of the inclinometer and the signal of the swing angle sensor, A method for measuring a distance in a swinging floating structure, wherein a signal from the angle sensor and a signal from the distance sensor are input to an arithmetic device to perform arithmetic processing.
JP33366693A 1993-12-27 1993-12-27 Distance measurement method for oscillating floating structures Expired - Fee Related JP2926532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33366693A JP2926532B2 (en) 1993-12-27 1993-12-27 Distance measurement method for oscillating floating structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33366693A JP2926532B2 (en) 1993-12-27 1993-12-27 Distance measurement method for oscillating floating structures

Publications (2)

Publication Number Publication Date
JPH07190758A JPH07190758A (en) 1995-07-28
JP2926532B2 true JP2926532B2 (en) 1999-07-28

Family

ID=18268615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33366693A Expired - Fee Related JP2926532B2 (en) 1993-12-27 1993-12-27 Distance measurement method for oscillating floating structures

Country Status (1)

Country Link
JP (1) JP2926532B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909281B2 (en) * 2002-07-03 2005-06-21 Fisher Controls International Llc Position sensor using a compound magnetic flux source
WO2022249630A1 (en) * 2021-05-25 2022-12-01 古野電気株式会社 Vessel navigation assistance device, vessel navigation assistance method, and vessel navigation assistance program

Also Published As

Publication number Publication date
JPH07190758A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
KR101252042B1 (en) Laser scanning for mooring robot
US6285628B1 (en) Swept transit beam bathymetric sonar
JP6661708B2 (en) Ship berthing support equipment
US4144518A (en) Stabilized-transducer driving device for underwater ultrasonic detection system
EP0174189B1 (en) Automatic anchor watching control system
KR101879724B1 (en) Thrust keeping device for a small boat
JP2926532B2 (en) Distance measurement method for oscillating floating structures
JP2002090456A (en) Topographic measuring apparatus
US5390152A (en) Forward looking echosounder
JPH10123247A (en) Real-time underwater execution control method
KR102076775B1 (en) Unmanned Air Boat for Safety Inspection of Sub-Bottom of Landing Pier and Inside of Medium-Large Sized Culvert
JP2001356015A (en) Wave measuring system
JPH1159918A (en) Unloader, and its operating method
JP2001116829A (en) Method of holding position and azimuth for underwater acoustic tester
JPH06300838A (en) Underwater object position detector
JP2011066276A (en) Sunlight tracking device for ship
JP2017156303A (en) Water bottom altitude detection device, underwater sailing body, and water bottom altitude detection method
CN220509134U (en) Laser ranging device for preventing ship from colliding with bridge
JPH0694445A (en) Road face roughness measuring vehicle
JP2001343237A (en) Depth-measuring method and device
JPH0762684A (en) Measuring system for position of underwater working machine
WO2023286361A1 (en) Ship sailing assistance system, and ship sailing assistance method
JP2547303B2 (en) Underwater position measurement method
JP6994808B2 (en) Hull speed measuring device and hull speed measuring program
JPH0534451A (en) Echo ranging device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990323

LAPS Cancellation because of no payment of annual fees