JP2925628B2 - Manufacturing method of antibacterial fiber - Google Patents

Manufacturing method of antibacterial fiber

Info

Publication number
JP2925628B2
JP2925628B2 JP2041141A JP4114190A JP2925628B2 JP 2925628 B2 JP2925628 B2 JP 2925628B2 JP 2041141 A JP2041141 A JP 2041141A JP 4114190 A JP4114190 A JP 4114190A JP 2925628 B2 JP2925628 B2 JP 2925628B2
Authority
JP
Japan
Prior art keywords
silver
antibacterial
cdpet
polyester
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2041141A
Other languages
Japanese (ja)
Other versions
JPH03130465A (en
Inventor
裕義 埜渡
泰男 黒田
剛 毛利
勇次 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to KR1019900702420A priority Critical patent/KR920700326A/en
Priority to EP19900904417 priority patent/EP0426862A4/en
Priority to PCT/JP1990/000299 priority patent/WO1990010746A1/en
Priority to CA 2028131 priority patent/CA2028131A1/en
Publication of JPH03130465A publication Critical patent/JPH03130465A/en
Application granted granted Critical
Publication of JP2925628B2 publication Critical patent/JP2925628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、構造中にスルホン酸基及び/又はスルホネ
ート基を有するいわゆるカチオン染料可染型ポリエステ
ル繊維(以後CDPETと略す)を加工し、抗菌性を付与す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention processes a so-called cationic dye dyeable polyester fiber (hereinafter abbreviated as CDPET) having a sulfonic acid group and / or a sulfonate group in a structure, and is used for antibacterial treatment. It relates to a method for imparting properties.

抗菌性の素材は今日生活の隅々まで普及し利用されて
いる。また産業面では、食肉工場等の食品工業、医療等
の現場、医薬品等の製造業等においては、不可欠の物と
なりつつある。将来的にも社会の高齢化とともに、その
重要性は益々増大すると考えられている。
Antimicrobial materials are widely used and used today in every corner of life. On the industrial side, it is becoming indispensable in the food industry such as meat factories, medical sites and the like, and the manufacturing industry of pharmaceuticals and the like. It is believed that its importance will continue to increase with the aging of society in the future.

(従来の技術) ポリエステル繊維(以後PETと略す)は汎用性の高い
素材であり衣類はもちろん、色々な産業分野での利用が
盛んである。しかしPETについては成形後、表面処理に
よって素材に抗菌性を付与する効果的な方法が無く、そ
の技法の開発が長年待ち望まれていた。
(Prior art) Polyester fiber (hereinafter abbreviated as PET) is a highly versatile material and is widely used in various industrial fields as well as clothing. However, for PET, there is no effective method of imparting antibacterial properties to the material by surface treatment after molding, and development of such a technique has been awaited for many years.

繊維製品およびプラスチック類を金属銀または銀化合
物で処理し、それらに抗菌性を付与するという考えは古
くから有り公知である。しかし銀イオンの反応性を詳し
く検討し、その量的な検討にまで研究をすすめた例は皆
無であった。その結果、銀を利用した抗菌性素材はイオ
ン交換基が比較的多量に導入し得る繊維や、加工によっ
てイオン交換基が導入し得る繊維、メッキが可能なプラ
スチック等に限られていた。またその場合、銀の使用量
は、経済的な許容範囲を超えて多量に必要であるとされ
ている。たとえば、特開昭52−92000によると、銀の有
効な濃度範囲は0.1ミリ当量/グラム繊維以上とされて
おり、実施例では0.69ミリ当量/グラム繊維の銀が使用
されている。これは繊維あたりそれぞれ重量で1%およ
び7%と大量の銀を使用したことになる。これは経済的
に見て実用上問題がある。
The idea of treating textiles and plastics with metallic silver or silver compounds to impart antimicrobial properties to them has long been known. However, there have been no examples in which the reactivity of silver ions has been studied in detail, and studies have been carried out even to quantitative studies. As a result, antibacterial materials using silver have been limited to fibers into which ion exchange groups can be introduced in a relatively large amount, fibers into which ion exchange groups can be introduced by processing, and plastics that can be plated. In such a case, it is said that the amount of silver used is required to exceed the economically acceptable range. For example, according to Japanese Patent Laid-Open No. 52-92000, the effective concentration range of silver is 0.1 meq / g fiber or more, and in the examples, 0.69 meq / g fiber of silver is used. This means that a large amount of silver was used, 1% and 7% by weight per fiber, respectively. This has a practical problem in terms of economy.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

PETはその構造中に化学的に活性な基をもたない。た
だ一部、染色性を改良する目的で、スルホン酸基及び/
又はスルホネート基が導入されたCDPETが存在する。し
かし繊維の性能を損なわずに導入できるスルホン酸基及
び/又はスルホネート基の量はたいへんすくない。した
がって従来の技術で銀イオンまたは銀によって繊維の表
面処理をすることは実用的な方法としては考慮されてお
らず、PETに抗菌性化合物をねりこんで抗菌性を付与す
るという制限の多い方法が従来採用されていた。
PET has no chemically active groups in its structure. However, for the purpose of improving the dyeability, the sulfonic acid group and / or
Alternatively, there is CDPET into which a sulfonate group has been introduced. However, the amount of sulfonic acid groups and / or sulfonate groups that can be introduced without impairing the performance of the fiber is very small. Therefore, surface treatment of fibers with silver ions or silver with conventional technology is not considered as a practical method, and there are many limited methods of imparting antibacterial properties by injecting antibacterial compounds into PET. Previously employed.

前述の様に、PETには染色性を改良するために、繊維
中に少量のスルホン酸基及び/又はスルホネート基を有
しているものが有り、それらに従来の方法で銀イオンお
よび金属銀を付着又は結合させる処理を行ったCDPET
は、抗菌力も弱く、効果の持続性もほとんど認められな
い。本発明者等は、CDPETの利用について、さらに検討
した結果、従来の技術では、使用した銀のほとんどは繊
維に付着せず、又、繊維または樹脂上にわずかに付着し
たとしても、銀および銀イオンの付着状態は不均一であ
り、銀の表面積が小さく、かつアグリゲートした銀イオ
ンおよび銀は洗濯等の物理的な処理で簡単に離脱するこ
とが判明した。
As described above, some PETs have a small amount of sulfonic acid group and / or sulfonate group in the fiber in order to improve the dyeability, and silver ion and metallic silver are added to them by a conventional method. CDPET treated to attach or bind
Has weak antibacterial activity and little sustained effect. The present inventors have further studied the use of CDPET, and as a result, in the conventional technology, most of the silver used does not adhere to the fiber, and even if it adheres slightly to the fiber or the resin, silver and silver are used. It was found that the state of ion attachment was non-uniform, the silver surface area was small, and the aggregated silver ions and silver were easily detached by physical treatment such as washing.

(課題を解決するための手段) 本発明者等はCDPET上に、銀のアグリゲートをさけ
て、均一に銀を付着又は結合させる方法について、鋭意
検討した結果、本発明を完成するに至った。
(Means for Solving the Problems) The present inventors have conducted intensive studies on a method for uniformly attaching or bonding silver on CDPET while avoiding silver aggregates, and as a result, the present invention has been completed. .

(1)構造中にスルホン酸基及び/又はスルホネート基
を有するポリエステル繊維に、水中で水溶性銀化合物を
反応させるに際して、ポリエステルのガラス転移温度以
上の温度で反応を行うことを特徴とする抗菌性ポリエス
テル繊維の製造方法、 (2)構造中にスルホン酸基及び/又はスルホネート基
を有するポリエステル繊維に、水中で水溶性銀化合物を
ポリエステルのガラス転移温度以上の温度で反応させ、
次いで還元剤で処理することを特徴とする抗菌性ポリエ
ステル繊維の製造方法、 (3)ポリエステル繊維に水中で水溶性銀化合物を反応
させる際に、水溶液のpHを5以下とすることを特徴とす
る上記(1)又は(2)記載の製造方法 に関する。
(1) An antibacterial property characterized in that when a water-soluble silver compound is reacted in water with a polyester fiber having a sulfonic acid group and / or a sulfonate group in the structure, the reaction is performed at a temperature equal to or higher than the glass transition temperature of the polyester. A method for producing a polyester fiber, (2) reacting a water-soluble silver compound in water with a polyester fiber having a sulfonic acid group and / or a sulfonate group in a structure at a temperature equal to or higher than the glass transition temperature of the polyester;
Next, a method for producing an antibacterial polyester fiber characterized by treating with a reducing agent. (3) When reacting a water-soluble silver compound with water in the polyester fiber, the pH of the aqueous solution is adjusted to 5 or less. The present invention relates to the production method according to the above (1) or (2).

本発明で用いるCDPET(構造中にスルホン酸基及び/
又はスルホネート基を有するポリエステル繊維)として
は、特別にスルホン酸基及び/又はスルホネート基の量
を増加させた繊維または樹脂の使用も可能であるが、普
通に市販されているカチオン染料可染型ポリエステル
(CDPET)およびそれらの原糸が混紡されているポリエ
ステル布あるいと糸全般が使用され得る。
CDPET used in the present invention (a sulfonic acid group and / or
Or a polyester fiber having a sulfonate group), it is possible to use a fiber or a resin in which the amount of sulfonic acid groups and / or sulfonate groups is particularly increased. Polyester fabrics and yarns (CDPET) and their yarns are blended can be used.

CDPETは、通常、主としてテレフタル酸及び/又はフ
タル酸(誘導体)と多価アルコールとの脱水重縮合反応
で得られるポリエステル繊維のうち、構造中にスルホン
酸基及び/又はスルホネート基を有するものであり、前
記(1)、(2)又は(3)の処理を行った場合に1〜
1000ppm又はそれ以上の銀を付着又は結合することがで
きるスルホン酸基量及び/又はスルホネート基量を有す
るCDPETであれば、いずれも使用できる。フタル酸(誘
導体)としては、フタル酸、イソフタル酸、パラオキシ
安息香酸、2−スルホテレフタル酸等が、又、多価アル
コールとしては、エチレングライコール、ペンタエリス
リトール、オリゴエチレングライコール等が使用されて
いる。
CDPET is generally a polyester fiber obtained mainly by a dehydration polycondensation reaction between terephthalic acid and / or phthalic acid (derivative) and a polyhydric alcohol and has a sulfonic acid group and / or a sulfonate group in the structure. When the processing of (1), (2) or (3) is performed,
Any CDPET having an amount of sulfonic acid group and / or an amount of sulfonate group capable of adhering or binding 1000 ppm or more of silver can be used. As phthalic acid (derivative), phthalic acid, isophthalic acid, paraoxybenzoic acid, 2-sulfoterephthalic acid and the like are used. As polyhydric alcohols, ethylene glycol, pentaerythritol, oligoethylene glycol and the like are used. I have.

本発明で使用される水溶性銀化合物としては、一般的
には硝酸銀が好ましいが、弗化銀、過塩素酸銀、硫酸
銀、乳酸銀、テトラフルオロ硼酸銀、酢酸銀等も使用す
ることができる。
As the water-soluble silver compound used in the present invention, silver nitrate is generally preferable, but silver fluoride, silver perchlorate, silver sulfate, silver lactate, silver tetrafluoroborate, silver acetate, and the like may also be used. it can.

市販されているCDPETのガラス転移温度はCDPETの種類
によって異なるが、一般に70〜90℃である。従って、通
常、反応温度(処理浴温度)を90℃以上とすれば、CDPE
Tのガラス転移温度以上となる。常圧において、処理浴
を沸騰させながら反応を行っても良い。又、加圧下で10
0℃以上の温度で反応を行ってもさしつかえない。反応
温度は、CDPETのガラス転移温度以上であれば特に限定
されないが、CDPETの特性を損なわないためには、200℃
以下であることが好ましく、特に90〜140℃が好まし
い。本発明方法を実施するには、一般には水溶性の銀化
合物の水溶液にCDPETを加え、撹拌しながら加熱して、
加えたCDPETのガラス転移温度以上の温度で反応させ
る。また、銀化合物の水溶液をあらかじめ加熱し、CDPE
Tのガラス転移温度以上の温度とした後に、CDPETを加え
反応させてもよい。
The glass transition temperature of commercially available CDPET varies depending on the type of CDPET, but is generally 70 to 90 ° C. Therefore, usually, if the reaction temperature (treatment bath temperature) is 90 ° C or higher, CDPE
It is higher than the glass transition temperature of T. At normal pressure, the reaction may be carried out while boiling the treatment bath. Also, under pressure 10
The reaction may be performed at a temperature of 0 ° C. or higher. The reaction temperature is not particularly limited as long as it is equal to or higher than the glass transition temperature of CDPET, but in order not to impair the properties of CDPET, 200 ° C.
The temperature is preferably as follows, and particularly preferably 90 to 140 ° C. In order to carry out the method of the present invention, CDPET is generally added to an aqueous solution of a water-soluble silver compound, and the mixture is heated with stirring.
The reaction is performed at a temperature equal to or higher than the glass transition temperature of the added CDPET. In addition, an aqueous solution of a silver compound is heated in advance, and CDPE
After the temperature is equal to or higher than the glass transition temperature of T, CDPET may be added and reacted.

浴比(CDPET:銀化合物水溶液)は1:10〜40(重量比)
が適当である。加熱処理時間は特に限定されないが、通
常10〜60分間行えば十分である。
Bath ratio (CDPET: silver compound aqueous solution) is 1: 10-40 (weight ratio)
Is appropriate. The heat treatment time is not particularly limited, but usually 10 to 60 minutes is sufficient.

水溶性銀化合物の使用量は、CDPETに付着又は結合さ
せたい銀の量、CDPETの種類及び反応条件によって決ま
る。通常市販されているCDPETの場合、CDPETに付着又は
結合させたい銀量の1〜5倍の銀量になるような量の水
溶性銀化合物を使用すればよい。
The amount of the water-soluble silver compound used depends on the amount of silver to be attached or bound to CDPET, the type of CDPET, and the reaction conditions. In the case of a commercially available CDPET, a water-soluble silver compound may be used in such an amount that the amount of silver becomes 1 to 5 times the amount of silver to be attached or bound to the CDPET.

上記の方法により、銀スルホネート基を有する目的と
する抗菌性CDPET(以下、本発明のCDPETということがあ
る)を得ることができる。
By the above method, the desired antibacterial CDPET having a silver sulfonate group (hereinafter sometimes referred to as the CDPET of the present invention) can be obtained.

本発明により得られた銀スルホネート基を有する抗菌
性CDPETは、着色が少なく、日光による変色、洗剤によ
る還元等もほとんどなく、生活衛生分野での応用を考え
る上で大変有利である。白色の布など、特に着色が問題
となる場合には、pHを調整して、酸性水溶液中で反応さ
せる方が好ましい。pHの調整は、緩衝溶液、酸等を用い
て行うことができるが、塩酸など銀と反応して沈殿を生
じる化合物の使用は好ましくない。通常は、酢酸、乳酸
あるいは酢酸緩衝溶液を用いて、pHを調整する。好まし
いpHの範囲は1〜5である。
The antibacterial CDPET having a silver sulfonate group obtained according to the present invention has little coloring, has little discoloration by sunlight, is hardly reduced by a detergent, and the like, and is very advantageous in considering applications in the field of living hygiene. When coloring is a problem, such as a white cloth, it is preferable to adjust the pH and react in an acidic aqueous solution. The pH can be adjusted using a buffer solution, an acid or the like, but it is not preferable to use a compound such as hydrochloric acid which reacts with silver to cause precipitation. Usually, the pH is adjusted using acetic acid, lactic acid or an acetate buffer solution. The preferred pH range is 1-5.

酸を単独で用いる場合には、酸濃度はpHにより規定さ
れる。緩衝溶液の濃度は特に規定されないが通常は0.01
mol/(酢酸)程度で十分である。このようにして得ら
れた抗菌性CDPETは、必要により、更に還元処理するこ
とにより銀微粒子が付着した抗菌性CDPETとすることが
出来る。還元処理を行う場合、還元剤としては比較的還
元力の強いものが好ましい。たとえば、ヒドロキシルア
ミン、ヒドラジン、ブトウ糖−苛性アルカリ、水素化ホ
ウ素ナトリウム等が使用できる。還元剤の好ましくは0.
1〜5重量%の水溶液を、銀スルホネート基を有する抗
菌性CDPETに対し好ましくは2〜30重量倍使用し、好ま
しくは95〜100℃で10分以上加熱することにより還元処
理を行うことが出来る。このようにして銀を付けられた
銀スルホネート基を有する抗菌性CDPET及び銀微粒子が
付着した抗菌性CDPETは銀の含有濃度が1〜1000ppm好ま
しくは10〜1000ppmという低濃度においても十分抗菌効
果を示す。前記のとおり、従来の方法では繊維に抗菌性
を付与させるために1%とか7%という極めて高い濃度
で銀を繊維に含有させる必要があった。これに対して、
本発明によれば、意外にも、銀濃度1〜1000ppmという
低濃度にもかかわらず強い抗菌効果を示し、又、洗濯堅
牢度も非常に優れている。これは、本発明の抗菌性CDPE
Tにおいては、繊維又は樹脂上に銀が均一に付着又は結
合しており、又、銀はアグリゲートせず、銀が非常に微
細な粒子の状態で存在しているためである。
If the acid is used alone, the acid concentration is defined by the pH. Although the concentration of the buffer solution is not particularly limited, it is usually 0.01
mol / (acetic acid) is sufficient. The antibacterial CDPET thus obtained can be further subjected to a reduction treatment, if necessary, to obtain an antibacterial CDPET to which silver fine particles have adhered. When performing a reduction treatment, a reducing agent having a relatively strong reducing power is preferable. For example, hydroxylamine, hydrazine, sugar-caustic, sodium borohydride and the like can be used. Preferably 0.1 of the reducing agent.
An aqueous solution of 1 to 5% by weight is preferably used in an amount of 2 to 30 times by weight of the antibacterial CDPET having a silver sulfonate group, and the reduction treatment can be carried out by heating at 95 to 100 ° C for 10 minutes or more. . The antibacterial CDPET having a silver sulfonate group to which silver is attached in this way and the antibacterial CDPET to which silver fine particles are adhered show a sufficient antibacterial effect even at a silver content of 1 to 1000 ppm, preferably as low as 10 to 1000 ppm. . As described above, in the conventional method, in order to impart antibacterial properties to the fiber, it was necessary to incorporate silver into the fiber at an extremely high concentration of 1% or 7%. On the contrary,
According to the present invention, surprisingly, a strong antibacterial effect is exhibited despite the low silver concentration of 1 to 1000 ppm, and the washing fastness is also extremely excellent. This is the antibacterial CDPE of the present invention.
In T, silver is uniformly adhered or bonded to the fiber or resin, and silver is not aggregated, and silver is present in a state of very fine particles.

上記本発明の方法に従って還元されて金属銀微粒子と
なったものは淡黄色であり、褐色〜暗褐色を呈する従来
技術品に対してこの面からも、本発明の方法により得ら
れた繊維及び樹脂は有利である。
What has been reduced according to the method of the present invention to be metallic silver fine particles is pale yellow, and from this aspect, the fibers and the resin obtained by the method of the present invention can be compared with the prior art product exhibiting brown to dark brown. Is advantageous.

本発明により得られた銀スルホネート基を有する抗菌
性CDPETおよび銀微粒子が付着した淡黄色の抗菌性CDPET
は、カチオン染料により、通常の処法で任意の色調に染
色可能である。或いは、CDPETを先ずカチオン染料によ
り常法で染色した後、本発明の方法で抗菌性を付与して
も良い。さらに、注意深く含有するハロゲン原子を除い
たカチオン染料を用いて、本発明の方法に従い、染色と
同時に抗菌性を付与することもできる。
Antibacterial CDPET having silver sulfonate group obtained by the present invention and pale yellow antibacterial CDPET to which silver fine particles are attached
Can be dyed with a cationic dye in an arbitrary color tone by an ordinary method. Alternatively, CDPET may be first stained with a cationic dye by a conventional method, and then imparted with antibacterial properties by the method of the present invention. Furthermore, antibacterial properties can be imparted simultaneously with dyeing according to the method of the present invention by using a cationic dye from which a halogen atom contained carefully is excluded.

本発明の抗菌性CDPETは、銀の濃度が極めて低いにも
かかわらず高い抗菌効果を示すので、銀の量を微量用い
れば十分であり、従って、人体に何等影響を及ぼさな
い。
Since the antibacterial CDPET of the present invention exhibits a high antibacterial effect even though the concentration of silver is extremely low, it is sufficient to use a small amount of silver, and therefore has no effect on the human body.

本発明の抗菌性CDPETは、有害な微生物に汚染される
可能性のあるあらゆる場所に、抗菌性素材として利用で
きる。例えば、手術用白衣、病院のカーテン、病院備え
つけのベッド、ソファー、枕カバー、スリッパの裏材、
或いはおしめカバー、衛生タンポン等に使用できる。
The antibacterial CDPET of the present invention can be used as an antibacterial material in any place where there is a possibility of contamination by harmful microorganisms. For example, surgical lab coats, hospital curtains, hospital-equipped beds, sofas, pillowcases, slipper backings,
Alternatively, it can be used for diaper covers, sanitary tampons, and the like.

本発明の抗菌性CDPETは、そのまま単独で用いてもよ
く、又、他の繊維との混紡若しくは交織として布地、ニ
ット製品、又は不織布となし使用することも出来る。
The antimicrobial CDPET of the present invention may be used alone as it is, or may be used without mixing with a fabric, a knit product, or a nonwoven fabric as a blended or interwoven fabric with other fibers.

(実施例) 次に具体的に実施例を示して本発明を説明する。しか
し本発明はこれらの実施例に限定されるものではない。
なお、抗菌力の試験は普通ブイヨン培地に懸濁させたSt
aphylococus aureus(スタフィロコッカス アウレウ
ス)あるいは、Klebsiella pneumoniae)クレブシーラ
プヌモニア)の菌を試験片に付着させ、37℃に18時間
保ち、その後試験片に付着している菌数を測定すること
で行った。又、洗濯試験はJIS L 0217 103に定められた
方法を30回繰り返した試験片の、抗菌効果の測定、原子
吸光法により残存銀量の測定によって行った。
(Examples) Next, the present invention will be described with specific examples. However, the present invention is not limited to these examples.
In addition, the test of the antibacterial activity was performed by using St.
aphylococus aureus (K. aureus) or Klebsiella pneumoniae (Klebsiella pneumonia) was allowed to adhere to the test piece, kept at 37 ° C for 18 hours, and then the number of bacteria attached to the test piece was measured. The washing test was carried out by measuring the antibacterial effect of a test piece obtained by repeating the method specified in JIS L 0217 103 30 times, and measuring the amount of residual silver by an atomic absorption method.

実施例1 スルホネート基を有するカチオン可染型ポリエステル
布(標準染色温度120℃)100重量部を、硝酸銀0.18重量
部を含有している沸騰水3000重量部に浸しこの状態を30
分保つ。放冷後処理布を取り出し,よく洗浄し、乾燥さ
せると銀スルホネート基を有するポリエステル布が得ら
れた。このカチオン可染型ポリエステル布について、原
子吸光法によって銀含量を測定したところ、840ppmの銀
が認められた。
Example 1 100 parts by weight of a cationic dyeable polyester cloth having a sulfonate group (standard dyeing temperature: 120 ° C.) was immersed in 3,000 parts by weight of boiling water containing 0.18 parts by weight of silver nitrate, and this state was changed to 30 parts.
Keep for a minute. After cooling, the treated cloth was taken out, washed well, and dried to obtain a polyester cloth having silver sulfonate groups. When the silver content of this cationic dyeable polyester fabric was measured by an atomic absorption method, 840 ppm of silver was recognized.

抗菌性の評価 上記の方法で得た処理布0.2グラムを採り、Staphloco
cas aureus ATCC6583Pの普通ブイヨン懸濁液(菌数8×
105個/ミリリットル)0.2ミリリットルを付着させる。
これを37℃に18時間保った後りん酸を含む緩衝生理食塩
水20ミリリットルで抽出した。この抽出液を標準寒天培
地に接種して菌数を測定した。その結果本発明による処
理布からの抽出液には120個/ミリリットルの菌が検出
された。一方銀を含まない無処理の対照布の抽出液は6
×108個/ミリリットルの菌を含んでいた。
Evaluation of antibacterial property Take 0.2 g of the treated cloth obtained by the above method and use Staphloco
Normal broth suspension of cas aureus ATCC6583P (Bacteria count 8 ×
10 5 / ml) 0.2 ml is applied.
This was kept at 37 ° C. for 18 hours and extracted with 20 ml of buffered saline containing phosphate. This extract was inoculated on a standard agar medium and the number of bacteria was measured. As a result, 120 bacteria / milliliter were detected in the extract from the treated cloth according to the present invention. On the other hand, the untreated control cloth extract containing no silver contained 6
× contained 10 8 cells / ml bacteria.

実施例2〜4 実施例1において、反応液中の硝酸銀の量を0.18重量
部の代りに0.09重量部、0.045重量部、0.01重量部とし
た以外は、実施例1と同様にして、それぞれの濃度の銀
を含有している処理布を得た。それらを実施例1と同様
の方法で評価した。結果を表1に示す。
Examples 2 to 4 In the same manner as in Example 1, except that the amount of silver nitrate in the reaction solution was changed to 0.09 parts by weight, 0.045 parts by weight, and 0.01 parts by weight instead of 0.18 parts by weight. A treated cloth containing silver in a concentration was obtained. They were evaluated in the same manner as in Example 1. Table 1 shows the results.

実施例5〜8 実施例1〜4で得た銀イオンを含有する布100重量部
を、それぞれヒドロキシルアミン0.5%水溶液500重量部
に浸し、30分間煮沸する。その後、水洗、乾燥して、銀
イオンが還元され金属銀として付着している処理布を得
た。それぞれ実施例1の場合と同様な方法で評価した。
結果を表2に示す。
Examples 5 to 8 100 parts by weight of the cloth containing silver ions obtained in Examples 1 to 4 are immersed in 500 parts by weight of a 0.5% aqueous solution of hydroxylamine, and boiled for 30 minutes. Thereafter, the cloth was washed with water and dried to obtain a treated cloth in which silver ions were reduced and adhered as metallic silver. Each was evaluated in the same manner as in Example 1.
Table 2 shows the results.

実施例9〜12 実施例1、3、5、7、で得た試験片について、JIS
L 0217 103の方法にしたがって30回洗濯を繰り返した。
その結果得られたサンプルについて、実施例1と同様な
方法で、銀量測定、抗菌力の評価を行った。結果を表3
に示す。
Examples 9 to 12 The test pieces obtained in Examples 1, 3, 5, and 7 were subjected to JIS.
The washing was repeated 30 times according to the method of L 0217 103.
The samples thus obtained were measured for silver content and evaluated for antibacterial activity in the same manner as in Example 1. Table 3 shows the results
Shown in

実施例13〜16 実施例1、3、5、7で得られた処理布に、Staphylo
cocas aureusの代りにKlebsiella pueumoniae ATCC4352
の普通ブイヨン懸濁液(菌数9×105個/ミリリット
ル)0.2ミリリットルを付着させた以外は、実施例1と
同様の方法で抗菌性能を試験した。銀を含まない無処理
の対照布の抽出液は8×108個/ミリリットルの菌を含
んでいた。結果を表4に示す。
Examples 13 to 16 Staphylo was added to the treated cloths obtained in Examples 1, 3, 5, and 7.
Klebsiella pueumoniae ATCC4352 instead of cocas aureus
The antimicrobial performance was tested in the same manner as in Example 1 except that 0.2 ml of the ordinary broth suspension (9 × 10 5 cells / ml) was adhered. The extract of the untreated control cloth without silver contained 8 × 10 8 bacteria / ml. Table 4 shows the results.

実施例17 実施例1において、硝酸銀の代りに乳酸銀0.17重量部
を用いた他は実施例1と同様にして試験片を得、抗菌試
験を行った。結果は実施例1とほぼ同様であった。
Example 17 A test piece was obtained and subjected to an antibacterial test in the same manner as in Example 1 except that 0.17 parts by weight of silver lactate was used instead of silver nitrate. The results were almost the same as in Example 1.

実施例18〜19 実施例5において、ヒドロキシルアミンの代りにヒド
ラジン0.5%水溶液500重量部又は水素化硼素ナトリウム
0.5%懸濁液500重量部を用いた以外は実施例5と同様に
して試験片を得、実施例1と同様にして抗菌試験を行っ
た。結果はいずれの場合も実施例5とほぼ同様であっ
た。
Examples 18 to 19 In Example 5, 500 parts by weight of a 0.5% aqueous solution of hydrazine or sodium borohydride was used in place of hydroxylamine.
A test piece was obtained in the same manner as in Example 5 except that 500 parts by weight of the 0.5% suspension was used, and an antibacterial test was performed in the same manner as in Example 1. The results were almost the same as in Example 5 in each case.

実施例20 スルホネート基を有する常圧可染カチオン可染型ポリ
エステル布(標準染色温度105℃)100重量部を、硝酸銀
0.05部を含有している水2500重量部に浸し、撹拌しなが
ら、加熱し沸騰させる。更に20分間撹拌を行った後、冷
却し、処理布を水で洗浄してから乾燥させると、銀スル
ホネート基を有するポリエステル布が得られた。このポ
リエステル布について原子吸光法で銀含量を測定したと
ころ、301ppmの銀が認められた。また、このポリエステ
ル布を実施例9と同様にして30回洗濯を行った後のポリ
エステル布中の銀含量は290ppmであった。未洗濯のポリ
エステル布、30回洗濯後のポリエステル布について、実
施例1同様にして抗菌性の評価を行った結果、未洗濯ポ
リエステルからの抽出液には、135個/ミリリットル、3
0回洗濯後のポリエステル布の抽出液には、118個/ミリ
リットルの菌が検出された。一方、銀を含まない無処理
の対照布の抽出液からは、7×108個/ミリリットルの
菌が検出された。
Example 20 100 parts by weight of a normal pressure dyeable cationic dyeable polyester cloth having a sulfonate group (standard dyeing temperature of 105 ° C) was mixed with silver nitrate.
It is immersed in 2500 parts by weight of water containing 0.05 part and heated to boiling while stirring. After further stirring for 20 minutes, the mixture was cooled, and the treated cloth was washed with water and dried to obtain a polyester cloth having silver sulfonate groups. When the silver content of this polyester cloth was measured by the atomic absorption method, 301 ppm of silver was recognized. After washing the polyester cloth 30 times in the same manner as in Example 9, the silver content in the polyester cloth was 290 ppm. The anti-bacterial properties of the unwashed polyester cloth and the polyester cloth washed 30 times were evaluated in the same manner as in Example 1. As a result, 135 extracts / ml, 3
In the extract of the polyester cloth after washing 0 times, 118 bacteria / ml were detected. On the other hand, 7 × 10 8 bacteria / ml were detected from the extract of the untreated control cloth containing no silver.

実施例21 カチオン可染型ポリエステル布(標準染色温度120
℃)100重量部を、硝酸銀0.063重量部を含有している10
0ppm酢酸水溶液(pH=3.8)1500重量部に浸し、撹拌し
ながら加圧下120℃に昇温した。120℃で1hr撹拌した後
冷却を行い、充分に水洗し、乾燥して、銀スルホネート
基を有するポリエステル布を得た。このポリエステル布
の銀含量は、344ppmであった。
Example 21 Cationic dyeable polyester cloth (standard dyeing temperature: 120
C) 100 parts by weight, containing 0.063 parts by weight of silver nitrate
It was immersed in 1500 parts by weight of a 0 ppm acetic acid aqueous solution (pH = 3.8) and heated to 120 ° C. under pressure while stirring. After stirring at 120 ° C. for 1 hour, the mixture was cooled, sufficiently washed with water, and dried to obtain a polyester cloth having a silver sulfonate group. The silver content of this polyester cloth was 344 ppm.

実施例22 実施例21と同様にして、硝酸銀0.063重量部を含有し
ている100ppm酢酸水溶液1500重量部の代りに硝酸銀0.06
3重量部を含有している水(pH=6.5)1500重量部を用い
て処理を行い、銀スルホネート基を有するポリエステル
布を得た。このポリエステル布中の銀含量は、354ppmで
あった。
Example 22 As in Example 21, silver nitrate 0.06 was used instead of 1500 parts by weight of a 100 ppm acetic acid aqueous solution containing 0.063 parts by weight of silver nitrate.
The treatment was carried out using 1500 parts by weight of water (pH = 6.5) containing 3 parts by weight to obtain a polyester cloth having silver sulfonate groups. The silver content in this polyester cloth was 354 ppm.

実施例21および実施例22で得たポリエステル布はいず
れも実施例20同様の抗菌効果を示した。
Each of the polyester cloths obtained in Example 21 and Example 22 exhibited the same antibacterial effect as in Example 20.

実施例23 実施例21及び実施例22で得たポリエステル布について
未処理ポリエステル布との色差を色差計を用いて測定し
た。結果を表5に示す。
Example 23 The color difference between the polyester cloths obtained in Example 21 and Example 22 and the untreated polyester cloth was measured using a color difference meter. Table 5 shows the results.

上記、表5中△L、△a、△bはそれぞれ、未処理ポ
リエステル布から明度の差、色相の差、彩度の差を表わ
す。
In Table 5 above, ΔL, Δa, and Δb represent a difference in lightness, a difference in hue, and a difference in chroma from the untreated polyester cloth, respectively.

表5で示した結果から明らかなように、実施例21で得
たポリエステル布は色調において未処理ポリエステル布
とほとんど変わりないが、実施例22で得たポリエステル
布では、未処理ポリエステル布に比べ明度が減少してお
り、△a、△b共に大きな値となっている。△aの値が
大きくなることは赤みがかったことを示し、又、△bの
値が大きくなることは黄色みがかったことを表わしてい
る。実施例21と22における結果の差は、処理溶液中のpH
に起因しており、白色のポリエステル布など特に着色が
問題となる場合には、pHを調整して酸性水溶液で反応を
行うことにより色調変化のない抗菌性ポリエステル布を
得ることができる。
As is clear from the results shown in Table 5, the polyester cloth obtained in Example 21 is almost the same in color tone as the untreated polyester cloth, but the polyester cloth obtained in Example 22 is lighter than the untreated polyester cloth. Have decreased, and both △ a and △ b have large values. An increase in the value of Δa indicates reddishness, and an increase in the value of Δb indicates yellowishness. The difference between the results in Examples 21 and 22 is due to the pH in the treatment solution.
In the case where coloring is a problem, such as a white polyester cloth, an antibacterial polyester cloth having no color change can be obtained by adjusting the pH and performing a reaction with an acidic aqueous solution.

実施例24 スルホネート基を有するカチオン可染型ポリエステル
ジャージ120部を、先ずカチオン染料カヤクリルレッドG
L0.3部を用い、120℃で赤色に染める。尚、浴比は1:30
である。
Example 24 120 parts of a cationic dyeable polyester jersey having a sulfonate group was firstly treated with a cationic dye Kayacryl Red G
Dye red at 120 ° C using 0.3 parts of L. The bath ratio is 1:30
It is.

次に、赤色に染め上った布を、0.2部の硝酸銀を含む
水1200部に浸し、徐々に加温して沸点で30分保つ。その
後、熱湯で充分洗浄してから乾燥すると、銀−スルホネ
ート基を有するポリエステルが得られた。
Next, the cloth dyed red is immersed in 1200 parts of water containing 0.2 parts of silver nitrate, gradually heated, and kept at the boiling point for 30 minutes. Thereafter, after sufficiently washing with hot water and drying, a polyester having a silver-sulfonate group was obtained.

このように処理したポリエステルは、同様にStaphylo
cocas aureusやKlebsiella pneumoniaeに対して、強い
抗菌性を有していた。
Polyesters treated in this way are also available in Staphylo
It had strong antibacterial activity against cocas aureus and Klebsiella pneumoniae.

実施例25 実施例5で得た、銀の微粒子が付着したカチオン可染
型ポリエステル布35部を、カチオン染料カヤクリルライ
トブルー4GSL0.07部を溶解している水400部に入れる。
耐圧容器中で120℃に昇温し、40分間保ち染色を行っ
た。冷却後、染色布を取り出し、充分に水洗すれば青色
に染まったポリエステル布が得られ、且つ抗菌性は保持
されていた。
Example 25 35 parts of the cationically dyeable polyester cloth to which the silver fine particles are adhered obtained in Example 5 are placed in 400 parts of water in which 0.07 part of the cationic dye Kayacryl Light Blue 4GSL is dissolved.
The temperature was raised to 120 ° C. in a pressure vessel and kept for 40 minutes for dyeing. After cooling, the dyed cloth was taken out and washed sufficiently with water to obtain a blue-dyed polyester cloth, and the antibacterial property was maintained.

実施例26 実施例1において、カチオン可染型ポリエステル布の
代りにスルホネート基を有するポリエステル樹脂粒子を
用い、他は実施例1同様にして、処理を行った。得られ
た粒子状のポリエステル樹脂は、実施例1と同様の抗菌
効果を示した。
Example 26 The procedure of Example 1 was repeated, except that polyester resin particles having a sulfonate group were used instead of the cation-dyeable polyester cloth. The obtained particulate polyester resin exhibited the same antibacterial effect as in Example 1.

(発明の効果) 本発明の抗菌性CDPETは、銀の付着又は結合量が従来
のものに比べ極めてすくりいにもかかわらず、強い抗菌
効果を示し、又、洗濯堅牢度も優れている。又、本発明
の抗菌性CDPETは安全性が高く、焼却時などにも、抗菌
性付与に起因する有害物質を発生することがない。更
に、本発明の抗菌性CSPETは皮膚に対する刺激性が極め
て少なく、衣料等の皮膚に接触するような用途において
も好適に使用出来る。
(Effects of the Invention) The antibacterial CDPET of the present invention exhibits a strong antibacterial effect and has excellent washing fastness, despite the fact that the amount of silver attached or bound is much smaller than conventional ones. Further, the antibacterial CDPET of the present invention has high safety and does not generate harmful substances due to the imparting of antibacterial property even when incinerated. Furthermore, the antimicrobial CSPET of the present invention has very little irritation to the skin and can be suitably used in applications such as clothing that come into contact with the skin.

又、本発明によれば、スルホン酸基を有する、いわゆ
るカチオン染料可染型ポリエステル繊維、またそれらを
混紡、あるいは交織した繊維に、手軽に経済的に抗菌性
を付与することができ、銀の付着又は結合による繊維の
着色という問題もほとんどない。
Further, according to the present invention, a so-called cationic dyeable polyester fiber having a sulfonic acid group, or a fiber obtained by blending them or mixing and weaving them, can easily and economically impart antibacterial properties to silver. There is almost no problem of fiber coloring due to adhesion or bonding.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−92000(JP,A) 特開 昭59−30963(JP,A) 特開 昭58−120873(JP,A) 特開 昭59−30963(JP,A) 特開 昭56−148965(JP,A) (58)調査した分野(Int.Cl.6,DB名) D06M 11/00 - 11/84 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-52-92000 (JP, A) JP-A-59-30963 (JP, A) JP-A-58-120873 (JP, A) 30963 (JP, A) JP-A-56-148965 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) D06M 11/00-11/84

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】構造中にスルホン酸基及び/又はスルホネ
ート基を有するポリエステル繊維に、水中で水溶性銀化
合物を反応させるに際して、ポリエステルのガラス転移
温度以上の温度で反応を行うことを特徴とする抗菌性ポ
リエステル繊維の製造方法。
The present invention is characterized in that when a water-soluble silver compound is reacted in water with a polyester fiber having a sulfonic acid group and / or a sulfonate group in the structure, the reaction is carried out at a temperature higher than the glass transition temperature of the polyester. Manufacturing method of antibacterial polyester fiber.
【請求項2】構造中にスルホン酸基及び/又はスルホネ
ート基を有するポリエステル繊維に、水中で水溶性銀化
合物をポリエステルのガラス転移温度以上の温度で反応
させ、次いで還元剤で処理することを特徴とする抗菌性
ポリエステル繊維の製造方法。
2. A polyester fiber having a sulfonic acid group and / or a sulfonate group in its structure is reacted with a water-soluble silver compound in water at a temperature higher than the glass transition temperature of the polyester, and then treated with a reducing agent. A method for producing an antibacterial polyester fiber.
【請求項3】ポリエステル繊維に水中で水溶性銀化合物
を反応させる際に、水溶液のpHを5以下とすることを特
徴とする請求項1又は2記載の製造方法。
3. The method according to claim 1, wherein when the water-soluble silver compound is reacted with the polyester fiber in water, the pH of the aqueous solution is adjusted to 5 or less.
JP2041141A 1989-03-08 1990-02-23 Manufacturing method of antibacterial fiber Expired - Lifetime JP2925628B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019900702420A KR920700326A (en) 1989-03-08 1990-03-07 Antimicrobial Fiber, Resin and Manufacturing Method Thereof
EP19900904417 EP0426862A4 (en) 1989-03-08 1990-03-07 Antibacterial fiber and resin and production thereof
PCT/JP1990/000299 WO1990010746A1 (en) 1989-03-08 1990-03-07 Antibacterial fiber and resin and production thereof
CA 2028131 CA2028131A1 (en) 1989-03-08 1990-03-07 Antimicrobial fiber, resin, and method for production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP1-53903 1989-03-08
JP5390389 1989-03-08
JP1-53904 1989-03-08
JP5390489 1989-03-08
JP1-184442 1989-07-19
JP18444289 1989-07-19

Publications (2)

Publication Number Publication Date
JPH03130465A JPH03130465A (en) 1991-06-04
JP2925628B2 true JP2925628B2 (en) 1999-07-28

Family

ID=27295102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041141A Expired - Lifetime JP2925628B2 (en) 1989-03-08 1990-02-23 Manufacturing method of antibacterial fiber

Country Status (1)

Country Link
JP (1) JP2925628B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201023B2 (en) * 1992-11-17 2001-08-20 東亞合成株式会社 Manufacturing method of antibacterial synthetic fiber
KR100839511B1 (en) * 2004-07-02 2008-06-19 주식회사 코오롱 Antibacterail acidic dyes having the silver-sulfanilamides as diazo component and a method of preparing the same and antibacterial fiber thereby
KR100821898B1 (en) * 2005-02-23 2008-04-16 주식회사 코오롱 Antibacterail acid dyes containing silver and a method of preparing the same and antibacterial fiber thereby
KR100821897B1 (en) * 2005-02-23 2008-04-16 주식회사 코오롱 Antibacterail acid dyes containing silver and a method of preparing the same and antibacterial fiber thereby
KR100839520B1 (en) * 2005-02-23 2008-06-19 주식회사 코오롱 Antibacterail acid dyes containing silver and a method of preparing the same and antibacterial fiber thereby
KR100821900B1 (en) * 2005-09-15 2008-04-16 주식회사 코오롱 Antibacterial acid dyes and method of preparing the same and antibacterial fiber thereby
JP7075566B2 (en) * 2018-02-20 2022-05-26 株式会社ミューファン Antibacterial cation-dyed fiber with antibacterial properties due to metal ions
CN113502567A (en) * 2021-07-30 2021-10-15 苏州贤辉新纺织科技有限公司 Technological method for spinning nano-silver polyester staple fibers

Also Published As

Publication number Publication date
JPH03130465A (en) 1991-06-04

Similar Documents

Publication Publication Date Title
JP2925628B2 (en) Manufacturing method of antibacterial fiber
JP3262875B2 (en) Manufacturing method of tea-dyed fiber products
CA2028131A1 (en) Antimicrobial fiber, resin, and method for production thereof
KR100352240B1 (en) A dyeing method of fiber using mugwort
JPH03241068A (en) Antimicrobial polyester fiber
JP3401076B2 (en) Manufacturing method of antibacterial fiber
KR100580847B1 (en) A ANTIBACTERIA FIBER PROCESSED WITH nm,PLATINUM COLLOID SOLUTION AND THE PROCESSE METHOD
JP2000178870A (en) Antimicrobially processing method for textile product
JPS6346193B2 (en)
KR100821899B1 (en) A diazo type dyes and a method of manufacturing the same and fiber dyed thereby
JPH09316786A (en) Production of dyed textile
JPS5986632A (en) Antibacterial treatment
JPH03130466A (en) Antimicrobial fiber, resin and its production
KR20070029955A (en) Reactive antibioties and a method of preparing the same and antibacterial fiber treated thereby
KR100839511B1 (en) Antibacterail acidic dyes having the silver-sulfanilamides as diazo component and a method of preparing the same and antibacterial fiber thereby
KR930003360B1 (en) Method of preparation polyester fiber having an improved color tone antibacterial ativity and deorderizing activity
KR19980076944A (en) Photoluminescent processing agent, photoluminescent and antibacterial deodorizing agent, photoluminescent product using the same, photoluminescent and antibacterial deodorizing product and processing method thereof.
Cashen A Modified THPOH-Ammonia Treatment of Cotton to Impart Flame Retardancy and Antibacterial Properties
JPS591770A (en) Sterilizable cellulose fiber
JPS59161458A (en) Preparation of cyan group-containing material containing copper oxide
JPH0434075A (en) Antimicrobial and deodorant polyester-based fiber structure and production thereof
JPS591769A (en) Silver containing sterilizable cellulose fiber
JP2000314083A (en) Antimicrobial acrylonitrile-based fiber and its production
JPH11172583A (en) Production of hygroscopic fiber structure
KR20020042919A (en) A Manufacturing Method of Water Coating-remedy for Infraed-rayes, Antibiosis and Perfume