JP2923537B2 - Electrostatic floating furnace - Google Patents

Electrostatic floating furnace

Info

Publication number
JP2923537B2
JP2923537B2 JP30265290A JP30265290A JP2923537B2 JP 2923537 B2 JP2923537 B2 JP 2923537B2 JP 30265290 A JP30265290 A JP 30265290A JP 30265290 A JP30265290 A JP 30265290A JP 2923537 B2 JP2923537 B2 JP 2923537B2
Authority
JP
Japan
Prior art keywords
floating
electrode
mesh
reflecting mirror
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30265290A
Other languages
Japanese (ja)
Other versions
JPH04177088A (en
Inventor
正明 荻原
積 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP30265290A priority Critical patent/JP2923537B2/en
Publication of JPH04177088A publication Critical patent/JPH04177088A/en
Application granted granted Critical
Publication of JP2923537B2 publication Critical patent/JP2923537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)
  • Control Of Resistance Heating (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は浮遊用試料である帯電物体を静電気力を利用
して容器に非接触状態で浮上保持させて加熱溶融させる
ために用いる静電浮遊炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to electrostatic floating used to heat and melt a floating object, which is a floating sample, in a non-contact state by using an electrostatic force in a non-contact state with a container. It relates to a furnace.

[従来の技術] 近年の新素材の開発研究の進展に伴い地上はもとより
宇宙の微小重力環境を利用して新規な材料の開発を行う
ことが考えられており、素材を空間の一点に非接触状態
で保持して無容器で加熱、溶融、凝固処理を行うことが
考えられている。そのため、物体を何等かの方法で空間
の一点に非接触状態で保持する技術と、保持された物体
を加熱溶融する技術の開発が必要となっている。
[Prior art] With the progress of research and development of new materials in recent years, it is considered to develop new materials using the microgravity environment of the universe as well as the ground, and the materials are brought into contact with one point in space without contact Heating, melting, and solidifying treatment without holding the container while maintaining the state has been considered. Therefore, it is necessary to develop a technique for holding an object at one point in space in a non-contact state by any method and a technique for heating and melting the held object.

従来、かかる物体を空間の一点に浮上保持させて加熱
溶融させるようにするものとしては、第7図に示す如
く、浮遊用試料としての物体2を静電気力で閉じ込める
ようにする浮遊用電極として、2枚の金属製の平板電極
1を平行にして用い、該平板電極1を楕円球形の反射鏡
3で覆うようにし、該楕円球形の1つの焦点位置に物体
2を静止浮上させておくように上記2枚の平板電極1を
設置すると共にもう1つの焦点位置に熱源としての光源
4を設置し、上記光源4を熱源用電源5に、又、上記平
板電極1を浮遊用電源6にそれぞれ接続した構成のもの
が提案されている。
Conventionally, such an object is floated and held at one point in a space to be heated and melted. As shown in FIG. 7, as an electrode for floating which allows an object 2 as a sample for floating to be confined by electrostatic force, The two metal plate electrodes 1 are used in parallel, and the plate electrode 1 is covered with an elliptical spherical reflecting mirror 3 so that the object 2 is left floating at one focal position of the elliptical spherical shape. The two plate electrodes 1 are installed, and a light source 4 as a heat source is installed at another focus position. The light source 4 is connected to a heat source power source 5, and the plate electrode 1 is connected to a floating power source 6. A configuration with such a configuration has been proposed.

上記従来の静電浮遊炉では、平行に配してある2枚の
平板電極1により第8図に示す如き電位分布となり、電
極1の極く近傍の電位分布も、電極1から離れた、いわ
ゆる試料浮上領域での電位分布も同じで、平行な等電位
面Aとなり、物体2を浮上させるようにしてある。
In the above-mentioned conventional electrostatic floating furnace, a potential distribution as shown in FIG. 8 is obtained by the two plate electrodes 1 arranged in parallel, and a potential distribution in the immediate vicinity of the electrode 1 is also apart from the electrode 1, so-called, so-called. The potential distribution in the sample floating region is the same, and it becomes a parallel equipotential surface A so that the object 2 floats.

[発明が解決しようとする課題] ところが、上記従来の静電浮遊炉では、浮遊用電極と
しての平板電極1が金属製で且つ板であるため、熱源と
しての光源4から出された熱線7のうち、反射鏡3で反
射されて平板電極1に当った熱線7は、該平板電極1を
通過できないので、多くの量の熱線7が平板電極1で遮
られることになり、物体2の加熱効率が悪いという問題
があり、又、電極1が板状の金属であることから、電極
重量が大となり、更に、電極1の空間占有面積が大きく
て、大部分の熱線7が物体2に照射できない。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional electrostatic floating furnace, since the plate electrode 1 as a floating electrode is made of metal and a plate, the heat wire 7 emitted from the light source 4 as a heat source is Among them, the hot wire 7 reflected by the reflecting mirror 3 and hitting the flat plate electrode 1 cannot pass through the flat plate electrode 1, so that a large amount of the hot wire 7 is blocked by the flat plate electrode 1, and the heating efficiency of the object 2 is increased. In addition, since the electrode 1 is a plate-like metal, the weight of the electrode is large, and the space occupied by the electrode 1 is large, so that most of the heat rays 7 cannot be irradiated on the object 2. .

そこで、本発明は、反射鏡で反射した熱線が浮遊用電
極を通過できるようにして、電極により遮られる熱線の
量を減らし、浮遊用試料としての物体の加熱効率を向上
させるようにしようとするものである。
Therefore, the present invention seeks to allow the heat ray reflected by the reflector to pass through the floating electrode, reduce the amount of the heat ray blocked by the electrode, and improve the heating efficiency of the object as the floating sample. Things.

[課題を解決するための手段] 本発明は、上記課題を解決するために、物体を静電気
力で閉じ込めるようにする浮遊用電極としての2枚の電
極を浮遊用電源に接続し、且つ上記物体に熱線を照射さ
せる加熱源を有し、上記電極の外側に反射鏡を配置した
構成において、上記2枚の電極を、熱線が通過できる網
目状又は格子状とした構成とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention relates to a method for connecting two electrodes as floating electrodes for confining an object by electrostatic force to a floating power supply, and In a configuration in which a heating source for irradiating a heat ray is provided, and a reflecting mirror is arranged outside the electrode, the two electrodes are formed in a mesh shape or a grid shape through which the heat ray can pass.

[作用] 浮遊用電極を網目状又は格子状にすると、反射鏡で反
射された熱線が上記電極を通過できることになり、又、
電極の空間占有率が小さくなるので、加熱源から放出さ
れた熱線の大部分が物体に照射でき、物体の加熱効率を
向上させることができる。
[Function] When the floating electrode is formed in a mesh shape or a grid shape, the heat rays reflected by the reflector can pass through the electrode.
Since the space occupancy of the electrodes is reduced, most of the heat rays emitted from the heating source can be irradiated to the object, and the heating efficiency of the object can be improved.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図乃至第4図は本発明の一実施例を示すもので、
第7図に示す従来の静電浮遊炉と同様に、浮遊用試料と
しての物体2を静電気力で閉じ込めるようにする浮遊用
電極として、2枚の金属製の平板電極1を平行に配して
用いるようにした構成において、上記従来の平板電極1
に代えて、金属細線9を二次元方向に組み合わせて編ん
でなり熱線7が通過できる空間部分(隙間)10を有する
平板状の網目(メッシュ)状電極8を用いるようにし、
内面に反射率の大きい金属をコーティングしてなる楕円
球形の反射鏡3内の1つの焦点位置に上記物体2を静止
浮上させておくことができるように、上記網目状電極8
を平行に相対向させて上記楕円球形の反射鏡3の内側に
設置すると共に、楕円球形のもう1つの焦点位置に加熱
源としての光源4を設置し、該光源4を熱源用電源5に
接続し、且つ上記2枚の網目状の電極8を浮遊用電源6
に接続して、該2枚の網目状電極8間に生じる電位分布
により物体2を安定よく静止浮上させるようにする。
1 to 4 show one embodiment of the present invention.
As in the case of the conventional electrostatic floating furnace shown in FIG. 7, two metal plate electrodes 1 are arranged in parallel as floating electrodes to confine an object 2 as a floating sample by electrostatic force. In the configuration in which the conventional flat electrode 1 is used,
In place of the above, a flat-plate mesh (mesh) electrode 8 which is formed by knitting and combining metal thin wires 9 in a two-dimensional direction and has a space portion (gap) 10 through which the hot wire 7 can pass,
The mesh electrode 8 is provided so that the object 2 can be left floating at one focal position in the ellipsoidal reflecting mirror 3 whose inner surface is coated with a metal having a high reflectance.
Are installed parallel to each other and inside the above-mentioned elliptical spherical reflecting mirror 3, and a light source 4 as a heating source is installed at another focal position of the elliptical spherical shape, and the light source 4 is connected to a heat source power source 5. And the two mesh electrodes 8 are connected to a floating power source 6.
And the object 2 is stably levitated stably by the potential distribution generated between the two mesh electrodes 8.

網目状電極8は、金属細線9が第3図の如く二次元方
向へ屈曲しながら延びて編まれているため、上下の網目
状電極8に電圧を印加したときに生じる電位分布は、第
4図の如くなり、電極8の極く近傍での電位分布は編ま
れた金属細線9に沿って波型になるので、第8図に示す
従来の平板電極1の場合と少し異なるが、電極8から離
れた中央部の、いわゆる試料浮上領域での電位分布は平
行であって、従来の平板電極の場合と大差はなくほぼ同
じであり、図示の如く電極近傍が少し歪む等電位面Bと
なり、浮遊用試料としての物体2を浮上させる能力は従
来のものと同じである。
Since the mesh electrode 8 has the thin metal wire 9 extended and knitted while bending in a two-dimensional direction as shown in FIG. 3, the potential distribution generated when a voltage is applied to the upper and lower mesh electrodes 8 is the fourth. As shown in the figure, since the potential distribution in the immediate vicinity of the electrode 8 becomes wavy along the woven metal wire 9, it is slightly different from the case of the conventional flat plate electrode 1 shown in FIG. The potential distribution in the central part away from the so-called sample floating region is parallel, almost the same as that of the conventional flat plate electrode and almost the same, and the equipotential surface B slightly distorted near the electrode as shown in FIG. The ability to levitate the object 2 as a floating sample is the same as that of the conventional one.

網目状電極8により空間の一点に保持した物体2に加
熱源としての光源4から放出される熱線7を照射させて
加熱溶融させるとき、上記光源4から放出されて物体2
に照射される熱線のうち、一部は直進して物体2に吸収
され該物体2の温度上昇に寄与して加熱溶融に供せら
れ、他の熱線7は楕円球形の反射鏡3に当り反射させら
れて物体2に照射されて、該物体2の加熱溶融に供せら
れることになる。しかし、この場合、2枚の電極8があ
るため、反射鏡3で反射した熱線7が電極8に当ると、
該電極8により熱線7の大部分の量が遮られて物体2に
照射されない事態が予測されるが、網目状電極8は熱線
7が通過できる空間部分(隙間)10を有しており、これ
に伴い空間の占有率も小さくなるので、反射鏡3で反射
されて電極8に当った熱線7の大部分は該電極8を通過
できて物体2に照射されることになり、物体2の加熱効
率を著しく向上させることができる。
When the object 2 held at one point in the space by the mesh electrode 8 is irradiated with a heat ray 7 emitted from the light source 4 as a heating source to be heated and melted, the object 2 emitted from the light source 4 is melted.
A part of the heat rays irradiated to the object 2 goes straight and is absorbed by the object 2 and contributes to the temperature rise of the object 2 and is used for heating and melting, and the other heat rays 7 hit the elliptical reflecting mirror 3 and are reflected. Then, the object 2 is irradiated, and is subjected to the heating and melting of the object 2. However, in this case, since there are two electrodes 8, when the heat ray 7 reflected by the reflecting mirror 3 hits the electrode 8,
It is expected that most of the heat ray 7 is blocked by the electrode 8 and the object 2 is not irradiated. However, the mesh electrode 8 has a space portion (gap) 10 through which the heat ray 7 can pass. Therefore, most of the heat ray 7 reflected by the reflecting mirror 3 and hitting the electrode 8 can pass through the electrode 8 and irradiate the object 2, thereby heating the object 2. Efficiency can be significantly improved.

次に、第5図は本発明の他の実施例を示すもので、上
記実施例における単一の楕円球形の反射鏡3に代えて、
2つの楕円球形の反射鏡を1つにした、いわゆる双楕円
球形の反射鏡11を用いたものである。すなわち、双楕円
球形の反射鏡11の共通する焦点位置に物体2を浮上保持
させるように反射鏡11の中央部に、浮遊用電極としての
網目状の電極8を平行に設置し、且つ双楕円球形の残り
の2つの焦点位置にそれぞれ加熱源としての光源4を設
置し、両光源4を熱源用電源5に接続すると共に、網目
状の電極8を浮遊用電源6に接続し、上記両光源4から
の熱線7が直接又は双楕円球形の反射鏡11で反射して物
体2に照射されるようにし、更に、反射鏡11で反射して
電極8に当った熱線7は電極8の空間部を通って物体2
に照射されるようにしたものである。
Next, FIG. 5 shows another embodiment of the present invention. Instead of the single elliptical spherical reflecting mirror 3 in the above embodiment,
A so-called bi-elliptical spherical reflecting mirror 11 in which two elliptical spherical reflecting mirrors are integrated into one is used. That is, a mesh-like electrode 8 as a floating electrode is installed in parallel at the center of the reflecting mirror 11 so that the object 2 is levitated and held at a common focal position of the reflecting mirror 11 having a bi-elliptical spherical shape. A light source 4 as a heating source is installed at each of the remaining two focal positions of the sphere, and both light sources 4 are connected to a power source 5 for heat source, and a mesh electrode 8 is connected to a power source 6 for floating. The heat rays 7 from the light source 4 are reflected directly or on the object 2 by being reflected by the reflecting mirror 11 having a bi-elliptical sphere. Object 2 through
Is to be irradiated.

この実施例では、双楕円球形の反射鏡11の共通する焦
点部分に浮上保持された物体2に対し、2つの光源4か
ら放出される熱線7が照射され、このとき、浮遊用電極
である平板状の電極8が綱目状になっていることから、
該電極8に当った熱線7も物体2に照射できて、物体2
の加熱効率をより向上させることができる。
In this embodiment, the object 2 held and levitated at the common focal point of the reflecting mirror 11 having a bi-elliptical spherical shape is irradiated with the heat rays 7 emitted from the two light sources 4, and at this time, a flat plate as a floating electrode is used. Since the shape of the electrode 8 is in the form of a rope,
The heat ray 7 hitting the electrode 8 can also be irradiated on the object 2,
Heating efficiency can be further improved.

なお、本発明は上記した実施例のみに限定されるもの
ではなく、たとえば、浮遊用電極を平板状の網目状とし
たものを示したが、第6図に示す如く、網目をリング状
に成形して空間部を多くするようにしてもよく、又、金
属細線を編んだ網目状のものに代えて格子状のものとし
てもよいこと、その他本発明の要旨を逸脱しない範囲内
において種々変更を加え得ることは勿論である。
The present invention is not limited to the above-described embodiment. For example, the floating electrode is shown as a flat mesh, but as shown in FIG. 6, the mesh is formed into a ring. The space may be increased so as to increase the number of spaces, or may be replaced by a lattice instead of a mesh formed by knitting fine metal wires, and various other changes may be made without departing from the gist of the present invention. Of course, it can be added.

[発明の効果] 以上述べた如く、本発明の静電浮遊炉によれば、浮遊
用試料を静電気力で空間の一点に閉じ込めるようにする
2つの浮遊用電極を網目状又は格子状にして設置し、且
つ上記浮遊用試料に熱線を照射させる加熱源を設置し、
上記加熱源からの熱線を反射させて上記浮遊用試料に照
射させるようにする反射鏡を、上記浮遊用電極及び加熱
源の外側に備えているので、上記浮遊用電極の空間占有
率が小さく、したがって加熱源からの熱線が浮遊用電極
に当っても該浮遊用電極の空間部を通過できて、熱線の
大部分を上記物体に照射させることが可能となり、物体
の加熱効率を向上させることができ、又、浮遊用電極を
網目状又は格子状にしたため、電極の重量を軽減でき、
宇宙空間へロケット等を用いて打ち上げる際の負担を軽
減できる、等の優れた効果を奏し得る。
[Effects of the Invention] As described above, according to the electrostatic floating furnace of the present invention, two floating electrodes are arranged in a mesh or grid so that the floating sample is confined to one point in space by electrostatic force. And, a heating source for irradiating the floating sample with heat rays is installed,
Since the reflector for reflecting the heat ray from the heating source and irradiating the floating sample is provided outside the floating electrode and the heating source, the space occupancy of the floating electrode is small, Therefore, even if the heat ray from the heating source hits the electrode for floating, it can pass through the space of the electrode for floating, it is possible to irradiate most of the heat ray to the object, and the heating efficiency of the object can be improved. Yes, and because the floating electrode is in the form of a mesh or grid, the weight of the electrode can be reduced,
It is possible to provide excellent effects such as a reduction in the burden of launching into outer space using a rocket or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す概略図、第2図は浮遊
用電極の一例を示す斜視図、第3図は第2図の部分詳細
図、第4図は浮遊用電極の電位分布を示す図、第5図は
本発明の他の実施例を示す概略図、第6図は浮遊用電極
の他の例を示す斜視図、第7図は従来の静電浮遊炉の概
略図、第8図は従来の浮遊用電極の電位分布を示す図で
ある。 2……物体(浮遊用試料)、3……楕円球形の反射鏡、
4……光源(加熱源)、5……熱源用電源、6……浮遊
用電源、7……熱線、8……網目状電極(浮遊用電
極)、9……金属細線、10……空間部、11……双楕円球
形の反射鏡。
FIG. 1 is a schematic view showing one embodiment of the present invention, FIG. 2 is a perspective view showing an example of a floating electrode, FIG. 3 is a partially detailed view of FIG. 2, and FIG. FIG. 5 is a diagram showing distribution, FIG. 5 is a schematic diagram showing another embodiment of the present invention, FIG. 6 is a perspective view showing another example of a floating electrode, and FIG. 7 is a schematic diagram of a conventional electrostatic floating furnace. FIG. 8 is a diagram showing a potential distribution of a conventional floating electrode. 2 ... object (floating sample) 3 ... elliptical spherical reflector,
4 light source (heating source), 5 power supply for heat source, 6 power supply for floating, 7 hot wire, 8 mesh electrode (electrode for floating), 9 thin metal wire, 10 space Part, 11 ... A reflecting mirror with a bi-elliptical sphere.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】浮遊用試料を静電気力で空間の一点に閉じ
込めるようにする2つの浮遊用電極を網目状又は格子状
にして設置し、且つ上記浮遊用試料に熱線を照射させる
加熱源を設置し、上記加熱源からの熱線を反射させて上
記浮遊用試料に照射させるようにする反射鏡を、上記浮
遊用電極及び加熱源の外側に備えてなることを特徴とす
る静電浮遊炉。
1. A floating source for arranging two floating electrodes in a mesh or lattice shape so as to confine a floating sample to a point in space by electrostatic force, and a heating source for irradiating the floating sample with heat rays. An electrostatic floating furnace comprising: a reflecting mirror that reflects heat rays from the heating source to irradiate the floating sample on the outside of the floating electrode and the heating source.
【請求項2】反射鏡を単楕円球形又は双楕円球形とした
請求項(1)記載の静電浮遊炉。
2. The electrostatic floating furnace according to claim 1, wherein the reflecting mirror has a single elliptical spherical shape or a bi-elliptical spherical shape.
JP30265290A 1990-11-09 1990-11-09 Electrostatic floating furnace Expired - Lifetime JP2923537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30265290A JP2923537B2 (en) 1990-11-09 1990-11-09 Electrostatic floating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30265290A JP2923537B2 (en) 1990-11-09 1990-11-09 Electrostatic floating furnace

Publications (2)

Publication Number Publication Date
JPH04177088A JPH04177088A (en) 1992-06-24
JP2923537B2 true JP2923537B2 (en) 1999-07-26

Family

ID=17911563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30265290A Expired - Lifetime JP2923537B2 (en) 1990-11-09 1990-11-09 Electrostatic floating furnace

Country Status (1)

Country Link
JP (1) JP2923537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108453263B (en) * 2018-04-17 2021-04-20 西北工业大学 Method for preparing bearing ball based on electrostatic suspension technology

Also Published As

Publication number Publication date
JPH04177088A (en) 1992-06-24

Similar Documents

Publication Publication Date Title
AU2008261194C1 (en) Radiator apparatus
JP2548108B2 (en) X-ray exposure device
US3229682A (en) Device for directionally controlling electromagnetic radiation
KR100979017B1 (en) Combined radiator and lighting assembly
ES2119358T3 (en) MULTIPLE BEAM LASER SINTERING.
UA43914C2 (en) THERMOELECTRONIC ELECTRICITY GENERATOR (OPTIONS)
JP2923537B2 (en) Electrostatic floating furnace
US4440714A (en) Inertial confinement fusion method producing line source radiation fluence
CA2776393C (en) Combined radiator and remote control and switch apparatus and lighting assembly
US5592582A (en) Beam machining device with heating lamp and segmented reflector surface
JP2841834B2 (en) Electrostatic floating device
JP2692207B2 (en) Electrostatic floating furnace
JP2867500B2 (en) Electrostatic floating furnace
US5303117A (en) Electrostatic positioner
JP2621464B2 (en) Electrostatic floating furnace
JP4324453B2 (en) Infrared bulb and heating device
JPS62216216A (en) Crescent beam homogenizer
EP0384751B1 (en) Electrostatic locating apparatus
JPH0238255Y2 (en)
JP2511301B2 (en) SiC heating element
Howell et al. Device for directionally controlling electromagnetic radiation Patent
JPS63190277A (en) Far-infrared radiation unit
RU98107010A (en) THERMOEMISSION REACTOR-CONVERTER ON FAST NEUTRONS
US20060076521A1 (en) Device for influencing, deflecting and/or reflecting terrestrial and atmospheric radiation or fields
JPH06333700A (en) Particle accelerator