JP2923436B2 - Classification method of suspended particles - Google Patents

Classification method of suspended particles

Info

Publication number
JP2923436B2
JP2923436B2 JP22574794A JP22574794A JP2923436B2 JP 2923436 B2 JP2923436 B2 JP 2923436B2 JP 22574794 A JP22574794 A JP 22574794A JP 22574794 A JP22574794 A JP 22574794A JP 2923436 B2 JP2923436 B2 JP 2923436B2
Authority
JP
Japan
Prior art keywords
suspension
tank
particles
rotary
sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22574794A
Other languages
Japanese (ja)
Other versions
JPH07155510A (en
Inventor
伸夫 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUAIN KUREI KK
Original Assignee
FUAIN KUREI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUAIN KUREI KK filed Critical FUAIN KUREI KK
Priority to JP22574794A priority Critical patent/JP2923436B2/en
Publication of JPH07155510A publication Critical patent/JPH07155510A/en
Application granted granted Critical
Publication of JP2923436B2 publication Critical patent/JP2923436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、懸濁液中の懸濁質粒子
を粒子の沈降速度に係る粒度に基づいて定量的に分級す
る方法に関し、さらに詳しくは、回転沈降槽を備えた遠
心機を用いて、懸濁液を処理し、特定の粒度以上の懸濁
質粒子を回転沈降槽内に沈降させる分級方法に関する。
本発明の分級方法によれば、回転沈降槽内に沈降・堆積
する懸濁質粒子の分級点をストークス径により表示する
ことが可能であると共に、懸濁液中の懸濁質粒子の粒度
分布を測定したり、粒度分布を調整することも可能であ
る。したがって、本発明は、懸濁液の処理に関連する広
範な産業分野において有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively classifying suspended particles in a suspension based on the particle size related to the sedimentation speed of the particles, and more particularly, to a centrifugation method equipped with a rotary sedimentation tank. The present invention relates to a classification method in which a suspension is treated using a machine, and suspended particles having a specific particle size or more are settled in a rotary settling tank.
ADVANTAGE OF THE INVENTION According to the classification method of this invention, while being able to display the classification point of the suspended solid particles which settle and accumulate in a rotary sedimentation tank by Stokes diameter, the particle size distribution of the suspended solid particles in a suspension And the particle size distribution can be adjusted. Therefore, the present invention is useful in a wide range of industrial fields related to suspension processing.

【0002】[0002]

【従来の技術】自然沈降法では、懸濁液を沈降槽に供給
して静置することにより、懸濁液を懸濁質(粒子)と懸
濁媒体とに分離する。この場合、懸濁質粒子を沈降速度
の差に応じて、分級することもできる。しかし、自然沈
降法では、一般に、懸濁質粒子の沈降速度が小さいた
め、処理能力が不充分である。これに対して、遠心分離
法によれば、回転運動の加速度を利用するため、より効
率的に懸濁液を懸濁質粒子と懸濁媒体に分離することが
できる。従来の遠心分離法は、遠心濾過法と遠心沈降法
とに大別することができる。遠心濾過法では、周壁に濾
材を設けた円筒状で有孔壁の回転容器の中へ懸濁液を供
給し、遠心力によって濾材を通して液体を排出して、懸
濁質粒子を濾材面にケーキ状に補足する。遠心濾過法で
は、濾材の開孔度を調節することにより分級を行うこと
ができるが、濾材の目づまりが避けられないので、濾材
の更新に経費が嵩む。
2. Description of the Related Art In a natural sedimentation method, a suspension is supplied to a sedimentation tank and allowed to stand to separate the suspension into a suspension (particles) and a suspension medium. In this case, the suspended particles can be classified according to the difference in sedimentation speed. However, in the natural sedimentation method, the processing speed is generally insufficient because the sedimentation speed of suspended particles is low. On the other hand, according to the centrifugal separation method, the suspension can be more efficiently separated into the suspended particles and the suspension medium because the acceleration of the rotational motion is used. Conventional centrifugation methods can be broadly classified into a centrifugal filtration method and a centrifugal sedimentation method. In the centrifugal filtration method, a suspension is supplied into a cylindrical, perforated wall rotating container provided with a filter medium on the peripheral wall, and the liquid is discharged through the filter medium by centrifugal force, and the suspended particles are deposited on the surface of the filter medium. Supplement in the form. In the centrifugal filtration method, classification can be performed by adjusting the opening degree of the filter medium. However, since clogging of the filter medium is inevitable, the cost of renewing the filter medium increases.

【0003】遠心沈降法では、回転沈降槽(ボウル、無
孔壁バスケット)の中へ懸濁液を供給して回転させ、懸
濁質粒子を遠心力によって周壁に沈降させる。遠心沈降
法では、通常、回転円筒型(竪型)、分離板型、デカン
ター型(横型)の遠心機(遠心分離機)が使用されてい
る。遠心沈降法によれば、回転運動の加速度によって懸
濁質粒子の沈降速度を加速化することができるだけでは
なく、操作時間や角速度の大きさを適宜選択することに
よって、懸濁質粒子を沈降速度の差に応じて分別回収す
ることができる(分画遠心法)。しかし、分画遠心法で
は、微粒子群が粗粒子群に混入するのが避けられないな
ど、高精度の分画は困難であり、実際には、遠心機は、
全ての懸濁質粒子の分離・採取または濃縮、あるいは清
澄液の採取を主目的として使用されている。
[0003] In the centrifugal sedimentation method, a suspension is supplied into a rotary sedimentation tank (bowl, non-porous wall basket) and rotated, and suspended particles are sedimented on the peripheral wall by centrifugal force. In the centrifugal sedimentation method, a rotary cylinder type (vertical type), a separation plate type, and a decanter type (horizontal type) centrifuge (centrifuge) are usually used. According to the centrifugal sedimentation method, not only can the sedimentation speed of the suspended solid particles be accelerated by the acceleration of the rotational movement, but also the sedimentation speed of the suspended solid particles can be increased by appropriately selecting the operation time and the magnitude of the angular velocity. And can be separated and collected according to the difference between them (fraction centrifugation). However, in fractionation centrifugation, it is difficult to perform high-precision fractionation, such as inevitable mixing of fine particles into coarse particles, and in fact, centrifuges
It is used mainly for the separation / collection or concentration of all suspended particles, or for the collection of clear liquid.

【0004】従来の遠心沈降法では、懸濁質粒子の沈降
の過不足が沈降堆積物の性質や取り扱いに大きく影響を
及ぼすため、操作条件の設定が難しい。従来、回転円筒
型やデカンター型の遠心機において、遠心加速度の大き
さが取り上げられ、遠心加速度が重力場の何倍かを示す
パラメーターとして遠心効果Gが表示されている。 G=0.00112・r・n2 r:回転沈降槽の最も広い箇所の内半径(m)、 n:回転沈降槽の回転数(rpm)。 回転沈降槽の最大回転数についての遠心効果が、遠心機
の機種選定の目安とされている。しかし、遠心効果の値
を用いて、沈降する懸濁質粒子の粒度の定量的設計を行
うことはできない。従来より、遠心機の各機種ごとに、
遠心効果、通液流量、滞留時間等を試行錯誤的に選択し
て、取り扱い易い沈降堆積物を得る試みがなされている
が、それらは、いずれも懸濁質粒子の沈降速度に係る粒
度を定量的に制御するものではない。しかも、その試行
結果は、特定の被処理懸濁液に適用できるだけであっ
て、懸濁液や機種の変動に対応することができなかっ
た。
[0004] In the conventional centrifugal sedimentation method, it is difficult to set operating conditions because excessive or insufficient sedimentation of suspended particles greatly affects the properties and handling of the sediment. 2. Description of the Related Art Conventionally, in a rotary cylindrical type or decanter type centrifuge, the magnitude of centrifugal acceleration is taken up, and a centrifugal effect G is displayed as a parameter indicating how many times the centrifugal acceleration is a gravitational field. G = 0.00112 · r · n 2 r: inner radius (m) of the widest point of the rotary sedimentation tank, n: number of revolutions (rpm) of the rotary sedimentation tank. The centrifugal effect on the maximum number of revolutions of the rotary sedimentation tank is a guide for selecting a centrifuge model. However, it is not possible to use the value of the centrifugal effect to make a quantitative design of the size of the sedimented suspended particles. Conventionally, for each type of centrifuge,
Attempts have been made to obtain sediment sediments that are easy to handle by selecting the centrifugal effect, liquid flow rate, residence time, etc. by trial and error, but all of these methods quantify the particle size related to the sedimentation speed of suspended solid particles. It does not control it. Moreover, the trial results can only be applied to a specific suspension to be treated, and cannot cope with fluctuations in the suspension and the type.

【0005】デカンター型遠心分離機(横型遠心分離
機)において、回転沈降槽の回転数を上げたり、処理流
量を下げると、越流する懸濁質粒子の粒度が小さくなる
傾向を示すことは、知られている。しかし、従来、この
ような傾向の定量的な解析が行われていないこともあっ
て、機種ごとに、あるいは被処理懸濁液ごとに異なる特
性として扱われているにとどまり、懸濁質粒子の粒度の
定量的制御についての提案はなされていない。このよう
に、竪型または横型の遠心機を用いた懸濁液の遠心沈降
法において、遠心機は、主として懸濁液の濃縮手段また
は清水採取手段として使用されているのが現状であり、
懸濁質粒子の定量的分級、粒度分布の測定、粒度分布の
調整等の利用には適さないと考えられていた。
[0005] In a decanter type centrifuge (horizontal type centrifuge), when the rotation speed of the rotary sedimentation tank is increased or the treatment flow rate is decreased, the tendency of the particle size of the suspended solid particles flowing over to decrease tends to decrease. Are known. However, in the past, quantitative analysis of this tendency has not been performed, so that the characteristics are treated differently for each model or for each suspension to be treated. No proposal has been made for quantitative control of particle size. As described above, in the centrifugal sedimentation method of a suspension using a vertical or horizontal centrifuge, at present, the centrifuge is mainly used as a means for concentrating the suspension or a means for collecting fresh water,
It was considered unsuitable for use in quantitative classification of suspended particles, measurement of particle size distribution, adjustment of particle size distribution, and the like.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、回転
沈降槽を備えた遠心機を用いて、懸濁液中の懸濁質粒子
を、沈降速度の係る粒度に基づいて、定量的に分級する
方法を提供することにある。本発明の他の目的は、回転
沈降槽を備えた遠心機を用いて、懸濁液中の懸濁質粒子
の粒度分布を測定する方法、及び懸濁液中の懸濁質粒子
の粒度分布を調整する方法を提供することにある。本発
明者は、前記従来技術の問題点を克服するために鋭意研
究した結果、被処理懸濁液を遠心機の回転沈降槽に連続
的に供給し、該回転沈降槽から越流させると共に、越流
する懸濁液の流量と回転沈降槽の回転数を特定の関係式
に従って調整することにより、ストークス径で表される
所望の粒子径以上の粒度の懸濁質粒子を回転沈降槽内に
沈降させ得ることを見いだした。本発明では、遠心機と
して、従来の竪型または横形の遠心機を使用することが
できるが、本発明の方法は、従来の遠心沈降法と比較し
て、粒度に応じた定量的分級、粒度分布の測定、粒度分
布の調整等の機能が付加されている。本発明は、これら
の知見に基づいて完成するに至ったものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for quantitatively separating suspended particles in a suspension by using a centrifuge equipped with a rotary sedimentation tank based on the size of the sedimentation velocity. It is to provide a method for classification. Another object of the present invention is to provide a method for measuring the particle size distribution of suspended particles in a suspension using a centrifuge equipped with a rotary sedimentation tank, and the particle size distribution of the suspended particles in the suspension. It is to provide a method for adjusting. The inventor of the present invention has intensively studied to overcome the problems of the prior art, and as a result, the suspension to be treated is continuously supplied to a rotary sedimentation tank of a centrifuge and overflowed from the rotary sedimentation tank. By adjusting the flow rate of the overflowing suspension and the rotation speed of the rotary sedimentation tank according to a specific relational expression, suspended particles having a particle size equal to or larger than the desired particle diameter represented by the Stokes diameter are placed in the rotary sedimentation tank. I found that it could settle. In the present invention, a conventional vertical or horizontal centrifuge can be used as the centrifuge.However, the method of the present invention provides a quantitative classification, particle size Functions such as measurement of distribution and adjustment of particle size distribution are added. The present invention has been completed based on these findings.

【0007】[0007]

【課題を解決するための手段】本発明によれば、被処理
懸濁液を遠心機の回転沈降槽に連続的に供給し、該回転
沈降槽から越流させると共に、下記一般式(1)に従っ
て、越流する懸濁液の流量Qと回転沈降槽の回転数nを
調整し、ストークス径D以上の粒子が示す沈降速度以上
の懸濁質粒子を回転沈降槽内に沈降させることを特徴と
する懸濁質粒子の分級方法が提供される。 D=k・r-3/2・Q1/2・n-1 (1) D:懸濁質粒子のストークス径(μm) k:定数 r:回転沈降槽の最も広い箇所の内半径(m) Q:回転沈降槽を越流する懸濁液の流量(m3/H) n:回転沈降槽の回転数(rpm)
According to the present invention, a suspension to be treated is continuously supplied to a rotary sedimentation tank of a centrifugal machine, overflows the rotary sedimentation tank, and has the following general formula (1). The flow rate Q of the suspension flowing over and the number of revolutions n of the rotary sedimentation tank are adjusted, and the suspended solid particles having a sedimentation speed higher than the sedimentation velocity indicated by the particles having the Stokes diameter D or more are settled in the rotary sedimentation tank. Is provided. D = k · r -3/2 · Q 1/2 · n -1 (1) D: Stokes diameter of the suspended solids particles (μm) k: constant r: inner radius of the widest portion of the rotating sedimentation tank (m ) Q: Flow rate of the suspension flowing over the rotary settling tank (m 3 / H) n: Number of rotations of the rotary settling tank (rpm)

【0008】本発明の好ましい実施態様の一つとして、
下記一般式(2)に従って、越流する懸濁液の流量Qと
回転沈降槽の回転数nを調整し、比重2.60でストー
クス径D以上の粒子が示す沈降速度以上の懸濁質粒子を
回転沈降槽内に沈降させる方法がある。 D=338・r-3/2・Q1/2・n-1 (2) 一般式(1)において、k=338の場合が一般式
(2)である。
[0008] In one preferred embodiment of the present invention,
According to the following general formula (2), the flow rate Q of the suspension flowing over and the number of revolutions n of the rotary sedimentation tank are adjusted, and the suspended particles having a specific gravity of 2.60 and a sedimentation speed equal to or higher than the particles having a Stokes diameter of D or more are obtained. Is settled in a rotary settling tank. D = 338 · r -3/2 · Q 1/2 · n -1 (2) In formula (1), the case of k = 338 is the general formula (2).

【0009】以下、本発明について詳述する。一般式(1) 本発明者は、被処理懸濁液を遠心機の回転沈降槽に連続
的に供給し、該回転沈降槽から越流させながら、内半径
r(m)の回転沈降槽を回転数n(rpm)で回転させ
た場合、加速度が作用することにより回転沈降槽の側壁
に沈降し堆積する懸濁質粒子の大きさと、回転沈降槽か
ら流量Q(m3/H)で越流する懸濁液中の懸濁質粒子
の大きさについて、鋭意研究の結果、次のような知見を
得た。 懸濁質粒子が回転沈降槽を越流するか否かの境界の粒
径(分級点粒度)は、回転沈降槽の回転断面積S(πr
2)に遠心効果Gを乗算した値GSと、回転沈降槽から
越流する懸濁液の流量Qとの比Q/GSに関係すること
が判明した。
Hereinafter, the present invention will be described in detail. General formula (1) The inventor of the present invention continuously supplies a suspension to be treated to a rotary sedimentation tank of a centrifuge and overflows the rotary sedimentation tank with an inner radius of r (m). When rotated at a rotation speed of n (rpm), the size of suspended particles that settles and accumulates on the side wall of the rotary sedimentation tank due to the action of acceleration, and exceeds the flow rate Q (m 3 / H) from the rotary sedimentation tank. As a result of earnest studies on the size of the suspended particles in the flowing suspension, the following findings were obtained. The particle size (classification point particle size) at the boundary of whether or not the suspended solid particles overflow the rotary sedimentation tank is determined by the rotational cross-sectional area S (πr
2 ) It was found that the ratio was related to the ratio Q / GS of the value GS obtained by multiplying the centrifugal effect G to the flow rate Q of the suspension flowing from the rotary settling tank.

【0010】回転内半径rの回転沈降槽を角速度ωで回
転させると、回転軸の中心に対してrω2の求心加速度
が働き、回転沈降槽内の懸濁液中の懸濁粒子には、反作
用の遠心力が働いて、懸濁質粒子は、回転沈降槽の側壁
に沈降する。この求心加速度は、重力加速度g(=9.
80m/s2)と比較して、rω2/g倍となる。これを
遠心効果Gと称している。回転沈降槽の回転数をn(r
pm)とすると、角速度ω=2πn/60となる。した
がって、Gは、次式(3)で表される。 G=rω2/g=r(2πn/60)2/g ∴G=0.00112・r・n2 (3) そうすると、Q/GSは、次式(4)で表される。 Q/GS=Q/(πr2・0.00112・r・n2) ∴Q/GS=285・r-3・Q・n-2 (4) このQ/GSは、m/Hの次元(速度の次元)を有し、
以下、これを分級効果と称する。
When a rotary sedimentation tank having an inner radius of rotation r is rotated at an angular velocity ω, a centripetal acceleration of rω 2 acts on the center of the rotation axis, and suspended particles in a suspension in the rotary sedimentation tank include: Due to the centrifugal force of the reaction, the suspended solid particles settle on the side wall of the rotary settling tank. This centripetal acceleration is the gravitational acceleration g (= 9.
80 m / s 2 ), which is rω 2 / g times. This is called the centrifugal effect G. The rotation speed of the rotary sedimentation tank is n (r
pm), the angular velocity ω = 2πn / 60. Therefore, G is represented by the following equation (3). G = rω 2 / g = r (2πn / 60) 2 / g ∴G = 0.00112 · rn 2 (3) Then, Q / GS is represented by the following equation (4). Q / GS = Q / (πr 2 · 0.00112 · r · n 2 ) GQ / GS = 285 · r −3 · Q · n -2 (4) The Q / GS is a dimension of m / H ( Speed dimension),
Hereinafter, this is referred to as a classification effect.

【0011】沈降する懸濁質粒子の大きさとその沈降
速度は、粒子の形により影響を受けるが、回転沈降槽を
備えた遠心機においても、実用的には、懸濁質粒子を真
球と仮定したストークスの沈降速度式(5)が適用でき
る。 v=(1/18)・μ-1・(ρs−ρ)・g・D2 (5) v:懸濁質粒子の沈降速度(m/H) μ:懸濁媒体の粘度 ρs:懸濁質粒子の比重 ρ:懸濁媒体の比重 g:重力加速度 D:懸濁質粒子のストークス径(μm)
[0011] The size of the settling suspended particles and the sedimentation speed thereof are affected by the shape of the particles. However, even in a centrifugal machine equipped with a rotary sedimentation tank, the suspended particles are practically formed into spherical particles. The assumed Stokes sedimentation velocity equation (5) can be applied. v = (1/18) · μ −1 · (ρ s −ρ) · g · D 2 (5) v: sedimentation velocity of suspended particles (m / H) μ: viscosity of suspension medium ρ s : Specific gravity of suspended particles ρ: Specific gravity of suspension medium g: Gravitational acceleration D: Stokes diameter of suspended particles (μm)

【0012】分級効果の式(4)のQ/GS(次元:m
/H)の値は、沈降速度式(5)のv(次元:m/H)
に代入することができ、それによって、懸濁質粒子が回
転沈降槽を越流するか否かの境界の粒径(分級点粒度)
をr、Q及びnの関数として表し得ることが判明した。
即ち、以下のとおりである。 (1/18)・μ-1・(ρs−ρ)・g・D2=285・r-3・Q・n-22=285・r-3・Q・n-2・18・μ・(ρs−ρ)-1・g-1 =285・18・μ・(ρs−ρ)-1・g-1・r-3・Q・n-2 ここで、 k2=285・18・μ・(ρs−ρ)-1・g-1 (6) とおくと、上記式は、 D2=k2・r-3・Q・n-2 となり、この式から一般式(1)が得られる。
Q / GS (dimension: m) in equation (4) of the classification effect
/ H) is the value of v (dimension: m / H) in the sedimentation velocity equation (5).
, Whereby the particle size (classification point size) at the boundary of whether the suspended particles overflow the rotary settling tank or not
Can be expressed as a function of r, Q and n.
That is, it is as follows. (1/18) · μ −1 · (ρ s −ρ) · g · D 2 = 285 · r −3 · Q · n -2 D 2 = 285 · r -3 · Q · n -2 · 18 · μ · (ρ s −ρ) −1 · g −1 = 285 · 18 · μ · (ρ s −ρ) −1 · g −1 · r −3 · Q · n -2 where k 2 = 285 · 18 · μ · (ρ s -ρ) -1 · g -1 (6) The above equation becomes D 2 = k 2 · r -3 · Q · n -2 . (1) is obtained.

【0013】 D=k・r-3/2・Q1/2・n-1 (1)[0013] D = k · r -3/2 · Q 1/2 · n -1 (1)

【0014】被処理懸濁液を遠心機の回転沈降槽に連続
的に供給し、該回転沈降槽から越流させると共に、越流
する懸濁液の流量Qと回転沈降槽の回転数nを一般式
(1)に従って調整すると、ストークス径Dに相当する
粒度D以上の懸濁質粒子を回転沈降槽内に沈降させるこ
とができる。即ち、ストークス径D以上の粒子が示す沈
降速度以上の懸濁質粒子を回転沈降槽内に沈降させるこ
とができる。この場合の粒度Dを分級点粒度という。こ
の一般式(1)が、回転沈降槽を備えた遠心機を用い
て、懸濁液を粒度に応じて定量的に分級し、さらには、
粒度分布の測定、粒度分布の調整を行うのに有用である
ことは、具体的に、実施例及び図面に示すところであ
る。
The suspension to be treated is continuously supplied to a rotary sedimentation tank of a centrifuge and overflowed from the rotary sedimentation tank, and the flow rate Q of the overflowing suspension and the rotation speed n of the rotary sedimentation tank are adjusted. When adjusted according to the general formula (1), suspended particles having a particle size D or more corresponding to the Stokes diameter D can be settled in the rotary settling tank. That is, suspended solid particles having a sedimentation velocity equal to or higher than the particles having a Stokes diameter D or more can be sedimented in the rotary sedimentation tank. The particle size D in this case is called a classification point particle size. The general formula (1) quantitatively classifies the suspension according to the particle size using a centrifuge equipped with a rotary sedimentation tank.
What is useful for measuring the particle size distribution and adjusting the particle size distribution is specifically shown in Examples and the drawings.

【0015】一般式(1)において、kは、定数であ
る。このkは、媒体粘度μと比重の差(ρs−ρ)が既
知であれば、式(6)から算出することができる。kを
求める実用的な方法として、以下の方法がある。沈降速
度式(5)と式(6)から、次の式(7)が得られる。 v=(285/k2)・D2 (7) 特定の比重と粒径を有する粒子の特定濃度の水性懸濁液
を調製し、特定の温度で沈降速度を実験的に求め、その
結果を式(7)に挿入すれば、285/k2が得られ、
したがって、k値を算出することができる。
In the general formula (1), k is a constant. This k can be calculated from Equation (6) if the difference (ρ s −ρ) between the medium viscosity μ and the specific gravity is known. A practical method for obtaining k is as follows. From the sedimentation velocity equations (5) and (6), the following equation (7) is obtained. v = (285 / k 2 ) · D 2 (7) An aqueous suspension having a specific concentration of particles having a specific gravity and a specific particle size is prepared, and the sedimentation velocity is determined experimentally at a specific temperature. Inserting into equation (7) gives 285 / k 2 ,
Therefore, the k value can be calculated.

【0016】石粉は、天然に最も普遍的に存在する粒子
である。石粉の比重は、2.60であった。石粉を篩い
分級して、100μm以下の粒子を集め、その1%懸濁
液を作成した。この懸濁液を長さ15cmの試験管に満
たし、14℃の水中で、粒子の沈降速度を差動顕微鏡で
観測した。沈降の最も速い粒子が、10秒間に7cm
(=25m/H)の沈降速度を示した。この沈降の最も
速い粒子の粒径を100μmと見なし、これらの値を式
(7)に代入した。 25=(285/k2)・1002 ∴285/k2=0.0025
Stone flour is the most commonly occurring particle in nature. The specific gravity of the stone powder was 2.60. The stone powder was sieved and classified to collect particles having a size of 100 μm or less to prepare a 1% suspension. This suspension was filled in a test tube having a length of 15 cm, and the sedimentation speed of the particles was observed with a differential microscope in water at 14 ° C. The fastest settling particles are 7 cm in 10 seconds
(= 25 m / H). The particle diameter of the fastest settling particles was considered to be 100 μm, and these values were substituted into equation (7). 25 = (285 / k 2 ) · 100 2 ∴285 / k 2 = 0.0025

【0017】したがって、被処理懸濁液が、比重2.6
0の懸濁質粒子を含有する水性懸濁液の場合、ストーク
スの沈降速度式は、次式(8)で表すことができる。 v=0.0025D2 (8) また、k2=285÷0.0025 =114000 ∴ k=338 となる。したがって、k=338の場合、一般式(1)
は、次の一般式(2)で表されることになる。 D=338・r-3/2・Q1/2・n-1 (2)
Therefore, the suspension to be treated has a specific gravity of 2.6.
In the case of an aqueous suspension containing 0 suspended particles, the Stokes sedimentation velocity equation can be expressed by the following equation (8). v = 0.0025D 2 (8) Also, k 2 = 285 ÷ 0.0025 = 1114 000∴k = 338. Therefore, when k = 338, the general formula (1)
Is represented by the following general formula (2). D = 338 · r -3/2 · Q 1/2 · n -1 (2)

【0018】この一般式(2)は、比重が2.60の懸
濁質粒子のみを含む水性懸濁液に対してだけではなく、
実用上は、種々の比重の懸濁質粒子が混在する各種懸濁
液を対象とする場合にも適用することができる。各種懸
濁液には、単一比重の懸濁質粒子が含まれていることは
少なく、比重の異なる多くの種類の懸濁質粒子が混在し
ていることが多い。懸濁媒体として、水以外の有機溶媒
や水と有機溶媒との混合液などが使用されることもあ
る。また、被処理懸濁液に含まれている懸濁質粒子の比
重が不明の場合もある。しかしながら、実用上、多くの
被処理懸濁液に対して、一般式(2)の適用で充分なこ
とが多く、それによって、ストークス径D以上の粒子が
示す沈降速度以上の懸濁質粒子を回転沈降槽内に沈降さ
せることができる。勿論、懸濁質粒子の比重が2.60
よりも非常に大きい場合や小さい場合、あるいは懸濁質
粒子と懸濁媒体との比重差が非常に大きい場合などは、
それぞれk値を求めて、一般式(1)から新たな定数を
有する一般式を導き出して適用すると、より正確な分級
処理が可能となる。
This general formula (2) is applicable not only to an aqueous suspension containing only suspended particles having a specific gravity of 2.60,
Practically, the present invention can be applied to a case where various suspensions in which suspended particles having various specific gravities are mixed are targeted. Various types of suspensions rarely contain suspension particles having a single specific gravity, and often contain many types of suspension particles having different specific gravities. As a suspension medium, an organic solvent other than water, a mixed solution of water and an organic solvent, or the like may be used. In some cases, the specific gravity of the suspended particles contained in the suspension to be treated is unknown. However, in practice, the application of the general formula (2) is often sufficient for many suspensions to be treated, whereby the suspended particles having a sedimentation velocity equal to or greater than the sedimentation velocity indicated by the particles having the Stokes diameter D or more are obtained. It can be settled in a rotary settling tank. Of course, the specific gravity of the suspended particles is 2.60.
If the difference is very large or small, or if the specific gravity difference between the suspended particles and the suspension medium is very large,
If the respective k values are obtained, and a general expression having a new constant is derived from the general expression (1) and applied, more accurate classification processing can be performed.

【0019】回転沈降槽を備えた遠心機 本発明で使用する回転沈降槽を備えた遠心機としては、
通常の竪型遠心機及び横型遠心機を使用することができ
る。回転沈降槽の最も広い箇所の内半径は、特に限定さ
れないが、通常、0.05m(100mmφ)から0.
6m(1200mmφ)までのものが使用できる。
Centrifuge equipped with a rotary sedimentation tank The centrifuge equipped with a rotary sedimentation tank used in the present invention includes:
Conventional vertical centrifuges and horizontal centrifuges can be used. The inner radius of the widest part of the rotary sedimentation tank is not particularly limited, but is usually 0.05 m (100 mmφ) to 0.1 mm.
Those up to 6 m (1200 mmφ) can be used.

【0020】懸濁液 本発明が対象とする被処理懸濁液は、特に限定されず、
懸濁質(懸濁質粒子)は、無機物、有機物、天然物、人
工合成物を問わない。懸濁媒体についても、水をはじ
め、各種液状媒体を用いた懸濁液を処理の対象とするこ
とができる。懸濁液の具体例としては、各種鉱物粒子を
含む懸濁液、酵母や微生物の懸濁液(培養液、発酵
液)、汚泥、化学反応液などを挙げることができる。化
学反応液としては、例えば、金属の酸性水溶液にアルカ
リを添加して、金属の水酸化物や酸化物粒子を析出させ
て得られる懸濁液(例えば、顔料粒子の懸濁液)があ
る。また、本発明の方法は、所望の大きさに成長した粒
子の選択採取が可能であり、例えば、海水に石灰を反応
させて、マグネシウムの水酸化物を回収する工程での懸
濁液の処理に適している。
Suspension The suspension to be treated in the present invention is not particularly limited.
The suspension (suspension particles) may be inorganic, organic, natural, or artificially synthesized. As for the suspension medium, a suspension using various liquid media such as water can be treated. Specific examples of the suspension include a suspension containing various mineral particles, a suspension of a yeast or a microorganism (a culture solution or a fermentation solution), sludge, a chemical reaction solution, and the like. As the chemical reaction liquid, for example, there is a suspension (for example, a suspension of pigment particles) obtained by adding an alkali to an acidic aqueous solution of a metal to precipitate metal hydroxide or oxide particles. In addition, the method of the present invention enables selective collection of particles grown to a desired size, for example, treatment of a suspension in a step of recovering magnesium hydroxide by reacting lime with seawater. Suitable for.

【0021】本発明の方法は、潮解性の結晶や温度変化
により分解し易い結晶の採取に適している。このような
結晶を含む懸濁液を濾過して結晶を分離する方法では、
媒体液が除去されて結晶が分解する場合でも、本発明の
方法では、結晶の空隙中の媒体液が除かれないため、化
学平衡が維持されて分解しない結晶を分級・分離するこ
とができる。また、本発明の方法は、化学平衡の僅かな
差異で分別したい結晶、錯塩、複塩などの分別採取に適
している。したがって、稀少資源、特に稀土類化合物の
採取に適している。
The method of the present invention is suitable for collecting deliquescent crystals and crystals that are easily decomposed by a change in temperature. In a method of separating a crystal by filtering a suspension containing such a crystal,
Even when the medium solution is removed and the crystals are decomposed, the method of the present invention does not remove the medium solution in the voids of the crystals, so that the chemical equilibrium is maintained and the crystals that do not decompose can be classified and separated. In addition, the method of the present invention is suitable for separating and collecting crystals, complex salts, double salts, and the like that are to be separated by a slight difference in chemical equilibrium. Therefore, it is suitable for collecting rare resources, particularly rare earth compounds.

【0022】被処理懸濁液の温度については、水に関し
ては、0〜100℃の範囲で適用可能である。しかし、
液温度が100℃に近づくつれて、ガス化(沸騰)によ
る気泡が生じ易くなり、正確な分級が妨げられるため、
50℃以下の温度に保持することが好ましい。また、処
理中の液温度の変化は、対流を引き起こすので、恒温に
保持することが好ましい。懸濁液の濃度は、特に限定さ
れないが、懸濁質粒子を粒度に応じて分級する場合に
は、濃度が低い方が好ましい。懸濁液の濃度は、通常、
0.1〜75重量%程度である。5重量%以下の低濃度
の懸濁液を処理する場合には、化学的調整によって懸濁
質粒子を絡めておいて、沈降し易くすることが好まし
い。
With respect to the temperature of the suspension to be treated, water can be applied in the range of 0 to 100 ° C. But,
As the liquid temperature approaches 100 ° C., bubbles due to gasification (boiling) are likely to occur, and accurate classification is hindered.
It is preferable to maintain the temperature at 50 ° C. or lower. Further, since a change in the liquid temperature during the process causes convection, it is preferable to keep the temperature constant. The concentration of the suspension is not particularly limited, but when the suspension particles are classified according to the particle size, the lower the concentration, the better. The concentration of the suspension is usually
It is about 0.1 to 75% by weight. When treating a suspension having a low concentration of 5% by weight or less, it is preferable that the suspended particles are entangled by chemical adjustment to facilitate sedimentation.

【0023】懸濁媒体としては、水以外に、ストークス
の沈降式で表せる限り何れの有機溶媒をも使用すること
ができる。また、懸濁媒体は、水と有機溶媒との混合液
であってもよい。ただし、懸濁媒体が引火性の有機溶媒
の場合は、装置を防爆構造にする。懸濁質粒子の比重が
懸濁媒体より小さい場合は、懸濁質粒子が浮上する。こ
の場合には、沈降を浮上に置き換えれば、同様に適応で
きる。例えば、水と油の懸濁液についても、油の分散粒
子の大きさに応じて分級・採取できる。懸濁質粒子が有
機高分子の場合、粒度に応じて分級・採取すると、高機
能の粒子を回収できる。したがって、本発明の方法は、
イオン交換樹脂、接着剤粒子、印刷材粒子等を含む懸濁
重合液の分級処理に適する。
As the suspending medium, any organic solvent other than water can be used as long as it can be expressed by the Stokes sedimentation system. Further, the suspension medium may be a mixture of water and an organic solvent. However, if the suspending medium is a flammable organic solvent, use an explosion-proof device. If the specific gravity of the suspended particles is smaller than the suspension medium, the suspended particles will float. In this case, if the sedimentation is replaced by levitation, the same can be applied. For example, a suspension of water and oil can be classified and collected according to the size of the dispersed particles of oil. When the suspended particles are organic polymers, high-performance particles can be collected by classification and collection according to the particle size. Thus, the method of the present invention comprises:
It is suitable for classifying a suspension polymerization solution containing an ion exchange resin, adhesive particles, printing material particles and the like.

【0024】本発明は、ストークスの沈降式が適用でき
る流体全般に適用できる。先ず、鉱物油、動植物油、合
成油から懸濁質を除いて精製する方法に適用することが
できる。研磨工程の冷却油、機械油の精製において、各
種懸濁質の特性に応じて、精製条件を最適に設計でき
る。水と油の懸濁液の分離、例えば、原油の精製、製品
油タンクの底に溜まる水の除去、海洋に流出した油の回
収において、沈降・分離の条件を速やかに最適に設計で
きる。懸濁液の中でも水性懸濁液が特に応用範囲が広
い。懸濁質粒子は、無機物、有機物、天然物、人工合成
物を問わない。懸濁粒子の大きさは、ストーク径で表し
て、2μm以下の粘土微粒子から、2mmの砂に至る広
範な領域を対象とすることができる。
The present invention is applicable to all fluids to which the Stokes sedimentation method can be applied. First, the present invention can be applied to a method for purifying mineral oils, animal and vegetable oils, and synthetic oils by removing suspended matter. In the refining of cooling oil and machine oil in the polishing step, the refining conditions can be optimally designed according to the characteristics of various suspended solids. In the separation of a suspension of water and oil, for example, in the purification of crude oil, the removal of water accumulated at the bottom of a product oil tank, and the recovery of oil spilled into the ocean, sedimentation and separation conditions can be quickly and optimally designed. Among suspensions, aqueous suspensions have a particularly wide application range. The suspended particles may be inorganic, organic, natural, or artificially synthesized. The size of the suspended particles, expressed as a Stoke diameter, can cover a wide range from clay fine particles of 2 μm or less to sand of 2 mm.

【0025】本発明の方法は、粗粒子や細粒子から微細
な粒子を除去して、流動性の高い精製粒子を得たり、反
対に、微粒子や粘土粒子に含まれる粗大粒子を除去する
のに適している。例えば、カオリナイト、パイロフィラ
イトのような粘土微粒子は、アルカリ側で解膠させてか
ら分級処理すると、アルカリ側で解膠しない粒子の除去
がより完全になる。本発明の方法によれば、広大な敷地
を必要とした水簸設備を必要とせず、温度等の管理が可
能な工場内で正確な分級が可能になる。本発明における
被処理懸濁液の懸濁媒体は、通常、水であるが、懸濁媒
体の比重を小さく調整する手段として、イソプロピルア
ルコール等を添加したり、懸濁媒体の比重を大きく調整
する手段として、海水を利用したり、あるいはカオリン
やベントナイト等の粘土微粒子を添加して、数ミリ単位
の粒子の分級処理もできる。
The method of the present invention is used for removing fine particles from coarse particles and fine particles to obtain purified particles having high fluidity, and conversely, for removing coarse particles contained in fine particles and clay particles. Are suitable. For example, when fine particles of clay such as kaolinite and pyrophyllite are peptized on the alkali side and then classified, the removal of particles not peptized on the alkali side becomes more complete. According to the method of the present invention, accurate classification can be performed in a factory where temperature and the like can be controlled without requiring elutriation equipment that requires a vast site. The suspension medium of the suspension to be treated in the present invention is usually water, but as a means for adjusting the specific gravity of the suspension medium to be small, isopropyl alcohol or the like is added or the specific gravity of the suspension medium is adjusted to be large. As a means, it is possible to classify several millimeters of particles by using seawater or adding clay fine particles such as kaolin and bentonite.

【0026】分級方法 本発明の分級方法は、被処理懸濁液を遠心機の回転沈降
槽に連続的に供給し、該回転沈降槽から越流させると共
に、一般式(1)に従って、越流する懸濁液の流量Qと
回転沈降槽の回転数nを調整し、ストークス径D以上の
粒子が示す沈降速度以上の懸濁質粒子を回転沈降槽内に
沈降させることを特徴とする。ストークス径に相当する
粒度を種々変化させて分級処理を行うと、被処理懸濁液
中の懸濁質粒子の粒度分布を測定することができる。ま
た、越流する懸濁液には、分級点粒度D未満の粒度の懸
濁質粒子が含まれることになる。したがって、所望の粒
度以上の懸濁質粒子を除去した精製懸濁液を調整するこ
とができる。
Classification Method In the classification method of the present invention, the suspension to be treated is continuously supplied to a rotary sedimentation tank of a centrifuge and overflowed from the rotary sedimentation tank. By adjusting the flow rate Q of the suspension and the rotation speed n of the rotary sedimentation tank, the suspended particles having a sedimentation speed higher than the sedimentation velocity of particles having a Stokes diameter D or more are settled in the rotary sedimentation tank. When the classification treatment is performed with variously changing the particle size corresponding to the Stokes diameter, the particle size distribution of the suspended particles in the suspension to be treated can be measured. The overflowing suspension contains suspended particles having a particle size smaller than the classification point particle size D. Therefore, it is possible to prepare a purified suspension from which suspended particles having a desired particle size or more are removed.

【0027】被処理懸濁液は、直接、遠心機の回転沈降
槽に供給することができる。しかしながら、被処理懸濁
液の回転沈降槽内での滞留時間が不足する場合には、越
流中に分級点粒度以上の粗粒子が混在することがある。
また、懸濁質粒子が絡み合って粘性が高くなった懸濁液
をそのまま処理すると、分級点粒度の正確性が損なわれ
るおそれがある。そこで、被処理懸濁液として、予め特
定の沈降処理槽で攪拌処理された懸濁液を用い、また、
遠心機の回転沈降槽からの越流を該沈降処理槽に還流し
て、粗粒子を完全に補足するようにすることが好まし
い。
The suspension to be treated can be directly supplied to a rotary settling tank of a centrifuge. However, if the residence time of the suspension to be treated in the rotary sedimentation tank is insufficient, coarse particles having a particle size equal to or larger than the classification point may be mixed in the overflow.
Further, if the suspension having the increased viscosity due to the entanglement of the suspended particles is directly processed, the accuracy of the classification point particle size may be impaired. Therefore, as the suspension to be treated, a suspension previously stirred in a specific settling tank is used,
It is preferable that the overflow from the rotary settling tank of the centrifuge is returned to the settling tank so that coarse particles are completely captured.

【0028】具体的には、懸濁液を導入し、該懸濁液を
懸濁質濃度の高い重液と懸濁質濃度の低い軽液とに分離
するための沈降処理槽であって、槽内の懸濁液の液面か
ら底部への短絡流が起こらない旋回流を発生・維持せし
めた沈降処理槽の底中心部から、重液をポンプ手段によ
り採取し、該重液を被処理懸濁液として、遠心機の回転
沈降槽に連続的に供給する方法を挙げることができる。
この場合、ポンプ手段により採取した重液を、上方向回
路と下方向回路に分岐して、上方向回路に分岐した重液
を沈降処理槽の底部に還流し、下方向回路に分岐した重
液を被処理懸濁液として、遠心機の回転沈降槽に連続的
に供給することが好ましい。さらに、回転沈降槽を越流
する懸濁液を、沈降処理槽に還流することが好ましい。
このような目的に使用できる沈降処理槽及び処理方法と
しては、本発明者が先に提案した懸濁液分離装置(特開
平4−346803号)、懸濁液分離・分級装置(特開
平5−184815号)、及び懸濁液の沈降分離方法及
び沈降分離装置(特開平6−55007号)が好まし
い。
More specifically, a settling tank for introducing a suspension and separating the suspension into a heavy liquid having a high concentration of suspended matter and a light liquid having a low concentration of suspended matter, A heavy liquid is collected by a pump means from a central part of the bottom of the settling tank in which a swirling flow that does not cause a short-circuit flow from the liquid level to the bottom of the tank in the tank is generated and maintained, and the heavy liquid is processed. As the suspension, a method of continuously supplying the suspension to a rotary sedimentation tank of a centrifuge can be used.
In this case, the heavy liquid collected by the pump means is branched into an upper circuit and a lower circuit, and the heavy liquid branched into the upper circuit is returned to the bottom of the settling tank, and the heavy liquid branched into the lower circuit. Is preferably continuously supplied to a rotary sedimentation tank of a centrifuge as a suspension to be treated. Further, it is preferable that the suspension flowing over the rotary settling tank is returned to the settling tank.
The sedimentation treatment tank and treatment method that can be used for such purposes include a suspension separation device (JP-A-4-346803) and a suspension separation / classification device (JP-A-5-468) proposed by the present inventors. No. 184815), and a method and a device for separating and separating a suspension (JP-A-6-55007).

【0029】<基本ユニット>前記の如き沈降処理槽を
併用した基本ユニットの例を図1に示す。図1に示す基
本ユニットは、電導機Mにより回転する回転沈降槽(竪
型遠心機)10と、槽自体は回転しないが、内容液が旋
回する沈降処理槽3との組み合わせにより構成されてい
る。懸濁液1は、注入管2を通して沈降処理槽3に導入
される。沈降処理槽3の底中心部からポンプ手段(水中
ポンプ)4により懸濁液を汲み上げて、垂直に立ち上げ
た導管5を通して回転沈降槽10内に懸濁液を導く。こ
の場合、垂直に立ち上げた導管5を途中から水平方向に
曲げて、その先端を上下に分岐6させ、上方向回路(戻
り回路)8に分岐した懸濁液を沈降処理槽3の底部に還
流して、吹出口9から円筒状の沈降処理槽に吹き出して
旋回流の駆動力とし、一方、下方向回路(注入口)7か
ら回転沈降槽10に懸濁液を注入することが好ましい。
<Basic Unit> FIG. 1 shows an example of a basic unit using the above settling tank in combination. The basic unit shown in FIG. 1 is constituted by a combination of a rotary sedimentation tank (vertical centrifuge) 10 rotated by a conductor M and a sedimentation treatment tank 3 in which the tank itself does not rotate but the contents liquid swirls. . The suspension 1 is introduced into a settling tank 3 through an injection pipe 2. The suspension is pumped up from the center of the bottom of the settling tank 3 by a pump means (submersible pump) 4, and the suspension is guided into a rotary settling tank 10 through a vertically raised conduit 5. In this case, the vertically raised conduit 5 is bent in the horizontal direction from the middle, the tip is branched up and down 6, and the suspension branched into the upward circuit (return circuit) 8 is placed on the bottom of the settling tank 3. It is preferable that the suspension is refluxed and blown out from the outlet 9 into a cylindrical settling tank to drive the swirling flow, while the suspension is injected from the downward circuit (injection port) 7 into the rotary settling tank 10.

【0030】沈降処理槽3では、懸濁液は、懸濁質濃度
の高い重液と懸濁質濃度の低い軽液とに分離される。重
液は、沈降処理槽3の底部に集まり、かつ、旋回流によ
る求心力により、懸濁質粒子は、底部の中央に集められ
る。旋回流は、沈降処理槽の液面から底部への短絡流が
起こらないように調整する。回転沈降槽10の側壁に、
懸濁粒子のうち大きく重いものが沈降11し、小さく軽
いものは、懸濁液と共に側壁の堰を越流する。越流する
懸濁液の流量を流量計測機F1で計測する。越流した懸
濁液は、越流樋12から導管13を通して沈降処理槽3
に還流され、好ましくは沈降処理槽の接線方向に吹き出
される。この方法によれば、回転沈降槽における被処理
懸濁液の滞留時間が短いため、沈降せずに越流した分級
点粒度以上の粒子も何回か繰り返し処理されて、確実に
沈降し捕捉される。
In the settling tank 3, the suspension is separated into a heavy liquid having a high concentration of suspended matter and a light liquid having a low concentration of suspended matter. The heavy liquid is collected at the bottom of the settling tank 3, and the suspended particles are collected at the center of the bottom by centripetal force due to the swirling flow. The swirling flow is adjusted so that a short-circuit flow from the liquid level of the settling tank to the bottom does not occur. On the side wall of the rotary settling tank 10,
Large and heavy suspended particles settle 11 while small and light particles flow over the side wall weir together with the suspension. The flow rate of the overflowing suspension is measured by the flow meter F1. The overflowed suspension is transferred from the overflow trough 12 through the conduit 13 to the settling tank 3.
And preferably blown out in the tangential direction of the settling tank. According to this method, the residence time of the suspension to be treated in the rotary sedimentation tank is short, so that particles having a particle size equal to or higher than the classification point that have overflowed without sedimentation are repeatedly treated several times, and are surely sedimented and captured. You.

【0031】なお、図1において、沈降処理槽の上部か
らは、軽液が越流樋16を経て、採取口17から精製懸
濁液として採取される。また、分岐点6から分岐する各
懸濁液の流量は、流量調節弁14及び15により調節す
る。回転計測機SIで回転沈降槽の回転数nを測定し、
流量計測機F1で越流する懸濁液の流量Qを測定し、こ
れらの測定データを用いて分級点粒度を制御する。とこ
ろで、懸濁液を流動させると、通常、懸濁質粒子間の絡
まりは解されて、粘性は低下する。水平面の旋回流を上
下に混合しないように維持せしめた沈降処理槽で懸濁液
を処理し、その粘度を低下させてから回転沈降槽に供給
すると、被処理懸濁液を直接回転沈降槽に供給した場合
と比較して、より正確に分級することができる。遠心機
の回転沈降槽を越流する懸濁液を、旋回流を維持せしめ
た元の沈降処理槽に戻して、繰り返し循環処理すると、
回転沈降槽の容量上、滞留時間が不足して越流中に漏洩
した分級点粒度以上の粗粒子を確実に回転沈降槽に捕捉
することができる。
In FIG. 1, from the upper part of the settling tank, the light liquid is collected as a purified suspension from the collection port 17 through the overflow gutter 16. Further, the flow rate of each suspension branched from the branch point 6 is adjusted by the flow control valves 14 and 15. The rotational speed n of the rotary sedimentation tank is measured by the rotational measuring machine SI,
The flow rate Q of the suspension flowing over is measured by the flow rate measuring device F1, and the classification point particle size is controlled using the measured data. By the way, when the suspension is fluidized, the entanglement between the suspended particles is usually released and the viscosity is reduced. The suspension is treated in a settling tank that keeps the swirling flow in the horizontal plane from mixing up and down, and its viscosity is reduced before it is supplied to the rotary settling tank. Classification can be performed more accurately than when supplied. When the suspension flowing over the rotary sedimentation tank of the centrifuge is returned to the original sedimentation treatment tank that maintained the swirling flow, and the circulation treatment is repeated,
Due to the capacity of the rotary sedimentation tank, coarse particles having a particle size equal to or larger than the classification point and leaking during overflow due to insufficient residence time can be reliably captured in the rotary sedimentation tank.

【0032】前記沈降処理槽では、懸濁液が底部に限定
されて平面で旋回し、旋回流が短絡して上下に混合しな
い。懸濁液は、流動状態にあって旋回し、重力場が作用
するので、求心力と重力が働いて、沈降処理槽の底中心
部に懸濁質粒子の沈降と懸濁液の濃縮が起る。沈降処理
槽では、懸濁液が流動状態に保持されるので、懸濁液の
粘度が低下し、懸濁粒子間の相互作用が低下して、各粒
子が独立に挙動しやすくなる。
In the settling tank, the suspension is swirled in a plane limited to the bottom, and the swirling flow is short-circuited and does not mix up and down. The suspension is swirled in a fluid state, and the gravitational field acts, so that the centripetal force and the gravity work to cause the sedimentation of the suspended particles and the concentration of the suspension at the center of the bottom of the settling tank. . In the settling tank, the suspension is kept in a fluidized state, so that the viscosity of the suspension is reduced, the interaction between the suspended particles is reduced, and each particle tends to behave independently.

【0033】<分級システム>本発明の分級方法は、複
数の沈降処理槽と複数の遠心機を組み合わせて行うこと
ができる。そのような分級システムの具体例を図2に示
す。 図2の左上の混合槽(1)で粒子(13)と媒体(1
1)を混合して、懸濁液を調製する。この際、回収媒体
液(12)を混合してもよい。 混合槽(1)で調製した懸濁液は、反応槽(2)に導
入される。この反応槽は、底部位に限定した旋回流が発
生・維持されている沈降処理槽である。反応槽(2)で
は、例えば、気体びん(10)から酸素を供給して懸濁
質粒子の酸化反応を行うなど、懸濁液の化学的調整を行
う。反応槽(2)では、気体と液体と固体の複雑な相を
なす不均一化学反応を行うことができる。
<Classification System> The classification method of the present invention can be performed by combining a plurality of sedimentation tanks and a plurality of centrifuges. FIG. 2 shows a specific example of such a classification system. In the mixing tank (1) at the upper left of FIG.
1) is mixed to prepare a suspension. At this time, the recovery medium liquid (12) may be mixed. The suspension prepared in the mixing tank (1) is introduced into the reaction tank (2). This reaction tank is a settling tank in which a swirl flow limited to the bottom portion is generated and maintained. In the reaction tank (2), the suspension is chemically adjusted, for example, by supplying oxygen from the gas bottle (10) to oxidize the suspended particles. In the reaction tank (2), a heterogeneous chemical reaction that forms a complex phase of gas, liquid, and solid can be performed.

【0034】反応槽(2)の底部から、ポンプ手段に
より汲み上げられた懸濁液(重液)は、上方向回路と下
方向回路に分岐され、下方向回路の懸濁液は、反応槽
(2)の底部に還流されて旋回流を発生させるように
し、上方向回路の懸濁液は、次の分級槽(3)に導入さ
れる。分級槽(3)では、懸濁液中の粗大粒子を沈降・
濃縮し貯蔵する。濃縮貯蔵された粗大粒子懸濁液は、竪
型遠心機(8)または(9)に導かれる。竪型遠心機で
は、回転沈降槽の回転数と越流する懸濁液の流量とが本
発明の一般式(1)にしたがって調整され、それによっ
て、ストークス径で正確に設計された所定粒度以上の粒
子だけが分級・採取される。
The suspension (heavy liquid) pumped by the pump means from the bottom of the reaction tank (2) is branched into an upper circuit and a lower circuit, and the suspension in the lower circuit is supplied to the reaction tank (2). The liquid is refluxed at the bottom of 2) to generate a swirling flow, and the suspension in the upward circuit is introduced into the next classification tank (3). In the classification tank (3), coarse particles in the suspension are settled
Concentrate and store. The concentrated and stored coarse particle suspension is guided to a vertical centrifuge (8) or (9). In a vertical centrifuge, the number of revolutions of the rotary sedimentation tank and the flow rate of the overflowing suspension are adjusted according to the general formula (1) of the present invention, whereby the predetermined particle size that is accurately designed with the Stokes diameter is exceeded. Only the particles are classified and collected.

【0035】分級槽(3)を複数個設置して、越流回路
等により順次並列につなげば(図示せず)、各分級槽か
ら上記と同様の方法により粒径の異なる分級された懸濁
質粒子が採取される。各分級槽の水面面積をS(m2
として、Q(m3/H)の速度で越流させると、各分級
槽内の水面の上昇速度は、Q/S(m/H)となる。こ
の上昇速度値を所望の粒度の沈降速度以下、例えば、
0.25m/H以下にすれば10μm以上の粒子は、堰
を越えられず、堰内に蓄えられる。分級粒度をストーク
ス径で定量的に設計して、2〜50μm領域の粒度の分
級ができる。したがって、小規模試験から大規模操業ま
でストークス径で設計でき、同じ分級処理ができる。
If a plurality of classifying tanks (3) are installed and connected in parallel sequentially by an overflow circuit or the like (not shown), classified suspensions having different particle diameters from the respective classifying tanks in the same manner as described above. Solid particles are collected. The water surface area of each classification tank is S (m 2 )
When overflowing at a speed of Q (m 3 / H), the rising speed of the water surface in each classification tank is Q / S (m / H). This rise rate value is below the settling rate of the desired particle size, for example,
If it is 0.25 m / H or less, particles of 10 μm or more cannot be passed through the weir and are stored in the weir. The classification particle size is quantitatively designed based on the Stokes diameter, and the particle size in the range of 2 to 50 μm can be classified. Therefore, it is possible to design with a Stokes diameter from a small-scale test to a large-scale operation, and the same classification process can be performed.

【0036】分級槽(3)から越流する懸濁液は、濃
縮槽(4)に導かれる。この濃縮槽(4)は、底部位に
限定した旋回流が発生・維持されている沈降処理槽であ
る。濃縮槽(4)では、懸濁液中の微小粒子が沈降・濃
縮され貯蔵される。濃縮された微小粒子を含む懸濁液
は、分岐回路を通して横型遠心機(7)に送られ、所定
粒度以上の粒子だけが適宜脱水採取される。微粒子は、
薬液注入口(17)から凝集剤を添加すると、粒子どう
しが絡み合って、見掛け上大きな粒子になるため、水媒
体の場合、遠心機(7)での脱水採取液は、清水にな
る。凝集粒子の見掛け上の大きさをストークス径で表し
て、遠心機(7)の操作を行う。
The suspension flowing from the classification tank (3) is led to the concentration tank (4). This concentrating tank (4) is a settling tank in which a swirl flow limited to the bottom portion is generated and maintained. In the concentration tank (4), the fine particles in the suspension are settled, concentrated and stored. The suspension containing the concentrated fine particles is sent to a horizontal centrifuge (7) through a branch circuit, and only particles having a predetermined particle size or more are appropriately dehydrated and collected. The particles are
When the coagulant is added from the chemical liquid inlet (17), the particles become entangled with each other and apparently become large particles. Therefore, in the case of an aqueous medium, the dehydrated and collected liquid in the centrifuge (7) becomes clear water. The apparent size of the aggregated particles is represented by the Stokes diameter, and the operation of the centrifuge (7) is performed.

【0037】濃縮槽(4)からの越流は、最終段の貯
蔵槽(5)に導かれる。この貯蔵槽(5)は、懸濁媒体
液の貯蔵槽になる。貯蔵槽に僅かでも粒子の沈降堆積が
起らないように、底部に旋回流を発生・維持させ、か
つ、底中心部の液を前段に還流する。上記の分級システ
ムは、単なる一例であって、様々な変形が可能である。
回転沈降槽を備えた遠心機と沈降処理槽とからなる基本
ユニットを複数個結合させて使用すれば、被処理懸濁液
から所望の粒度の懸濁質粒子を分級して採取することが
できる。したがって、このような分級システムは、化学
反応プロセスで生成する懸濁液や乾式粉砕した粉体の分
級処理に適用することができる。
The overflow from the concentration tank (4) is led to the final storage tank (5). This storage tank (5) becomes a storage tank for the suspension medium liquid. A swirling flow is generated and maintained at the bottom so that even a small amount of particles does not settle and accumulate in the storage tank, and the liquid at the center of the bottom is returned to the previous stage. The above classification system is merely an example, and various modifications are possible.
If a plurality of basic units each including a centrifuge equipped with a rotary sedimentation tank and a sedimentation treatment tank are combined and used, it is possible to classify and collect suspended particles having a desired particle size from the suspension to be treated. . Therefore, such a classification system can be applied to a classification process of a suspension or a dry-pulverized powder generated in a chemical reaction process.

【0038】流 量 懸濁液の流量は、通常、体積流量により計測する。流量
は、基本的には、バイパス回路を設けて、体積測定マス
を用いて計測する。自動測定機器として、オリフィス流
量計、浮子式流量計、電磁流量計、超音波式流量計など
が使用できる。回転沈降槽から越流する懸濁液の流量の
計測場所は、遠心機の後が好ましいが、越流する懸濁液
の流量を一定に保つ場合、遠心機の前に設けることもで
きる。
The flow rate of the suspension is usually measured by volume flow. Basically, the flow rate is measured using a volume measurement mass with a bypass circuit provided. As an automatic measuring device, an orifice flow meter, a float type flow meter, an electromagnetic flow meter, an ultrasonic flow meter, or the like can be used. The place where the flow rate of the suspension flowing from the rotary sedimentation tank is measured is preferably after the centrifuge, but may be provided before the centrifuge when the flow rate of the suspension flowing over is kept constant.

【0039】演算方法と装置 本発明の方法においては、特定の遠心機を使用する場
合、回転沈降槽の大きさを定数設定し(r=定数)、回
転数n及び/または越流量Qの値を変数信号として、そ
れらの測定値に基づいて演算し、分級点粒度、さらに
は、分離効果、分級効果等を表示できるようにすること
が好ましい。演算は、例えば、手計算、換算表、換算グ
ラフ、数値表、アナログ演算器、マイコン等により行
う。遠心機の回転沈降槽の回転数と、流量を正確に計測
し、記録保存すれば、分級採取物の粒度が正確に把握で
きる。操作条件は、往々にしてその立ち上がりと停止時
期において変動する。その変動の大小よりも、変動する
期間の長短が重要であり、全体の稼動期間に対する変動
期間の比率で変動の許容幅を判定すべきである。したが
って、必ずしも瞬間的な測定精度を必要とするものでは
ない。
Calculation Method and Apparatus In the method of the present invention, when a specific centrifuge is used, the size of the rotary sedimentation tank is set to a constant (r = constant), and the value of the rotation speed n and / or the overflow Q Is used as a variable signal, and it is preferable to calculate based on the measured values so as to be able to display the classification point granularity, the separation effect, the classification effect, and the like. The calculation is performed by, for example, a manual calculation, a conversion table, a conversion graph, a numerical table, an analog calculator, a microcomputer, or the like. Accurately measuring the number of revolutions and the flow rate of the rotary sedimentation tank of the centrifuge, and recording and storing the information, the particle size of the classified sample can be accurately grasped. Operating conditions often fluctuate between their rise and stop times. The length of the fluctuating period is more important than the magnitude of the fluctuation, and the allowable range of the fluctuation should be determined based on the ratio of the fluctuating period to the entire operating period. Therefore, instantaneous measurement accuracy is not necessarily required.

【0040】このような観点から、計測/航行記録(メ
ータ/ロガー)システムの採用が好ましい。粒度に関連
する流量と回転数の計測のほか、温度、湿度等の気象因
子、pH、導電率、濁度、溶存酸素濃度等の水質環境因
子等多くの計測/航行記録ができ、記録結果は、例え
ば、フロッピーに保存すれば、正確な作業日誌として機
能する。フロッピーの伝送、複製は自在であるから、操
業結果の検討・考察を多数の機会で客観的に行える。デ
ータの長期保存と検索調査が容易で、製品の品質管理、
生産現場の諸々の問題解決に役立つ。
From such a viewpoint, it is preferable to employ a measurement / navigation record (meter / logger) system. In addition to the measurement of flow rate and rotation speed related to particle size, many measurement / navigation records such as meteorological factors such as temperature and humidity, and water quality environmental factors such as pH, conductivity, turbidity, and dissolved oxygen concentration can be performed. For example, if it is stored on a floppy, it functions as an accurate work log. Since the transmission and duplication of the floppy can be freely performed, the examination and consideration of the operation result can be objectively performed on many occasions. Long-term storage of data and easy search and investigation, product quality control,
Useful for solving various problems at production sites.

【0041】[0041]

【実施例】以下に実施例を挙げて、本発明についてより
具体的に説明するが、本発明は、これらの実施例のみに
限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to only these examples.

【0042】[実施例1]最高回転数5000rpm、
100mmφ(r=0.05m)の堅型遠心機を用いて
分級点粒度の設計を行った。上記遠心機を用いる場合、
一般式(2)は、次のように表される。 D=338・0.05-3/2・Q1/2・n-1 D=30200・Q1/2・n-1 遠心機の回転数n(rpm)を横軸にとり、流量Q(m
3/H)の値が(g)0.2、(h)0.1、(i)
0.05、(j)0.02の場合のストークス径D(μ
m)の計算結果を縦軸にとって、上記式をグラフ化した
(図3)。なお、図3には、懸濁質粒子の比重が5.6
0及び3.60の場合についても、n、Q及びDの関係
を示した。
[Example 1] The maximum rotation speed was 5000 rpm,
The classification point particle size was designed using a 100 mmφ (r = 0.05 m) rigid centrifuge. When using the above centrifuge,
The general formula (2) is expressed as follows. D = 338 · 0.05 -3/2 · Q 1/2 · n -1 D = the 30200 · Q 1/2 · n -1 centrifuge speed n of the (rpm) horizontal axis, the flow rate Q (m
3 / H) are (g) 0.2, (h) 0.1, (i)
Stokes diameter D (μ) for 0.05 and (j) 0.02
The above equation was graphed using the calculation result of m) as the vertical axis (FIG. 3). FIG. 3 shows that the specific gravity of the suspended particles is 5.6.
Also in the case of 0 and 3.60, the relationship among n, Q and D was shown.

【0043】採石場で採石の際に副生した石粉1kgを
水19kgと混合して、濃度5重量%の懸濁液を約20
リットル調製し、中継槽に貯蔵した。この懸濁液を、上
記竪型遠心機の回転沈降槽に0.2m3/Hの一定速度
で給液し、越流を元の中継槽に還流して循環処理した。
図3のグラフ〔直線(g)、比重2.60〕から、粒度
20μmの分級に必要な回転数660rpmを読み取
り、遠心機の回転数nを調整し、20分間運転した。被
処理懸濁液の供給を終了させた後、沈降を加速化するた
めに、回転数を3000rpmに上げて5分間運転し
た。上水を静かに流し出して、沈降堆積物23gを得
た。倍率100倍の光学顕微鏡で観察した結果、沈降堆
積物は、20μm以上の粒子であり、20μm未満の微
粒子は殆ど観察されなかった。
1 kg of stone powder by-produced during quarrying at a quarry is mixed with 19 kg of water to form a suspension having a concentration of 5% by weight of about 20%.
One liter was prepared and stored in a relay tank. This suspension was supplied to the rotary sedimentation tank of the vertical centrifuge at a constant rate of 0.2 m 3 / H, and the overflow was returned to the original relay tank for circulation treatment.
From the graph of FIG. 3 [straight line (g), specific gravity 2.60], the number of revolutions 660 rpm required for classification with a particle size of 20 μm was read, the number of revolutions n of the centrifuge was adjusted, and the apparatus was operated for 20 minutes. After terminating the supply of the suspension to be treated, in order to accelerate sedimentation, the number of revolutions was increased to 3000 rpm, and the system was operated for 5 minutes. The tap water was gently drained to obtain 23 g of sediment. As a result of observation with an optical microscope at a magnification of 100 times, the sediment was particles of 20 μm or more, and almost no fine particles of less than 20 μm were observed.

【0044】同様に、粒度10μmの分級に必要な回転
数1030rpmを図3から読み取り、遠心機の回転数
を1030rpmに調整したこと以外は、上記と同様に
操作して、沈降堆積物525gを得た。倍率1000倍
の電子顕微鏡で観察したところ、この沈降堆積物は、1
0μm以上の粒子であり、10μm未満の微粒子は殆ど
観察されなかった。同様に操作して、粒度10μm以上
の沈降堆積物145g(合計670g)を採取した。
Similarly, the number of revolutions required for classification of a particle size of 10 μm was read from FIG. 3, and the same operation as above was carried out except that the number of revolutions of the centrifuge was adjusted to 1030 rpm to obtain 525 g of sedimentary sediment. Was. When observed with an electron microscope at a magnification of 1000 times, the sediment
Particles of 0 μm or more and fine particles of less than 10 μm were hardly observed. By the same operation, 145 g (670 g in total) of sedimentation sediment having a particle size of 10 μm or more was collected.

【0045】同様に、粒度5μmの分級に必要な回転数
2700rpmを読み取り、遠心機の回転数を2700
rpmに調整したこと以外は、上記と同様に操作して、
沈降堆積物230gを得た。1000倍の電子顕微鏡で
観察した結果、この沈降堆積物は、約5μm以上10μ
m未満の粒子で、5μm未満の微粒子は殆ど観察されな
かった。残りの懸濁液を乾燥して、70gの粒子を得
た。このようにして、懸濁質粒子がそれぞれの粒度に分
級して回収することができた(累積993g)。したが
って、懸濁質粒子の粒度に応じた分級と共に、粒度分布
の情報が得られた。
Similarly, the number of revolutions required for classification with a particle size of 5 μm was read at 2700 rpm, and the number of revolutions of the centrifuge was set to 2700 rpm.
Except that it was adjusted to rpm, operate in the same way as above,
230 g of sedimented sediment were obtained. As a result of observation with an electron microscope at a magnification of 1000 times, the sedimented sediment was about 5 μm to 10 μm.
Of the particles smaller than m, particles smaller than 5 μm were hardly observed. The remaining suspension was dried to obtain 70 g of particles. In this way, the suspended particles were classified into respective particle sizes and could be collected (cumulative 993 g). Therefore, information on the particle size distribution was obtained together with classification according to the particle size of the suspended particles.

【0046】[実施例2]最高回転数6000rpm、
直径228mmφ(r=0.114m)の横型遠心機を
用いて分級粒度の設計を行った。上記遠心機を用いる場
合、一般式(2)は、次のように表される。 D=338・0.114-3/2・Q1/2・n-1 =8780・Q1/2・n-1 遠心機の回転数n(rpm)を横軸にとり、流量Q(m
3/H)の値が(d)2.0、(e)1.0、(f)
0.5、(g)0.2、(h)0.1の場合のストーク
ス径D(μm)の計算結果を縦軸にとって、上記式をグ
ラフ化した(図4)。なお、図4には、懸濁質粒子の比
重が5.60及び3.60の場合についても、n、Q及
びDの関係を示した。
[Second Embodiment] The maximum rotation speed is 6000 rpm,
The classification particle size was designed using a horizontal centrifuge having a diameter of 228 mmφ (r = 0.114 m). When the above-described centrifuge is used, the general formula (2) is expressed as follows. D = 338 · 0.114 -3/2 · Q rotational speed of 1/2 · n -1 = 8780 · Q 1/2 · n -1 centrifuge n the (rpm) horizontal axis, the flow rate Q (m
3 / H) are (d) 2.0, (e) 1.0, (f)
The above equation was graphed with the vertical axis representing the calculation result of the Stokes diameter D (μm) in the case of 0.5, (g) 0.2, and (h) 0.1 (FIG. 4). FIG. 4 also shows the relationship among n, Q, and D when the specific gravity of the suspended particles is 5.60 and 3.60.

【0047】石粉10kgを水190kgと混合して濃
度5重量%の懸濁液を200リットル調製し、中継槽に
貯蔵した。流量2.0m3/Hの場合に、粒度5μm以
上の懸濁質粒子を分級するのに必要な回転数を図4〔直
線(d)、比重2.60〕から読み取ったところ、25
00rpmであった。上記横形遠心機に、濃度5重量%
の懸濁液を流量2.0m3/Hで供給し、回転数250
0rpmで20分間運転した。なお、越流した懸濁液
は、中継槽に戻して、循環使用した。この実験の結果、
越流液に5μm以上の粒子が15%含まれたが、概ね設
計通りに分級することができた。
10 kg of stone powder was mixed with 190 kg of water to prepare 200 liters of a suspension having a concentration of 5% by weight and stored in a relay tank. At a flow rate of 2.0 m 3 / H, the number of rotations required to classify suspended particles having a particle size of 5 μm or more was read from FIG. 4 [straight line (d), specific gravity 2.60].
It was 00 rpm. 5 wt% concentration in the above horizontal centrifuge
Is supplied at a flow rate of 2.0 m 3 / H, and the number of rotations is 250.
The operation was performed at 0 rpm for 20 minutes. The overflowed suspension was returned to the relay tank and used for circulation. As a result of this experiment,
Although the overflow liquid contained 15% of particles having a size of 5 μm or more, the particles could be roughly classified as designed.

【0048】[実施例3]最高回転数16000rp
m、直径200mmφ(r=0.100m)の竪型遠心
機を用いて分級粒度の設計を行った。上記遠心機を用い
る場合、一般式(2)は、次のように表される。 D=338・0.10-3/2・Q1/2・n-1 =10700・Q1/2・n-1 遠心機の回転数n(rpm)を横軸にとり、流量Q(m
3/H)の値が(g)0.2、(h)0.1、(i)
0.05の場合のストークス径D(μm)の計算結果を
縦軸にとって、上記式をグラフ化した(図5)。なお、
図5には、懸濁質粒子の比重が1.60の場合について
も、n、Q及びDの関係を示した。
[Embodiment 3] Maximum rotation speed 16,000 rpm
m, a classifying particle size was designed using a vertical centrifuge having a diameter of 200 mmφ (r = 0.100 m). When the above-described centrifuge is used, the general formula (2) is expressed as follows. D = 338 · 0.10 -3/2 · Q rotational speed of 1/2 · n -1 = 10700 · Q 1/2 · n -1 centrifuge n the (rpm) horizontal axis, the flow rate Q (m
3 / H) are (g) 0.2, (h) 0.1, (i)
The above equation was graphed using the calculation result of the Stokes diameter D (μm) in the case of 0.05 as the vertical axis (FIG. 5). In addition,
FIG. 5 also shows the relationship among n, Q, and D when the specific gravity of the suspended particles is 1.60.

【0049】比重が1.60の赤色有機顔料を、少量の
アルコール及び界面活性剤を添加した脱イオン水に、撹
拌機で撹拌して分散した。この懸濁液を用いて水性塗料
として塗装した。この結果は色ムラがあり、しかも塗装
物品が雨に濡れると塗膜に膨れが発生した。上記赤色有
機顔料の懸濁液を、流量0.05m3/Hで上記の竪型
遠心機に供給し、回転数10000で20分間運転し
て、粒度0.4μm未満の粒子を含有する越流液を廃棄
した。一方、遠心機の回転沈降槽内に沈降堆積したケー
キを用いて、塗料を作成した。この塗料を用いて塗装し
た塗装品は、色ムラが無く、極めて好ましい光沢外観を
示し、風合も好ましいものとなった。また。塗装物品が
雨に濡れても、塗膜に膨れの発生が起こらず、耐久性、
防錆効果が改善されていた。
A red organic pigment having a specific gravity of 1.60 was dispersed in deionized water to which a small amount of alcohol and a surfactant had been added by stirring with a stirrer. The suspension was used as a water-based paint. As a result, there was color unevenness, and when the coated article was wet with rain, the coating film swelled. The suspension of the red organic pigment is supplied to the above vertical centrifuge at a flow rate of 0.05 m 3 / H, and operated at a rotation speed of 10,000 for 20 minutes, and an overflow containing particles having a particle size of less than 0.4 μm is performed. The liquid was discarded. On the other hand, a paint was prepared using the cake settled and deposited in the rotary settling tank of the centrifuge. The coated product coated with this coating material had no color unevenness, exhibited a very favorable glossy appearance, and had a favorable feeling. Also. Even if the painted articles get wet in the rain, the swelling of the paint film does not occur, durability,
Rust prevention effect was improved.

【0050】[実施例4]最高回転数3000rpm、
直径658mmφ(r=0.329m)の竪型遠心機を
用いて分級粒度の設計を行った。上記遠心機を用いる場
合、一般式(2)は、次のように表される。 D=338・0.329-3/2・Q1/2・n-1 D=1790・Q-1/2・n-1 遠心機の回転数n(rpm)を横軸にとり、流量Q(m
3/H)の値が(a)20.0、(b)10.0、
(c)5.0、(d)2.0、(e)1.0、(f)
0.5、(g)0.2、(h)0.1の場合のストーク
ス径D(μm)の計算結果を縦軸にとって、上記式をグ
ラフ化した(図6)。なお、図6には、懸濁質粒子の比
重が3.60及び5.60の場合についても、n、Q及
びDの関係を示した。
[Embodiment 4] The maximum rotation speed is 3000 rpm,
The classification particle size was designed using a vertical centrifuge having a diameter of 658 mmφ (r = 0.329 m). When the above-described centrifuge is used, the general formula (2) is expressed as follows. D = 338 · 0.329 -3/2 · Q 1/2 · n -1 D = 1790 · Q -1/2 · n -1 speed n of the centrifuge (rpm) horizontal axis, the flow rate Q ( m
3 / H) are (a) 20.0, (b) 10.0,
(C) 5.0, (d) 2.0, (e) 1.0, (f)
The above equation was graphed with the vertical axis representing the calculation result of the Stokes diameter D (μm) in the case of 0.5, (g) 0.2, and (h) 0.1 (FIG. 6). FIG. 6 also shows the relationship among n, Q, and D when the specific gravity of the suspended particles is 3.60 and 5.60.

【0051】絹雲母、金雲母粉、白雲母粉と呼ばれる、
真珠光沢を発揮する粘土鉱物粉がある。陶磁器用に用い
る粘土には、絹雲母が含まれるので、これを粘土から分
離採取する条件を示す。絹雲母を含む粘土を水に分散し
て、5重量%濃度の懸濁液を調製した。薄片状の雲母粒
子は、板方向では大きいが、浮遊し沈降しにくので、小
さな粒子と見なされる。先ず、薄板にほぐれていない雲
母の塊粒子を除去するため、比重2.60で粒度10μ
m以上の懸濁質粒子が沈降採取できる操作条件を設定
し、この沈降ケーキを破棄した。
Called sericite, phlogopite and muscovite powder;
There is a clay mineral powder that exhibits pearl luster. Since clay used for ceramics contains sericite, the conditions for separating and collecting this from clay are shown. The clay containing sericite was dispersed in water to prepare a 5% by weight suspension. Although flaky mica particles are large in the plate direction, they are considered small particles because they float and hardly settle. First, in order to remove lump particles of mica that have not been loosened on a thin plate, the specific gravity is 2.60 and the particle size is 10 μm.
Operating conditions under which sedimentary particles of m or more were sedimented and collected were set, and the sedimented cake was discarded.

【0052】上記処理で得られた越流液を、比重2.6
0で粒度2μm以上が沈降採取される条件として、12
00rpm、流量2.0m3/Hを採用して、竪型遠心
機で処理すると、絹光沢に優れた薄片状粒子のケーキを
採取することができた。この分級処理で得られたに越流
液は、そのままでは沈降しない白濁液であるが、pH4
以下の酸性に調整すると、清水層が分離した。清水を分
離すると、粒度2μm未満のカオリナイトに富む粘土鉱
物微粒子の凝集ケーキを採取できた。
The overflow liquid obtained in the above treatment was subjected to a specific gravity of 2.6.
The conditions for sedimentation and collection of particles having a particle size of 2 μm or more at 0
When the mixture was treated with a vertical centrifuge at 00 rpm and at a flow rate of 2.0 m 3 / H, a cake of flaky particles excellent in silky luster could be collected. The overflow liquid obtained by this classification treatment is a cloudy liquid that does not settle as it is,
When adjusted to the following acidity, the clear water layer separated. When the clear water was separated, a coagulated cake of kaolinite-rich fine clay mineral particles having a particle size of less than 2 μm could be collected.

【0053】[実施例5]最高回転数3000rpm、
直径658mmφ(r=0.329m)の竪型遠心機と
図1に示す沈降処理槽を併用した。比重2.60の石粉
を5重量%含有する水性懸濁液を図1に示す沈降処理槽
3に供給し、水中ポンプ4により導管5を通して分岐6
から上方向回路8に導き、この懸濁液を吹き出し口9か
ら沈降処理槽3の底部に、槽の接線方向に吹き出して、
底部位に限定した短絡流のない旋回流を発生させ、維持
させた。次いで、分岐6の下にある流量調節弁15を操
作して、下方向回路(注入口)7から流量2.0m3
Hで懸濁液を上記竪型遠心機の回転沈降槽10に供給し
た。一方、回転沈降槽を1200rpmで回転させた。
回転沈降槽10からの越流液は、沈降処理槽3に還流さ
せた。上記の条件で1時間操作したところ、粒度2μm
以上の懸濁質粒子1100gが回転沈降槽内に沈降堆積
していた。倍率1000倍の電子顕微鏡で採取した粒子
を観察したところ、粒度2μm未満の粒子は殆ど観察さ
れなかった。
Embodiment 5 The maximum rotation speed is 3000 rpm,
A vertical centrifuge having a diameter of 658 mmφ (r = 0.329 m) and a settling tank shown in FIG. 1 were used in combination. An aqueous suspension containing 5% by weight of a stone powder having a specific gravity of 2.60 is supplied to the settling tank 3 shown in FIG.
From the outlet 9 to the bottom of the settling tank 3 in the tangential direction of the tank,
A swirl flow without short-circuit flow limited to the bottom part was generated and maintained. Then, the flow control valve 15 below the branch 6 is operated to flow 2.0 m 3 / flow from the downward circuit (inlet) 7.
At H, the suspension was supplied to the rotary sedimentation tank 10 of the vertical centrifuge. On the other hand, the rotary settling tank was rotated at 1200 rpm.
The overflow liquid from the rotary settling tank 10 was returned to the settling tank 3. When operated under the above conditions for 1 hour, the particle size was 2 μm.
1100 g of the above suspended particles were settled and deposited in the rotary settling tank. Observation of the particles collected with an electron microscope at a magnification of 1000 times revealed that particles having a particle size of less than 2 μm were hardly observed.

【0054】[0054]

【発明の効果】本発明によれば、以下のような顕著効果
を奏することができる。 1.従来の遠心効果(G=0.00112rn2)を合
わせる手法ではできなかった粒子の沈降速度に係る分級
点粒度の設計を、本発明の方法では、ストークス径で定
量的に行うことができる。しかも、本発明の方法は、遠
心機の機種やその大小を問わず、適用することができ
る。 2.本発明の方法によれば、分級点粒度をストークス径
で定量的に表現できるため、生産品の粒度品質が向上す
る。また、本発明の方法によれば、分級と同時に、生産
品の粒度分布を測定することができる。 3.本発明の方法によれば、流量及び回転数を自動制御
することにより、所望の分級点粒度を有する粒子を採取
することが可能である。また、懸濁液の粒度分布を自動
的に調節することもできる。 4.粒度品質が定量的に管理された沈降物は、掻き出し
とその取扱が容易である。 5.横型遠心機の場合は、掻き出しスクリューで沈降が
乱れて分級する粒度の幅は広がるものの、充分に実用性
を有している。 6.掻き出しがバッチ運転である竪型遠心機の場合は、
計算通りに正確に分級でき、0.1〜75重量%の濃度
の懸濁液の分級処理に使用できる。 7.篩や濾過分離が困難な分野において、新しい分級精
製法を提供することができる。 8.従来の装置や方法では採算が採れなかった分野、例
えば、低い品位の資源もしくは廃棄物の処理にも採用す
ることができる。
According to the present invention, the following remarkable effects can be obtained. 1. According to the method of the present invention, it is possible to quantitatively design the classification point particle size related to the sedimentation velocity of particles, which cannot be achieved by the conventional method of adjusting the centrifugal effect (G = 0.00112 rn 2 ). Moreover, the method of the present invention can be applied to any type of centrifuge and its size. 2. According to the method of the present invention, the particle size of the classification point can be quantitatively expressed by the Stokes diameter, so that the particle quality of the product is improved. Further, according to the method of the present invention, the particle size distribution of the product can be measured simultaneously with the classification. 3. According to the method of the present invention, particles having a desired classification point particle size can be collected by automatically controlling the flow rate and the rotation speed. Also, the particle size distribution of the suspension can be automatically adjusted. 4. The sediment whose particle size quality is quantitatively controlled is easy to scrape out and handle. 5. In the case of a horizontal centrifuge, although the sedimentation is disturbed by the scraping screw and the range of the particle size to be classified is widened, it is sufficiently practical. 6. In the case of a vertical centrifuge where scraping is batch operation,
It can be classified exactly as calculated and can be used for the classification of suspensions with a concentration of 0.1-75% by weight. 7. In a field where sieve or filtration separation is difficult, a new classification and purification method can be provided. 8. It can also be used in areas where conventional equipment and methods have been unprofitable, for example, in the treatment of low-grade resources or waste.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分級方法の1実施例である基本ユニッ
トのフロー図である。
FIG. 1 is a flowchart of a basic unit which is one embodiment of a classification method of the present invention.

【図2】本発明の1実施例である分級処理システムのフ
ロー図である。
FIG. 2 is a flowchart of a classification processing system according to an embodiment of the present invention.

【図3】内半径r=0.05mの堅型遠心機を用いて設
計した分級点粒度を示すグラフである。
FIG. 3 is a graph showing a classification point particle size designed using a rigid centrifuge with an inner radius r = 0.05 m.

【図4】内半径r=0.114の横型遠心機を用いて設
計した分級点粒度を示すグラフである。
FIG. 4 is a graph showing a classification point particle size designed using a horizontal centrifuge having an inner radius r = 0.114.

【図5】内半径r=0.100mの堅型遠心機を用いて
設計した分級点粒度を示すグラフである。
FIG. 5 is a graph showing a classification point particle size designed using a rigid centrifuge with an inner radius r = 0.100 m.

【図6】内半径r=0.329mの堅型遠心機を用いて
設計した分級点粒度を示すグラフである。
FIG. 6 is a graph showing a classification point particle size designed using a rigid centrifuge with an inner radius r = 0.329 m.

【符号の説明】[Explanation of symbols]

1 懸濁液 2 注入管 3 沈降処理槽 4 水中ポンプ 5 汲み上げ管 6 上下の分岐 7 遠心機への注入口(下方向回路) 8 戻り回路(上方向回路) 9 旋回流駆動用吹出口 10 遠心機の回転沈降槽 11 分級された沈降物 12 回転沈降槽の越流トイ 13 越流を戻す回路 14 流量調節弁 15 流量調節弁 16 沈降処理槽からの越流樋 17 精製懸濁液採取口 M 電導機 F1 流量計測器 SI 回転計測器 (1)混合槽 (2)反応槽 (3)分級槽 (4)濃縮槽 (5)貯蔵槽 (6)循環回路 (7)横型遠心機 (8)竪型遠心機 (9)交互運転用竪型遠心機 (10)気体びん (11)媒体液 (12)還流精製液 (13)粉体 (14)精製懸濁液採取 (15)精製懸濁液採取 (16)精製懸濁液(清水)採取 DESCRIPTION OF SYMBOLS 1 Suspension 2 Injection pipe 3 Sedimentation tank 4 Submersible pump 5 Pumping pipe 6 Upper and lower branches 7 Injection port to centrifuge (downward circuit) 8 Return circuit (upward circuit) 9 Swirling flow drive outlet 10 Centrifuge Rotary sedimentation tank of machine 11 Classified sediment 12 Overflow toy of rotary sedimentation tank 13 Circuit to return overflow 14 Flow control valve 15 Flow control valve 16 Overflow gutter from sedimentation tank 17 Purified suspension sampling port M Conductor F1 Flow meter SI rotation meter (1) Mixing tank (2) Reaction tank (3) Classification tank (4) Concentration tank (5) Storage tank (6) Circulation circuit (7) Horizontal centrifuge (8) Vertical Centrifuge (9) Vertical centrifuge for alternate operation (10) Gas bottle (11) Medium liquid (12) Reflux purified liquid (13) Powder (14) Purified suspension collection (15) Purified suspension collection (16) Purification suspension (Shimizu) collection

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被処理懸濁液を遠心機の回転沈降槽に連
続的に供給し、該回転沈降槽から越流させると共に、下
記一般式(1)に従って、越流する懸濁液の流量Qと回
転沈降槽の回転数nを調整し、ストークス径D以上の粒
子が示す沈降速度以上の懸濁質粒子を回転沈降槽内に沈
降させることを特徴とする懸濁質粒子の分級方法。 D=k・r-3/2・Q1/2・n-1 (1) D:懸濁質粒子のストークス径(μm) k:定数 r:回転沈降槽の最も広い箇所の内半径(m) Q:回転沈降槽を越流する懸濁液の流量(m3/H) n:回転沈降槽の回転数(rpm)
1. A suspension to be treated is continuously supplied to a rotary sedimentation tank of a centrifuge and overflowed from the rotary sedimentation tank, and a flow rate of the suspension flowing over according to the following general formula (1). A method for classifying suspended particles, wherein Q and the number of rotations n of the rotary sedimentation tank are adjusted to suspend sediment particles having a sedimentation speed equal to or higher than the sedimentation velocity of particles having a Stokes diameter of D or more in the rotary sedimentation tank. D = k · r -3/2 · Q 1/2 · n -1 (1) D: Stokes diameter of the suspended solids particles (μm) k: constant r: inner radius of the widest portion of the rotating sedimentation tank (m ) Q: Flow rate of the suspension flowing over the rotary settling tank (m 3 / H) n: Number of rotations of the rotary settling tank (rpm)
【請求項2】 下記一般式(2)に従って、越流する懸
濁液の流量Qと回転沈降槽の回転数nを調整し、比重
2.60でストークス径D以上の粒子が示す沈降速度以
上の懸濁質粒子を回転沈降槽内に沈降させる請求項1記
載の分級方法。 D=338・r-3/2・Q1/2・n-1 (2)
2. The sedimentation velocity of a particle having a specific gravity of 2.60 or more and a Stokes diameter D or more is adjusted according to the following general formula (2) by adjusting the flow rate Q of the overflowing suspension and the rotation speed n of the rotary sedimentation tank. The classification method according to claim 1, wherein the suspended particles are settled in a rotary settling tank. D = 338 · r -3/2 · Q 1/2 · n -1 (2)
【請求項3】 懸濁液を導入し、該懸濁液を懸濁質濃度
の高い重液と懸濁質濃度の低い軽液とに分離するための
沈降処理槽であって、槽内の懸濁液の液面から底部への
短絡流が起こらない旋回流を発生・維持せしめた沈降処
理槽の底中心部から、重液をポンプ手段により採取し、
該重液を被処理懸濁液として、遠心機の回転沈降槽に連
続的に供給する請求項1または2に記載の分級方法。
3. A sedimentation treatment tank for introducing a suspension and separating the suspension into a heavy liquid having a high concentration of suspended matter and a light liquid having a low concentration of suspended matter. A heavy liquid is collected by a pump from the center of the bottom of the settling tank, which generates and maintains a swirling flow that does not cause a short-circuit flow from the liquid surface to the bottom of the suspension,
3. The classification method according to claim 1, wherein the heavy liquid is continuously supplied as a suspension to be treated to a rotary settling tank of a centrifuge.
【請求項4】 ポンプ手段により採取した重液を、上方
向回路と下方向回路に分岐して、上方向回路に分岐した
重液を沈降処理槽の底部に旋回の駆動力となるように還
流し、下方向回路に分岐した重液を被処理懸濁液とし
て、遠心機の回転沈降槽に連続的に供給する請求項3記
載の分級方法。
4. The heavy liquid collected by the pump means is branched into an upper circuit and a lower circuit, and the heavy liquid branched into the upper circuit is returned to the bottom of the settling tank so as to have a driving force for turning. The classification method according to claim 3, wherein the heavy liquid branched to the downward circuit is continuously supplied as a suspension to be processed to a rotary sedimentation tank of a centrifuge.
【請求項5】 回転沈降槽を越流する懸濁液を、沈降処
理槽に還流する請求項または4に記載の分級方法。
5. The classification method according to claim 3 , wherein the suspension flowing over the rotary settling tank is refluxed to the settling tank.
【請求項6】 遠心機の回転沈降槽と、請求項1または
2記載の式(1)または(2)に従って、懸濁質粒子の
ストークス径D(μm)の値を演算表示する手段とを備
えた懸濁質粒子の分級装置。
6. A rotary sedimentation tank of a centrifuge and means for calculating and displaying the value of the Stokes diameter D (μm) of suspended particles according to the formula (1) or (2) according to claim 1 or 2. Equipment for classifying suspended particles.
【請求項7】 遠心機の回転沈降槽と、請求項1または
2記載の式(1)または(2)に従って、懸濁質粒子の
ストークス径D(μm)が予め設定された値となるよう
に、回転沈降槽を越流する懸濁液の流量Q(m3/H)
及び/または回転沈降槽の回転数n(rpm)を制御す
る手段とを備えた懸濁質粒子の分級装置。
7. The Stokes diameter D (μm) of the suspended solid particles according to the rotary settling tank of the centrifuge and the formula (1) or (2) according to claim 1 or 2 is set to a preset value. Then, the flow rate Q (m 3 / H) of the suspension flowing over the rotary settling tank
And / or means for controlling the number of revolutions n (rpm) of the rotary sedimentation tank.
【請求項8】 懸濁液を導入し、該懸濁液を懸濁質濃度
の高い重液と懸濁質濃度の低い軽液とに分離するための
沈降処理槽であって、下記式及びの関係から導き出
される式に従って、懸濁質粒子のストークス径D(μ
m)が予め設定された値となるように、水面面積がS
(m2)である沈降処理槽における沈降処理槽からの越
流流量Q(m3/H)を制御する手段を備えていること
を特徴とする懸濁質粒子の分級装置。 v=Q/S v=0.0025D2 Q=0.0025D2・S 〔ただし、vは、沈降処理槽から越流する懸濁質粒子の
最大沈降速度(m/H)であり、沈降処理槽に保留され
る懸濁質粒子の最小の沈降速度(m/H)に相当す
る。〕
8. A settling tank for introducing a suspension and separating the suspension into a heavy liquid having a high concentration of suspended matter and a light liquid having a low concentration of suspended matter, comprising: According to the equation derived from the relationship, the Stokes diameter D (μ
m) becomes a preset value, and the water surface area is S
An apparatus for classifying suspended particles, comprising means for controlling an overflow flow rate Q (m 3 / H) from the settling tank in the settling tank (m 2 ). v = Q / S v = 0.0025D 2 Q = 0.0025 D 2 · S [where v is the maximum sedimentation velocity (m / H) of the suspended solid particles flowing from the sedimentation treatment tank, and This corresponds to the minimum settling velocity (m / H) of suspended particles retained in the tank. ]
JP22574794A 1993-10-13 1994-08-26 Classification method of suspended particles Expired - Fee Related JP2923436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22574794A JP2923436B2 (en) 1993-10-13 1994-08-26 Classification method of suspended particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-280488 1993-10-13
JP28048893 1993-10-13
JP22574794A JP2923436B2 (en) 1993-10-13 1994-08-26 Classification method of suspended particles

Publications (2)

Publication Number Publication Date
JPH07155510A JPH07155510A (en) 1995-06-20
JP2923436B2 true JP2923436B2 (en) 1999-07-26

Family

ID=26526807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22574794A Expired - Fee Related JP2923436B2 (en) 1993-10-13 1994-08-26 Classification method of suspended particles

Country Status (1)

Country Link
JP (1) JP2923436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210083491A (en) * 2019-12-27 2021-07-07 이정헌 How to install a size of particles for reddish clay suspension and its process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225529A (en) * 2005-02-18 2006-08-31 Mitsui Chemicals Inc Manufacturing method of polyolefin aqueous dispersion system and additive for coating agent containing polyolefin aqueous dispersion system obtained therewith
KR101355583B1 (en) * 2013-10-04 2014-01-24 한국지질자원연구원 Simplicity valuable mineral decollator and valuable mineral separating method using thereof
CN104475228B (en) * 2014-11-15 2017-04-12 中铝国际技术发展有限公司 Grading method for solid-liquid two-phase flow size
GB201510189D0 (en) * 2015-06-11 2015-07-29 Univ Edinburgh Microfluidic device
CN115069433A (en) * 2022-06-13 2022-09-20 中国矿业大学 Method and device for purifying attapulgite clay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210083491A (en) * 2019-12-27 2021-07-07 이정헌 How to install a size of particles for reddish clay suspension and its process
KR102380253B1 (en) 2019-12-27 2022-03-29 이정헌 the separation method for a natural loess suspension

Also Published As

Publication number Publication date
JPH07155510A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
Majekodunmi A review on centrifugation in the pharmaceutical industry
Svarovsky Solid-liquid separation
US20180008919A1 (en) Solids handling in water treatment systems and associated methods
JP2923436B2 (en) Classification method of suspended particles
RU2015105943A (en) METHODS AND SYSTEMS FOR PRODUCING FERMENTATION PRODUCTS
US10456792B2 (en) Single, thief-sampling, calibration and control of separator apparatus and method
CA2216558C (en) Process and apparatus for controlling gravity settling system
Von Homeyer et al. Optimization of the polyelectrolyte dosage for dewatering sewage sludge suspensions by means of a new centrifugation analyser with an optoelectronic sensor
AU2015316179B2 (en) Measurement and treatment of fluid streams
JPH0713765Y2 (en) Direct-type solid-liquid gravity separator
SE449180B (en) SET TO RECOVER SOLID MATERIAL FROM SOLUTIONS THROUGH CRYSTALIZATION AND DEVICE FOR IMPLEMENTATION OF THE SET
JP4493473B2 (en) Water treatment process operation support equipment
Ochirkhuyag et al. Development of a high-performance cake-less continuous filtration system
Polasek Significance and determination of fraction of non-separable particles of impurities in water purification
JP3874314B2 (en) How to remove sludge in oil
Fujita et al. Preparative centrifugation
SU1122932A1 (en) Device for measuring suspension content in liquid media
SE458524B (en) PROCEDURE AND DEVICE FOR WASTE WASTE CLEANING AND OTHER LIQUIDS
JPH04346803A (en) Suspension separating device
RU2273606C2 (en) Settler for clarification of slurries
Bott et al. Solid/Liquid Separation Lexicon
JPH07155509A (en) Method for settling and separating suspension liquid
CN111545358A (en) Slag hole scraping device of horizontal spiral sedimentation centrifuge
Sherony et al. You don't know what you're missing: Designing a grit removal system that works
SU961780A1 (en) Device for analysis of loose material size content

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees