JP2922772B2 - Control float equipment for nuclear reactor - Google Patents

Control float equipment for nuclear reactor

Info

Publication number
JP2922772B2
JP2922772B2 JP6004487A JP448794A JP2922772B2 JP 2922772 B2 JP2922772 B2 JP 2922772B2 JP 6004487 A JP6004487 A JP 6004487A JP 448794 A JP448794 A JP 448794A JP 2922772 B2 JP2922772 B2 JP 2922772B2
Authority
JP
Japan
Prior art keywords
control float
coolant
lithium
core
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6004487A
Other languages
Japanese (ja)
Other versions
JPH07209468A (en
Inventor
一男 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAKUNENRYO SAIKURU KAIHATSU KIKO
Original Assignee
KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAKUNENRYO SAIKURU KAIHATSU KIKO filed Critical KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority to JP6004487A priority Critical patent/JP2922772B2/en
Publication of JPH07209468A publication Critical patent/JPH07209468A/en
Application granted granted Critical
Publication of JP2922772B2 publication Critical patent/JP2922772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、強制循環冷却系を有
する原子炉における核反応を自動的に制御するための制
御フロート装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control float apparatus for automatically controlling a nuclear reaction in a nuclear reactor having a forced circulation cooling system.

【0002】[0002]

【従来の技術】水炉、液体金属冷却炉、ガス冷却炉等の
強制循環冷却系を備えた原子炉において、配管破損によ
る冷却材喪失時やポンプ停止による冷却材の流量低下時
(以下これらを総称して“異常流量低下時”と称する)
に、電気回路を用いずに自動的に炉を停止させることが
できる安全性の高い制御フロート装置が、本願と同一の
出願人により既に特許出願されている(特開平3−24
6489号)。図6に例示したこの制御フロート装置1
は、原子炉の炉心部に垂直方向に配設される案内管2の
内部に、B4 C等の中性子吸収体3を充填した被覆管4
とこの被覆管下端に取り付けた底のない中空管であるス
カート5とからなる制御フロート6を挿入して構成され
ている。制御フロート6は案内管2内を流れる冷却材の
流動状態によって上昇若しくは降下可能とされており、
中性子吸収体充填部3の位置は炉の定格運転時には炉心
領域外に上昇し、冷却材の異常流量低下時には炉心領域
内に降下するようにしてある。
2. Description of the Related Art In a reactor equipped with a forced circulation cooling system such as a water reactor, a liquid metal cooling furnace, and a gas cooling furnace, when a coolant is lost due to a broken pipe or when a flow rate of the coolant is reduced due to a pump stop (hereinafter, these are referred to as " (Collectively referred to as "abnormal flow rate drop")
A highly safe control float device capable of automatically shutting down a furnace without using an electric circuit has already been applied for a patent by the same applicant as the present application (Japanese Patent Laid-Open No. 3-24).
No. 6489). The control float device 1 illustrated in FIG.
Is a cladding tube 4 filled with a neutron absorber 3 such as B 4 C inside a guide tube 2 disposed vertically in the core of the reactor.
And a control float 6 comprising a bottomless hollow tube skirt 5 attached to the lower end of the cladding tube. The control float 6 can be raised or lowered depending on the flow state of the coolant flowing in the guide pipe 2.
The position of the neutron absorber filling section 3 rises outside the core region during rated operation of the furnace, and falls into the core region when the abnormal flow rate of the coolant decreases.

【0003】案内管2内部に制御フロート6を挿入して
なる図6の制御フロート装置1は、図7および図8に示
すように、原子炉の炉心に複数本、通常の制御棒の他に
装着される。図7は、冷却材の流量が定格状態にある定
格運転時の状態を示しており、案内管2内の冷却材流に
よって制御フロート6は上昇し、中性子吸収体充填部3
の位置は炉心領域9から完全に抜け出て、炉出力は中性
子吸収体の影響を受けることはない。もし、配管破損や
ポンプ停止が起きて冷却材の異常流量低下が生じた場合
には、案内管2内の冷却材も極低流量となり、制御フロ
ート6は殆ど浮き上がらず図8のように降下位置となる
ため、中性子吸収体充填部3は炉心領域9内に置かれ、
中性子吸収体の作用により炉心の核反応が抑制されて炉
停止が自然に達成される。
As shown in FIGS. 7 and 8, a control float device 1 shown in FIG. 6 in which a control float 6 is inserted inside a guide tube 2 has a plurality of control rods in addition to ordinary control rods. Be attached. FIG. 7 shows a state at the time of rated operation in which the flow rate of the coolant is in the rated state. The control float 6 rises due to the coolant flow in the guide pipe 2 and the neutron absorber filling section 3
Is completely out of the core region 9 and the reactor power is not affected by the neutron absorber. If the pipe breaks or the pump stops, causing an abnormal decrease in the flow rate of the coolant, the coolant in the guide pipe 2 also has an extremely low flow rate, and the control float 6 hardly floats, and as shown in FIG. Therefore, the neutron absorber filling portion 3 is placed in the core region 9,
The nuclear reaction of the core is suppressed by the action of the neutron absorber, and the reactor shutdown is naturally achieved.

【0004】なお案内管2の上下端は、冷却材が流通可
能な上部止め具7と下部止め具8が取り付けられている
ため(図6参照)、制御フロート6の上昇時および降下
時でも案内管2から抜け出ることはない。
The upper and lower ends of the guide tube 2 are provided with an upper stopper 7 and a lower stopper 8 through which a coolant can flow (see FIG. 6). It does not fall out of tube 2.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の制御フ
ロート装置によれば、冷却材の異常流量低下に対して制
御フロート6が自動的に降下して炉停止が効果的になさ
れるが、もう1つの主要な異常事象である炉過出力等に
よる冷却材の異常温度上昇に対しては対応できない。
According to the above-mentioned conventional control float device, the control float 6 is automatically lowered in response to the abnormal decrease in the flow rate of the coolant, thereby effectively stopping the furnace. It is not possible to cope with one major abnormal event, that is, an abnormal increase in temperature of the coolant due to furnace overpower or the like.

【0006】冷却材異常温度上昇に対する安全装置とし
ては、磁気回路中にキュリー点を有する磁性材料を組み
込んだキュリー点電磁石を利用して制御棒の吸着保持を
行う自己作動型原子炉停止機構も開発されている(例え
ば特開平2−243995号、特開平4−98805
号)。しかし、かような自己作動型炉停止機構を従来の
制御フロート装置1とともに原子炉に組み込むことは、
炉心に大きいスペースを確保せねばならないこと、さら
には炉内の機構を複雑にすることから、望ましくない。
As a safety device against an abnormal rise in the temperature of the coolant, a self-acting reactor shut-down mechanism has been developed which uses a Curie point electromagnet incorporating a magnetic material having a Curie point in a magnetic circuit to attract and hold control rods. (For example, JP-A-2-243959, JP-A-4-98805)
issue). However, incorporating such a self-acting reactor shutdown mechanism together with the conventional control float device 1 in a reactor is
This is not desirable because a large space must be secured in the core and the mechanism in the furnace is complicated.

【0007】そこでこの発明は、強制循環冷却系をもつ
原子炉に装着されて核反応を制御するための制御フロー
ト装置であって、冷却材の異常流量低下に対して機能す
るだけでなく冷却材の異常温度上昇に対しても自動的か
つ確実に機能する、改良された原子炉用制御フロート装
置を提供することを目的としてなされたものである。
Accordingly, the present invention relates to a control float device mounted on a reactor having a forced circulation cooling system for controlling a nuclear reaction, which not only functions to reduce an abnormal flow rate of the coolant, but also functions as a coolant. It is an object of the present invention to provide an improved control float device for a nuclear reactor, which automatically and reliably functions even when the abnormal temperature rises.

【0008】[0008]

【課題を解決するための手段】すなわちこの発明による
原子炉用制御フロート装置は、強制循環冷却系を有する
原子炉の炉心部に垂直方向に配設した案内管の内部に、
この案内管内を流れる冷却材の流動状態によって案内管
内を上昇もしくは降下可能な密閉被覆管からなる制御フ
ロートを挿入してなり、中性子吸収体充填部の位置は原
子炉定格運転時には炉心領域外に上昇し、冷却材の異常
流量低下時には炉心領域内に降下するようにした構成を
有する点で、従来の制御フロート装置と実質的に同じで
ある。
In other words, a control float apparatus for a nuclear reactor according to the present invention comprises a guide tube vertically disposed in a core portion of a reactor having a forced circulation cooling system.
A control float consisting of a sealed cladding tube that can rise or fall in the guide tube depending on the flow state of the coolant flowing in the guide tube is inserted, and the position of the neutron absorber filling section rises outside the core area during reactor rated operation However, this is substantially the same as the conventional control float device in that it has a configuration in which the coolant is lowered into the core region when the abnormal flow rate of the coolant is lowered.

【0009】この発明の制御フロート装置の従来装置と
異なる構成は、前記制御フロートの内部に、冷却材の異
常温度上昇時に溶融する仕切り板を介して下方に中性子
吸収体充填部および上方にリチウム6[ 6Li]溜部を
設けるとともに中性子吸収体充填部には垂直方向に延び
る貫通孔を穿設し、さらに中性子吸収体充填部の下方に
下部空洞およびリチウム6溜部の上方に上部空洞を設け
た点である。
The control float device of the present invention is different from the conventional device in that a neutron absorber-filled portion is provided downward and a lithium 6 is provided above the control float via a partition plate which melts when the coolant temperature rises abnormally. A [ 6 Li] reservoir is provided, a through hole extending in a vertical direction is formed in the neutron absorber filling portion, and a lower cavity is provided below the neutron absorber filling portion and an upper cavity is provided above the lithium 6 reservoir. It is a point.

【0010】[0010]

【作用】原子炉の定格運転時における冷却材の強い流動
状態では、案内管内の制御フロートは最上方位置に上昇
し、中性子吸収体充填部は炉心領域外に置かれるため、
中性子吸収体の影響を受けることなく円滑な炉運転がな
される。一方、配管破損やポンプ停止等による冷却材の
異常流量低下時における冷却材の弱い流動状態では、案
内管内の制御フロートは最下方位置まで降下し、制御フ
ロート内の中性子吸収体が炉心領域内に置かれることに
なり、中性子吸収体の作用により炉心の核反応が抑制さ
れ、炉停止が自動的に達成される。
[Function] When the coolant is in a strong flow state during the rated operation of the reactor, the control float in the guide tube rises to the uppermost position, and the neutron absorber filling portion is placed outside the core region.
Smooth reactor operation is performed without being affected by the neutron absorber. On the other hand, when the coolant is weakly flowing due to abnormal coolant flow reduction due to pipe breakage or pump stop, etc., the control float in the guide pipe descends to the lowest position, and the neutron absorber in the control float moves into the core region. As a result, the nuclear reaction of the core is suppressed by the action of the neutron absorber, and the reactor shutdown is automatically achieved.

【0011】炉運転時の冷却材流量が維持されている状
態、すなわち制御フロートが最上方位置に置かれている
状態で過出力が生じて冷却材温度が異常に上昇すると、
制御フロート内の仕切り板が溶融し、仕切り板上方のリ
チウム6溜部に溜められていた中性子吸収断面積が大き
いリチウム6(熱中性子に対する吸収断面積は945バ
ーン)が中性子吸収体充填部の貫通孔を通って制御フロ
ートの下部空洞へと落下移動する。このとき下部空洞は
炉心領域内に位置しているため、リチウム6の作用によ
り炉心の核反応が抑制され、炉停止が自動的かつ確実に
達成される。
When the coolant temperature during the furnace operation is maintained, that is, when the control float is located at the uppermost position, an overpower occurs and the coolant temperature rises abnormally.
The partition plate in the control float is melted, and lithium 6 having a large neutron absorption cross section stored in the lithium 6 storage portion above the partition plate (the absorption cross section for thermal neutrons is 945 burn) penetrates the neutron absorber filling portion. It falls through the hole into the lower cavity of the control float. At this time, since the lower cavity is located in the core region, the nuclear reaction of the core is suppressed by the action of the lithium 6, and the shutdown of the furnace is automatically and reliably achieved.

【0012】[0012]

【実施例】以下に図示した好ましい実施例を参照してこ
の発明を詳述する。図1はこの発明の制御フロート装置
10を示しており、原子炉の炉心部に垂直方向に配設さ
れる案内管11内部に、密閉被覆管12からなる制御フ
ロート13を挿入して構成されている。案内管11の上
下端には、冷却材が流通可能な上部止め具14と下部止
め具15が取り付けられ、制御フロート13の上昇時お
よび降下時でも案内管11から抜け出ないようにされて
いる。制御フロート13となる被覆管12は、その垂直
方向のほぼ中間部に、B4 C等でつくられたペレット状
中性子吸収体充填部16を配置し、この中性子吸収体充
填部16の上方には仕切り板17を介してリチウム6溜
部18を設ける。中性子吸収体充填部16の内部中心に
は垂直方向に延びる貫通孔19が穿設されている。仕切
り板17は、炉心冷却材の異常温度上昇時に確実に溶融
するような融点をもつとともに、リチウム6との共存性
の良い金属とする。さらに被覆管12内には、中性子吸
収体充填部16の下方に下部空洞20を、リチウム6溜
部18の上方には上部空洞21をそれぞれ設ける。
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described in more detail with reference to the preferred embodiments illustrated below. FIG. 1 shows a control float device 10 according to the present invention, which is constructed by inserting a control float 13 composed of a sealed cladding tube 12 into a guide tube 11 disposed vertically in a core portion of a nuclear reactor. I have. An upper stopper 14 and a lower stopper 15 through which coolant can flow are attached to the upper and lower ends of the guide tube 11 so that the control float 13 does not come out of the guide tube 11 even when the control float 13 is raised or lowered. The cladding tube 12 serving as the control float 13 has a pellet-like neutron absorber filling portion 16 made of B 4 C or the like disposed substantially at an intermediate portion in the vertical direction, and above the neutron absorber filling portion 16. The lithium 6 reservoir 18 is provided via the partition plate 17. A vertically extending through hole 19 is formed in the center of the neutron absorber filling portion 16. The partition plate 17 is made of a metal having a melting point so as to be surely melted when an abnormal temperature rise of the core coolant and having good compatibility with lithium 6. Further, a lower cavity 20 is provided below the neutron absorber filling portion 16 and an upper cavity 21 is provided above the lithium 6 reservoir 18 in the cladding tube 12.

【0013】中性子吸収体充填部16およびリチウム6
溜部18の垂直方向長さL1 は、炉心30(図2参照)
の高さにほぼ等しくする。下部空洞20の垂直方向の長
さもL1 とほぼ等しくして、溜部18内のリチウム6の
全量を収容できる容積となるようにする。また上部空洞
21は、リチウム6が炉心から漏洩する中性子を吸収し
て反応する際に生成するヘリウムガスを蓄積させるため
のものであり、蓄積したヘリウムガスの圧力で被覆管1
2が破損しない程度の容積を確保しておけばよい。被覆
管12下方に設けた底がない中空管からなるスカート2
2の垂直方向の長さL2 は、(L1 +L2 )が下部止め
具15と炉心30下端間の距離にほぼ等しくなるような
長さとする(図3参照)。
The neutron absorber filling section 16 and lithium 6
The vertical length L 1 of the reservoir 18 is the core 30 (see FIG. 2).
Approximately equal to the height of The length of the lower cavity 20 in the vertical direction is also substantially equal to L 1 so that the lower cavity 20 has a volume capable of accommodating the entire amount of lithium 6 in the reservoir 18. The upper cavity 21 is for accumulating helium gas generated when lithium 6 absorbs and reacts with neutrons leaking from the reactor core. The pressure of the accumulated helium gas causes the cladding tube 1 to accumulate.
It is sufficient to secure a volume that does not cause damage to 2. Skirt 2 consisting of a hollow tube without a bottom provided below cladding tube 12
Vertical length L 2 of 2, and (L 1 + L 2) is substantially equal length such the distance between the lower stop 15 and the core 30 lower end (see FIG. 3).

【0014】図1の制御フロート装置10を、液体金属
冷却高速炉の炉心30に装着した状態を図2、図3およ
び図4に示す。実際には、図7と図8に図示した従来の
制御フロート装置の原子炉への装着と同様に、この発明
の制御フロート装置10もその複数本を通常の制御棒の
他に炉心30の適宜箇所に装着するのであるが、制御フ
ロート13と炉心領域30との位置関係をわかりやすく
説明するために、図2〜図4では1本の制御フロート装
置10とその周辺のみを拡大し簡略化して示してある。
FIGS. 2, 3 and 4 show a state in which the control float device 10 of FIG. 1 is mounted on a core 30 of a liquid metal cooling fast reactor. Actually, similarly to the mounting of the conventional control float device shown in FIGS. 7 and 8 on a nuclear reactor, the control float device 10 of the present invention also includes a plurality of the control float devices in addition to the normal control rods. In order to easily explain the positional relationship between the control float 13 and the core region 30, in FIG. 2 to FIG. 4, only one control float device 10 and its periphery are enlarged and simplified. Is shown.

【0015】炉定格運転時における冷却材の強い流動状
態である図2では、案内管11内の制御フロート13は
最上方位置に上昇し、中性子吸収体充填部16は炉心領
域30外に置かれるため、中性子吸収体の影響を受ける
ことなく円滑な炉運転がなされる。一方、配管破損やポ
ンプ停止等による冷却材の異常流量低下時における冷却
材の弱い流動状態である図3では、案内管11内の制御
フロート13は最下方位置まで降下し、制御フロート内
の中性子吸収体充填部16が炉心領域30内に置かれる
ことになり、中性子吸収体の作用により炉心の核反応が
抑制される。制御フロート装置30のこれらの作動は、
図6〜図8に示した従来の装置と同様である。
In FIG. 2 in which the coolant is in a strong flow state during the rated operation of the furnace, the control float 13 in the guide tube 11 rises to the uppermost position, and the neutron absorber filling portion 16 is placed outside the core region 30. Therefore, a smooth reactor operation is performed without being affected by the neutron absorber. On the other hand, in FIG. 3 in which the coolant is weakly flowing when the abnormal flow rate of the coolant is reduced due to a pipe breakage or pump stop, the control float 13 in the guide pipe 11 is lowered to the lowest position, and the neutrons in the control float are reduced. The absorber filling section 16 is placed in the core region 30, and the nuclear reaction of the core is suppressed by the action of the neutron absorber. These operations of the control float device 30 include:
This is the same as the conventional device shown in FIGS.

【0016】次にこの発明の制御フロート装置10の特
徴となる炉心冷却材の異常温度上昇時の炉停止機能を説
明する。図2のような炉運転時で冷却材流量が維持され
ている状態、すなわち案内管11内の制御フロート13
が最上方位置に置かれている状態で過出力が生じて冷却
材温度が異常に上昇すると、制御フロート13内の仕切
り板17が溶融する。その結果、図4に示したように、
リチウム6溜部18に溜められていたリチウム6が中性
子吸収体充填部16の貫通孔19を通って制御フロート
の下部空洞20へ落下する。このとき下部空洞20は炉
心領域30内に位置しているため、リチウム6の作用に
より炉心の核反応が抑制され、炉停止が自動的かつ確実
に達成される。
Next, a description will be given of a function of stopping the furnace when the temperature of the core coolant is abnormally high, which is a feature of the control float device 10 of the present invention. The state where the coolant flow rate is maintained during the furnace operation as shown in FIG.
When the coolant temperature rises abnormally due to an over-power in a state in which is located at the uppermost position, the partition plate 17 in the control float 13 melts. As a result, as shown in FIG.
The lithium 6 stored in the lithium 6 storage section 18 falls into the lower cavity 20 of the control float through the through hole 19 of the neutron absorber filling section 16. At this time, since the lower cavity 20 is located in the core region 30, the nuclear reaction of the core is suppressed by the action of lithium 6, and the shutdown of the furnace is automatically and reliably achieved.

【0017】制御フロート内の下部空洞20内圧力は、
被覆管12強度で許容される下限値に近い値、例えば約
0.5気圧程度に減圧して、上部空洞21内圧力との圧
力差をできるだけ大きくすることが望ましい。圧力差を
大きくすることによって、リチウム6の溜部18から下
部空洞20への移動が、重力だけでなく両空洞20,2
1の圧力差も作用して迅速に行われることになる。
The pressure in the lower cavity 20 in the control float is
It is desirable that the pressure is reduced to a value close to the lower limit allowed by the strength of the cladding tube 12, for example, about 0.5 atm, so that the pressure difference from the pressure in the upper cavity 21 is increased as much as possible. By increasing the pressure difference, the movement of the lithium 6 from the reservoir 18 to the lower cavity 20 is caused not only by gravity but also by the two cavities 20 and 2.
A pressure difference of 1 also acts and is effected quickly.

【0018】仕切り板17は、定格運転時の冷却材炉心
出口温度よりやや高い融点をもつ金属、例えば液体金属
冷却高速炉においてはバリウム製とすることができる。
この発明の制御フロート装置10を装着する原子炉の炉
型を液体金属冷却高速炉とした場合、定格運転時の冷却
材炉心出口温度は500〜650℃となる。リチウム6
の融点は180.6℃、1気圧での沸点は1342℃で
あるから、上記の定格運転時の冷却材温度においては液
体となっている。これに対してバリウムの融点は725
℃であり、もし炉心出口で異常な冷却材温度の上昇があ
ってこの温度を超えると、バリウム製の仕切り板17の
溶融が起き、液体のリチウム6が中性子吸収材充填部1
6内の貫通孔19を通って下部空洞20へ落下し、そこ
で中性子を吸収して核反応を抑えることができる。
The partition plate 17 can be made of a metal having a melting point slightly higher than the coolant core outlet temperature at the time of rated operation, for example, barium in a liquid metal cooling fast reactor.
When the reactor type of the reactor equipped with the control float device 10 of the present invention is a liquid metal-cooled fast reactor, the coolant core outlet temperature during the rated operation is 500 to 650 ° C. Lithium 6
Has a melting point of 180.6.degree. C. and a boiling point of 1342.degree. C. at 1 atm. Thus, it is liquid at the coolant temperature during the rated operation. In contrast, barium has a melting point of 725.
° C. If the coolant temperature rises abnormally at the core outlet and exceeds this temperature, the barium partition plate 17 melts, and the liquid lithium 6 is transferred to the neutron absorbing material filling portion 1.
It falls through the through hole 19 in the lower part 6 to the lower cavity 20, where it can absorb neutrons and suppress the nuclear reaction.

【0019】仕切り板17の材質は、定格運転時の冷却
材炉心出口温度および温度上昇の許容値をいくらにする
かによって、ある程度任意に選ぶことができる。融点だ
けを考えれば、単元素材料では631℃のアンチモン、
651℃のマグネシウム、769℃のストロンチウム等
の金属が候補材として挙げられ、合金とすれば融点はよ
り自由に選択することができるが、いかなる材質を選択
する場合でもリチウム6と長期間にわたる共存性がある
ことが前提となる。
The material of the partition plate 17 can be arbitrarily selected to some extent depending on the coolant core outlet temperature during the rated operation and the allowable value of the temperature rise. Considering only the melting point, antimony at 631 ° C.
Metals such as magnesium at 651 ° C. and strontium at 769 ° C. are mentioned as candidate materials, and if they are alloys, the melting point can be selected more freely. However, when any material is selected, compatibility with lithium 6 for a long period of time It is assumed that there is.

【0020】リチウム6の炉心への注入により原子炉反
応度の変化する程度は、炉心の設計により変わってく
る。図5のグラフは、ある設計の液体金属冷却高速炉に
対するリチウム6の注入効果についての計算結果を示し
たものである。この炉心は、高濃縮ウラン燃料を使用
し、直径42cm、高さ40cmの寸法を有し、中性子
と反応しないリチウム7を冷却材としている。図5のグ
ラフから、例えば体積混合割合で冷却材の6%に相当す
るリチウム6が炉心に注入された場合に、5%dk/k
k′の負の反応度が注入されることがわかる。
The degree to which the reactor reactivity changes due to the injection of lithium 6 into the core depends on the design of the core. The graph of FIG. 5 shows the calculated results of the effect of lithium 6 injection on a liquid metal-cooled fast reactor of a certain design. This core uses highly enriched uranium fuel, has dimensions of 42 cm in diameter and 40 cm in height, and uses lithium 7 which does not react with neutrons as a coolant. From the graph of FIG. 5, for example, when lithium 6 corresponding to 6% of the coolant by volume mixing ratio is injected into the core, 5% dk / k
It can be seen that a negative reactivity of k 'is injected.

【0021】この発明の制御フロート装置を用いて反応
度を抑制するには、定格運転時の冷却材炉心出口温度が
リチウム6の融点(約181℃)より高く、かつ冷却材
炉心出口温度と冷却材の沸点との間に融点をもつ材質の
仕切り板17が用意できれば、冷却材の種類にかかわら
ず適用できる。一般的に言えば、定格運転時の冷却材炉
心出口温度と冷却材の沸点との温度差が大きくとれる液
体金属冷却高速炉への適用が容易であるが、溶融塩や有
機質等の液体を冷却材とする原子炉への適用も可能であ
る。またガス冷却炉に対しても、定格運転時の冷却材炉
心出口温度より適度に高い融点をもつ仕切り板材質を選
択することによって適用が可能である。
In order to suppress the reactivity using the control float device of the present invention, the coolant core outlet temperature at the time of rated operation is higher than the melting point of lithium 6 (about 181 ° C.), and the coolant core outlet temperature and the cooling If a partition plate 17 of a material having a melting point between the material and the boiling point can be prepared, it can be applied regardless of the type of the coolant. Generally speaking, it is easy to apply to a liquid metal-cooled fast reactor in which the temperature difference between the coolant core outlet temperature at the rated operation and the boiling point of the coolant is large, but it cools liquids such as molten salts and organic substances. It is also possible to apply it to a nuclear reactor. Further, the present invention can also be applied to a gas cooling furnace by selecting a partition plate material having a melting point that is appropriately higher than the coolant core outlet temperature during rated operation.

【0022】[0022]

【発明の効果】以上の説明からわかるようにこの発明の
制御フロート装置は、強制循環冷却系をもつ原子炉に装
着することによって、配管破損やポンプ停止等の不測の
事故で冷却材の異常な流量低下が生じた場合に、案内管
内の制御フロートが自然に下方位置に降下して中性子吸
収体充填部が炉心領域内に置かれることになるため、炉
心の核反応が確実に抑制できるとともに、炉の過出力運
転による冷却材の異常温度上昇が生じた場合には、案内
管内の仕切り板が溶融してリチウム6が重力により落下
移動して炉心領域内に注入される結果、中性子吸収断面
積の大きいリチウム6の作用により炉心の核反応を効果
的かつ確実に抑制できる。
As can be seen from the above description, the control float device of the present invention can be installed in a reactor having a forced circulation cooling system to prevent abnormal cooling due to unexpected accidents such as pipe breakage or pump stoppage. When the flow rate decreases, the control float in the guide tube naturally descends to the lower position and the neutron absorber filling portion is placed in the core region, so that the nuclear reaction of the core can be reliably suppressed, When an abnormal temperature rise of the coolant occurs due to the overpower operation of the furnace, the partition plate in the guide tube is melted, lithium 6 moves down by gravity and is injected into the core region, resulting in a neutron absorption cross-sectional area. The nuclear reaction of the reactor core can be effectively and reliably suppressed by the action of lithium 6 having a large value.

【0023】このようにこの発明の制御フロート装置に
よれば、冷却材の異常流量低下のみならず、冷却材の異
常温度上昇という異常現象に対しても、電気回路等の駆
動機構を介さずに物質の特性による自然現象だけを利用
して自動的かつ確実に対処することができるため、原子
炉の固有の安全性を向上させることができる。
As described above, according to the control float device of the present invention, not only the abnormal flow rate of the coolant but also the abnormal phenomenon of the abnormal temperature rise of the coolant can be prevented without a driving mechanism such as an electric circuit. Since it is possible to automatically and surely take measures using only natural phenomena due to the characteristics of the material, the inherent safety of the nuclear reactor can be improved.

【0024】液体金属冷却炉の非常時にリチウム6を冷
却材中に混入して核反応を抑制することは既に提案され
ているが、その後の処理としてリチウム6を冷却材から
分離回収してから、炉の運転を再開しなければならず、
冷却材からのリチウム6の分離回収処理が容易でない。
これに対してこの発明によれば、仕切り板が溶融してリ
チウム6が制御フロートの下部空洞に落下移動した場合
でも、リチウム6は密閉被覆管外部に漏れることがない
から冷却材とは混合しない。従って、冷却材からのリチ
ウム6の分離回収処理を必要とせず、制御フロート装置
を密閉被覆管ごと炉心から引き抜いて新たな制御フロー
ト装置と取替えるだけで炉の運転を再開することができ
る。
It has already been proposed to mix lithium 6 into the coolant in the emergency of the liquid metal cooling furnace to suppress the nuclear reaction, but as a subsequent process, the lithium 6 is separated from the coolant and recovered. Furnace operation must be resumed,
The separation and recovery of lithium 6 from the coolant is not easy.
On the other hand, according to the present invention, even when the partition plate is melted and the lithium 6 falls into the lower cavity of the control float, the lithium 6 does not leak to the outside of the sealed cladding tube and therefore does not mix with the coolant. . Therefore, the operation of separating and recovering the lithium 6 from the coolant is not required, and the operation of the furnace can be restarted only by pulling out the control float device together with the sealed cladding tube from the core and replacing it with a new control float device.

【0025】また、制御フロートの下部空洞内圧力を被
覆管強度の下限値に近い値まで減圧して上部空洞内圧力
との圧力差を大きくしておくことによって、仕切り板の
溶融によるリチウム6の下部空洞への落下移動速度をよ
り一層高めることができ、冷却材異常温度上昇に対する
応答を迅速にすることが可能となる。
Further, the pressure in the lower cavity of the control float is reduced to a value close to the lower limit of the cladding tube strength to increase the pressure difference from the pressure in the upper cavity. The falling movement speed to the lower cavity can be further increased, and the response to the abnormal coolant temperature rise can be made faster.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の制御フロート装置の一部を破断して
示した斜視図。
FIG. 1 is a perspective view showing a part of a control float device of the present invention in a cutaway manner.

【図2】図1の制御フロート装置を原子炉に装着したと
きの、定格運転時の状態を部分的に拡大して示した説明
図。
FIG. 2 is an explanatory diagram showing a partially enlarged state of a rated operation when the control float device of FIG. 1 is mounted on a nuclear reactor.

【図3】図1の制御フロート装置を原子炉に装着したと
きの、異常流量低下時の状態を部分的に拡大して示した
説明図。
FIG. 3 is a partially enlarged explanatory view showing a state when an abnormal flow rate is reduced when the control float device of FIG. 1 is mounted on a nuclear reactor.

【図4】図1の制御フロート装置を原子炉に装着したと
きの、異常温度上昇時の状態を部分的に拡大して示した
説明図。
FIG. 4 is an explanatory diagram showing a partially enlarged state of an abnormal temperature rise when the control float device of FIG. 1 is mounted on a nuclear reactor.

【図5】リチウム6の冷却材中への混合割合と原子炉反
応度の変化の関係の計算結果を示したグラフ。
FIG. 5 is a graph showing a calculation result of a relationship between a mixing ratio of lithium 6 in a coolant and a change in reactor reactivity.

【図6】従来の制御フロート装置の一部を破断して示し
た斜視図。
FIG. 6 is a partially cutaway perspective view of a conventional control float device.

【図7】図6の従来の制御フロート装置を原子炉に装着
したときの、定格運転時の状態を示した説明図。
FIG. 7 is an explanatory diagram showing a state at the time of rated operation when the conventional control float device of FIG. 6 is mounted on a nuclear reactor.

【図8】図6の従来の制御フロート装置を原子炉に装着
したときの、異常流量低下時の状態を示した説明図。
FIG. 8 is an explanatory diagram showing a state when an abnormal flow rate is reduced when the conventional control float device of FIG. 6 is mounted on a nuclear reactor.

【符号の説明】[Explanation of symbols]

10:制御フロート装置 11:案内管 12:被覆管 13:制御フロート 16:中性子吸収体充填部 17:仕切り板 18:リチウム6溜部 19:貫通孔 20:下部空洞 21:上部空洞 22:スカート 30:炉心 10: Control float device 11: Guide tube 12: Cladding tube 13: Control float 16: Neutron absorber filling portion 17: Partition plate 18: Lithium 6 reservoir 19: Through hole 20: Lower cavity 21: Upper cavity 22: Skirt 30 : Core

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G21C 9/033 GDF G21C 7/08 G21C 7/22 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G21C 9/033 GDF G21C 7/08 G21C 7/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強制循環冷却系を有する原子炉の炉心部
に垂直方向に配設した案内管の内部に、該案内管内を流
れる冷却材の流動状態によって該案内管内を上昇もしく
は降下可能な密閉被覆管からなる制御フロートを挿入し
てなり、該制御フロートの内部には冷却材の異常温度上
昇時に溶融する仕切り板を介して下方に中性子吸収体充
填部および上方にリチウム6溜部を設けるとともに該中
性子吸収体充填部には垂直方向に延びる貫通孔を穿設
し、さらに該中性子吸収体充填部の下方に下部空洞およ
び該リチウム6溜部の上方に上部空洞を設け、該中性子
吸収体充填部の位置は原子炉定格運転時には炉心領域外
に上昇し、冷却材の異常流量低下時には炉心領域内に降
下するようにしたことを特徴とする原子炉用制御フロー
ト装置。
1. A hermetic seal capable of ascending or descending inside a guide tube according to a flow state of a coolant flowing through the guide tube inside a guide tube vertically disposed in a core portion of a nuclear reactor having a forced circulation cooling system. A control float consisting of a cladding tube is inserted, and a neutron absorber filling portion is provided below and a lithium 6 reservoir is provided above the control float inside the control float through a partition plate which melts when the temperature of the coolant rises abnormally. The neutron absorber filling portion is provided with a vertically extending through hole, and a lower cavity is provided below the neutron absorber filling portion and an upper cavity is provided above the lithium 6 reservoir. The control float device for a nuclear reactor, wherein the position of the part rises outside the core region during the rated operation of the reactor and falls into the core region when the abnormal coolant flow rate decreases.
【請求項2】 前記制御フロート内の中性子吸収体充填
部、リチウム6溜部および下部空洞の垂直方向長さを、
炉心の垂直方向長さとほぼ等しくした請求項1記載の原
子炉用制御フロート装置。
2. The vertical length of the neutron absorber filling portion, the lithium 6 reservoir and the lower cavity in the control float,
2. The control float apparatus for a nuclear reactor according to claim 1, wherein the length is substantially equal to the vertical length of the core.
【請求項3】 液体金属冷却高速炉で使用する制御フロ
ート装置であって、前記仕切り板をバリウム製とした請
求項1記載の原子炉用制御フロート装置。
3. The control float device for a nuclear reactor according to claim 1, wherein the partition plate is made of barium.
【請求項4】 前記下部空洞内圧力を、前記被覆管の強
度の下限値に近い値まで減圧した請求項1記載の原子炉
用制御フロート装置。
4. The control float apparatus for a nuclear reactor according to claim 1, wherein the pressure in the lower cavity is reduced to a value close to a lower limit value of the strength of the cladding tube.
JP6004487A 1994-01-20 1994-01-20 Control float equipment for nuclear reactor Expired - Fee Related JP2922772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6004487A JP2922772B2 (en) 1994-01-20 1994-01-20 Control float equipment for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6004487A JP2922772B2 (en) 1994-01-20 1994-01-20 Control float equipment for nuclear reactor

Publications (2)

Publication Number Publication Date
JPH07209468A JPH07209468A (en) 1995-08-11
JP2922772B2 true JP2922772B2 (en) 1999-07-26

Family

ID=11585455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6004487A Expired - Fee Related JP2922772B2 (en) 1994-01-20 1994-01-20 Control float equipment for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2922772B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9911513B2 (en) * 2014-01-14 2018-03-06 Ge-Hitachi Nuclear Energy Americas Llc Passive shutdown system and method of operating a liquid metal cooled reactor using the same
RU2608826C2 (en) 2015-06-01 2017-01-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Device for passive protection of nuclear reactor
CN108962407B (en) * 2018-06-13 2024-02-02 上海核工程研究设计院股份有限公司 Advanced reactor core water supplementing tank structure
JP2023128323A (en) * 2022-03-03 2023-09-14 三菱重工業株式会社 Nuclear reactor shutdown system and nuclear reactor shutdown method

Also Published As

Publication number Publication date
JPH07209468A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
JP4675926B2 (en) Boiling water reactor
JP2013507631A (en) Nuclear fuel assemblies and nuclear reactors comprising such assemblies
JPH0593794A (en) Sodium cooling type fast reactor
JP2013536426A (en) Equipment for reducing serious accidents in nuclear fuel assemblies
KR20180019570A (en) Manual protection of reactors
JP2922772B2 (en) Control float equipment for nuclear reactor
US4076587A (en) Fuse and application of said fuse to the construction of an emergency shutdown system for a nuclear reactor
JPH085772A (en) Reactor containment
JP4746911B2 (en) Method for constructing fast reactor and fast reactor facility
CN212230087U (en) Pool type reactor waste heat discharge system controlled by floating ball valve
JP3205153B2 (en) Self-actuated fast reactor starter
JP2001208884A (en) Gas-filled assembly
JPH063478A (en) Fuel assembly and core of reactor
JPH03269397A (en) Self-operation type liquid-state absorber control rod
US20240221964A1 (en) Reactor capable of coping with core meltdown accident with aim of preventing release of radioactive substances
JPH03246489A (en) Control float device for nuclear reactor
KR20210085561A (en) Non-refueling long-life small modular liquid metal cooled fast reactor shutdown system using neutron absorber for core melt down accident
JP2001133575A (en) Gas sealed-in assembly
JP6753773B2 (en) Water injection device
JPH06265676A (en) Reactor trip device for abnormal time
Dubberley et al. Super Prism metal core margins to severe core damage
JPH1026686A (en) Reactor and its safety device
JPH075286A (en) Auxiliary unit for emergency core cooling system
JPH0961574A (en) Self-actuation type output controller for fast reactor
KR101213386B1 (en) External reactor vessel cooling system using a seal plate and stand pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees