JP2922722B2 - Windmill - Google Patents

Windmill

Info

Publication number
JP2922722B2
JP2922722B2 JP4190056A JP19005692A JP2922722B2 JP 2922722 B2 JP2922722 B2 JP 2922722B2 JP 4190056 A JP4190056 A JP 4190056A JP 19005692 A JP19005692 A JP 19005692A JP 2922722 B2 JP2922722 B2 JP 2922722B2
Authority
JP
Japan
Prior art keywords
segment
line segment
point
line
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4190056A
Other languages
Japanese (ja)
Other versions
JPH06159222A (en
Inventor
茂 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEEFUTEI KK
Original Assignee
NIPPON SEEFUTEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEEFUTEI KK filed Critical NIPPON SEEFUTEI KK
Priority to JP4190056A priority Critical patent/JP2922722B2/en
Publication of JPH06159222A publication Critical patent/JPH06159222A/en
Application granted granted Critical
Publication of JP2922722B2 publication Critical patent/JP2922722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、風車に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind turbine.

【0002】[0002]

【従来の技術】従来、風車発電に於ては、2枚羽根,3
枚羽根等のプロペラ形の翼を備えた風車が使用されてき
た。また、揚水用等の動力用に用いる風車としては、主
として多翼形の風車が使用されてきた。
2. Description of the Related Art Conventionally, in wind turbine power generation, two blades, three blades,
Windmills with propeller-shaped wings such as single blades have been used. As a wind turbine used for power such as pumping, a multi-blade wind turbine has been mainly used.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述のプロペ
ラ形の翼を備えた風車では、回転速度が大きく発電には
適するが、得られるトルクは小さかった。また、始動風
速が比較的大きくなり、小なる風速のもとでは、風車が
回転しないという問題があった。
However, in the above-described wind turbine having the propeller-type blades, the rotation speed is large and suitable for power generation, but the obtained torque is small. In addition, there is a problem that the wind turbine does not rotate under a low wind speed when the starting wind speed becomes relatively high.

【0004】他方、多翼形の風車では、始動風速は小さ
く、かつ、大きなトルクを得ることができるが、回転速
度は小さかった。しかしながら、トルクさえ充分に大き
ければ、機械的増速によって所定の回転速度にして発電
機に伝達することもできる。
On the other hand, in a multi-blade wind turbine, the starting wind speed is small and a large torque can be obtained, but the rotation speed is small. However, as long as the torque is sufficiently large, it can be transmitted to the generator at a predetermined rotational speed by mechanical acceleration.

【0005】また、従来の効率の良いとされる風車の翼
形は、航空機の翼形に代表される形状に近いものであっ
た。即ち、図9及び図10に示すように、翼aの前縁b寄
りの部分が厚肉とされ、後縁cに向かって徐々に薄肉と
なる形状であった。このような翼を有する従来の風車で
は、ベルヌーイの定理で説明される翼揚力を利用してい
た。
[0005] Further, the airfoil of the conventional windmill, which is considered to be efficient, has a shape close to the shape represented by the airfoil of an aircraft. That is, as shown in FIGS. 9 and 10, the portion near the leading edge b of the wing a was made thick and gradually became thinner toward the trailing edge c. Conventional wind turbines having such wings have utilized wing lift described by Bernoulli's theorem.

【0006】そこで、本発明は、翼の周速と風速の比で
ある周速比を低下させることなく従来のもの以上に風車
効率を高め、かつ、得られるトルクを増大できる風車を
提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a wind turbine capable of increasing the wind turbine efficiency and increasing the obtained torque more than the conventional one without lowering the peripheral speed ratio, which is the ratio of the peripheral speed of the blade to the wind speed. With the goal.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明に係る風車は、第1点と第2点を結ぶ第1
線分を引き、その第1線分の第1中点より所定角度をも
って第2線分を引き、上記第2点に立てた第1垂線と上
記第2線分との第1交点と、上記第1中点と、を結ぶ第
3線分の第2中点より第2垂線を引き、該第2垂線と、
上記第1線分の第1中点を通ると共に直交する直線と、
の第2交点を中心として第4線分を半径とする第1円弧
を引き、さらに、上記第1線分に対して所定の前縁角を
もって第5線分を引き、該第5線分と上記直線との第3
交点と、上記第1交点と、を結ぶ第6線分の第3中点よ
り第3垂線を引き、該第3垂線と上記直線との第4交点
を中心として第7線分を半径とする第2円弧を引き、さ
らに、その第2円弧に接すると共に上記第5線分に平行
な第8線分を引き、上記第1点と、この第1点に立てた
第4垂線と上記第8線分との第5交点と、を結ぶ小円弧
を引き、上記第2円弧と上記第8線分との接点と上記第
5交点とを結ぶ第9線分と、上記接点にて上記第9線分
に連続する第3円弧と、上記第1円弧と、上記第1中点
と上記第1点を結ぶ第10線分と、上記小円弧と、を形成
し、この第9線分と第3円弧と第1円弧と第10線分と小
円弧にて囲まれる横断面形状を有する翼を複数枚放射状
に備えたものである。
In order to achieve the above-mentioned object, a wind turbine according to the present invention comprises a first point connecting a first point and a second point.
Drawing a line segment, drawing a second line segment at a predetermined angle from a first midpoint of the first line segment, and a first intersection between a first perpendicular line set at the second point and the second line segment; A second perpendicular is drawn from a second midpoint of a third line segment connecting the first midpoint and the second perpendicular,
A straight line that passes through the first middle point of the first line segment and is orthogonal to the first line segment;
A first arc having a fourth line segment as a radius is drawn around the second intersection point, and a fifth line segment is drawn at a predetermined leading edge angle with respect to the first line segment. Third with the straight line
A third perpendicular is drawn from a third midpoint of a sixth line connecting the intersection and the first intersection, and a radius is a seventh segment centered on a fourth intersection between the third perpendicular and the straight line. A second arc is drawn, and an eighth line segment that is in contact with the second arc and is parallel to the fifth line segment is drawn. The first point, the fourth perpendicular line set at the first point, and the eighth line A small arc connecting the fifth intersection with the line segment is drawn, and a ninth line segment connecting the fifth intersection with the contact point between the second arc and the eighth line segment and the ninth line connecting the fifth intersection with the fifth intersection point. A third arc continuing to the line segment, the first arc, a tenth line segment connecting the first midpoint and the first point, and the small arc are formed, and the ninth line segment and the A plurality of blades having a cross-sectional shape surrounded by three arcs, a first arc, a tenth line segment, and a small arc are radially provided.

【0008】また、本発明に係る風車は、第1点と第2
点を結ぶ第1線分を引き、その第1線分の第1中点より
所定角度をもって第2線分を引き、上記第2点に立てた
第1垂線と上記第2線分との第1交点と、上記第1中点
と、を結ぶ第3線分の第2中点より第2垂線を引き、該
第2垂線と、上記第1線分の第1中点を通ると共に直交
する直線と、の第2交点を中心として第4線分を半径と
する第1円弧を引き、さらに、上記第1線分に対して所
定の前縁角をもって第5線分を引き、該第5線分と上記
直線との第3交点と、上記第1交点と、を結ぶ第6線分
の第3中点より第3垂線を引き、該第3垂線と上記直線
との第4交点を中心として第7線分を半径とする第2円
弧を引き、さらに、その第2円弧に接すると共に上記第
5線分に平行な第8線分を引き、上記第1点と、この第
1点に立てた第4垂線と上記第8線分との第5交点と、
を結ぶ小円弧を引き、上記第2円弧と上記第8線分との
接点と上記第5交点とを結ぶ第9線分と、上記接点にて
上記第9線分に連続する第3円弧と、上記第1円弧と、
上記第1中点と上記第1点を結ぶ第10線分と、上記小円
弧と、を形成し、この第9線分と第3円弧と第1円弧と
第10線分と小円弧にて囲まれる横断面形状を有する主翼
と、該主翼に所定間隔及び所定ずれ幅をもって略平行に
配置されると共に該主翼の上記第1円弧と上記第10線分
から成る受風面と同一の曲面を有する略均一薄肉の副翼
と、を有する複翼を複数枚放射状に備えたものである。
Further, the wind turbine according to the present invention has a first point and a second point.
A first line segment connecting the points is drawn, a second line segment is drawn at a predetermined angle from a first midpoint of the first line segment, and a second line segment between the first perpendicular line set at the second point and the second line segment is drawn. A second perpendicular line is drawn from a second midpoint of a third line segment connecting the one intersection and the first midpoint, and passes through the first midpoint of the first line segment and is orthogonal to the second perpendicular line. Draw a first arc having a fourth segment as a radius around the second intersection of the straight line and a fifth segment with a predetermined leading edge angle with respect to the first segment. A third perpendicular line is drawn from a third midpoint of a sixth line segment connecting the third intersection point between the line segment and the straight line and the first intersection point, and a fourth intersection point between the third perpendicular line and the straight line is centered. Draw a second arc having a radius of the seventh line, draw an eighth line in contact with the second arc and parallel to the fifth line, and draw the first point and the first point The fourth A fifth intersection point between the line and the eighth line segment,
A ninth line segment connecting the contact point between the second arc line and the eighth line segment and the fifth intersection point, and a third arc line connected to the ninth line segment at the contact point. , The first arc,
A tenth line segment connecting the first middle point and the first point and the small arc are formed, and the ninth line segment, the third arc, the first arc, the tenth line segment, and the small arc are formed. A main wing having an enclosed cross-sectional shape, and having the same curved surface as the wind receiving surface which is disposed substantially parallel to the main wing with a predetermined interval and a predetermined shift width and includes the first arc and the tenth line segment of the main wing. A plurality of double wings having substantially uniform and thin sub wings are radially provided.

【0009】[0009]

【作用】本発明の風車に於て、翼の横断面に於ける第9
線分に対応する面は平坦面となる。この第9線分に対応
する面と、翼の前縁側から流入する空気流との間に僅か
な開きの角度を設定すれば、第9線分に対応する面上に
負の圧力が発生する。そして、ベルヌーイの定理で説明
される揚力に、この負の圧力が加わり、得られるトルク
が増大する。
In the wind turbine of the present invention, the ninth cross section of the wing
The surface corresponding to the line segment is a flat surface. If a slight opening angle is set between the surface corresponding to the ninth line and the airflow flowing from the leading edge side of the blade, a negative pressure is generated on the surface corresponding to the ninth line. . Then, the negative pressure is applied to the lift described by Bernoulli's theorem, and the obtained torque increases.

【0010】また、主翼と、主翼に略平行に配置した副
翼と、を有する複翼を備えたものでは、上述と同様にし
て増大した主翼の揚力に、さらに副翼の揚力が加わり、
一層大きなトルクが得られる。
[0010] In the case of a double wing having a main wing and a sub-wing arranged substantially parallel to the main wing, the lift of the sub-wing is further added to the lift of the main wing which is increased in the same manner as described above.
Greater torque can be obtained.

【0011】[0011]

【実施例】以下、実施例を示す図面に基づき本発明を詳
説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing embodiments.

【0012】図3は本発明に係る風車の一実施例を示
す。1は軸心L回りに回転自在とされた風車であり、こ
の風車1は、軸心Lと直交方向の複翼3…を複数枚放射
状に備えている。
FIG. 3 shows an embodiment of the wind turbine according to the present invention. Reference numeral 1 denotes a wind turbine that is rotatable around an axis L. The wind turbine 1 includes a plurality of blades 3 in a direction orthogonal to the axis L in a radial manner.

【0013】つまり、複翼3…の基端部は、軸心L回り
に回転自在に保持された軸部2の外周面に沿って所定ピ
ッチにて放射状に固着されている。
That is, the base ends of the multiple blades 3 are fixed radially at a predetermined pitch along the outer peripheral surface of the shaft portion 2 rotatably held around the axis L.

【0014】また、図示省略したが、軸部2は、複数の
歯車等を備えた増速機等を介して、発電機等に連結され
る。
Although not shown, the shaft portion 2 is connected to a generator or the like via a gearbox having a plurality of gears or the like.

【0015】しかして、複翼3は、主翼4と、この主翼
4の受風面6側に配設される副翼5と、を有している。
The double wing 3 has a main wing 4 and a sub wing 5 arranged on the wind receiving surface 6 side of the main wing 4.

【0016】即ち、図1に示すように、主翼4は、横断
面形状に於て、前後中間部からやや後縁10寄りの部分の
肉厚が最大とされ、前半は前方へ次第に薄肉となるテー
パ状とされ、かつ、後半は後方へ次第に薄肉となると共
に一面側へ凹状に弯曲している。この凹状に弯曲した一
面側が受風面6とされる。
In other words, as shown in FIG. 1, the main wing 4 has a maximum thickness in a cross-sectional shape slightly from the front-rear intermediate portion to a portion near the rear edge 10, and the front half gradually becomes thinner forward. It is tapered, and in the latter half, it becomes gradually thinner rearward and concavely curved toward one side. One side of the concavely curved surface is the wind receiving surface 6.

【0017】具体的には、この主翼4の横断面形状は、
以下に示すようにして設定する。
Specifically, the cross-sectional shape of the main wing 4 is
Set as shown below.

【0018】即ち、図2に示す如く、第1点Xと第2点
X′を結ぶ第1線分XX′を引き、その第1線分XX′
の第1中点Oより所定角度ρをもって第2線分OPを引
く。
That is, as shown in FIG. 2, a first line segment XX 'connecting the first point X and the second point X' is drawn, and the first line segment XX 'is drawn.
A second line segment OP is drawn from the first middle point O at a predetermined angle ρ.

【0019】第2点X′に立てた第1垂線Hと第2線分
OPとの第1交点Qと、第1中点Oと、を結ぶ第3線分
OQの第2中点Eより第2垂線Iを引く。
From the second middle point E of the third line segment OQ connecting the first intersection point Q between the first perpendicular line H and the second line segment OP set at the second point X 'and the first middle point O. A second perpendicular I is drawn.

【0020】第2垂線Iと、第1線分XX′の第1中点
Oを通ると共に直交する直線YY′と、の第2交点O1
を中心として第4線分OO1 を半径とする第1円弧OQ
を引く。
A second intersection point O 1 between the second perpendicular line I and a straight line YY ′ passing through the first middle point O of the first line segment XX ′ and crossing at right angles.
The first arc OQ having a fourth line segment OO 1 as a radius around the center
pull.

【0021】さらに、第1線分XX′に対して所定の前
縁角ψをもって第5線分XRを引き、該第5線分XRと
直線YY′との第3交点Sと、第1交点Qと、を結ぶ第
6線分QSの第3中点Fより第3垂線Jを引き、該第3
垂線Jと直線YY′との第4交点O2 を中心として第7
線分SO2 を半径とする第2円弧QSTを引く。
Further, a fifth segment XR is drawn at a predetermined leading edge angle ψ with respect to the first segment XX ′, and a third intersection S between the fifth segment XR and the straight line YY ′ and a first intersection Q, a third perpendicular J is drawn from a third midpoint F of a sixth segment QS connecting the
The around the fourth intersection point O 2 of the perpendicular line J and the straight line YY '7
A second arc QST having a radius of the line segment SO 2 is drawn.

【0022】この第2円弧QSTに接すると共に第5線
分XRに平行な第8線分X1 1 を引き、第1点Xと、
この第1点Xに立てた第4垂線Kと上記第8線分X1
1 との第5交点Vと、を結ぶ小円弧VXを引く。
An eighth line segment X 1 R 1 that is in contact with the second arc QST and is parallel to the fifth line segment XR is drawn, and a first point X is obtained.
The fourth perpendicular line K set at the first point X and the eighth line segment X 1 R
A small arc VX connecting the fifth intersection V with 1 is drawn.

【0023】こうして、第2円弧QSTと第8線分X1
1 との接点Uと第5交点Vとを結ぶ第9線分UVと、
接点Uにて第9線分UVに連続する第3円弧QSUと、
第1円弧OQと、第1中点Oと第1点Xとを結ぶ第10線
分OXと、小円弧VXと、を形成する。
Thus, the second arc QST and the eighth line segment X 1
A ninth line segment UV connecting the contact point U and the fifth intersection V with R 1,
A third arc QSU continuous with the ninth segment UV at the contact point U,
A first arc OQ, a tenth line segment OX connecting the first middle point O and the first point X, and a small arc VX are formed.

【0024】しかして、この第9線分UVと第3円弧Q
SUと第1円弧OQと第10線分OXと小円弧VXにて囲
まれる形状を、図1に示した主翼4の横断面形状とす
る。
Thus, the ninth line segment UV and the third arc Q
The shape surrounded by SU, the first arc OQ, the tenth line segment OX, and the small arc VX is the cross-sectional shape of the main wing 4 shown in FIG.

【0025】上述のようにして形成された主翼4は、第
1円弧OQと第10線分OXから成る受風面6と、小円弧
VXから成る前縁8と、第9線分UVと第3円弧QSU
から成る裏面9と、を有することとなる。
The main wing 4 formed as described above has a wind receiving surface 6 comprising a first arc OQ and a tenth line segment OX, a leading edge 8 comprising a small arc VX, a ninth line segment UV, 3 arc QSU
And a back surface 9 made of

【0026】そして、受風面6の(第10線分OXに対応
する)前半及び裏面9の(第9線分UVに対応する)前
半は平坦面となる。
The first half of the wind receiving surface 6 (corresponding to the tenth line segment OX) and the first half of the back surface 9 (corresponding to the ninth line segment UV) are flat surfaces.

【0027】図1に於て、δ1 は主翼4が回転方向Aに
対して傾斜するブレード角である。αは主翼4の回転方
向Aに対して気流角φをもって流れる気流W2 に対する
迎え角である。
In FIG. 1, δ 1 is a blade angle at which the main wing 4 is inclined with respect to the rotation direction A. α is the angle of attack with respect to the airflow W 2 flowing with the airflow angle φ with respect to the rotation direction A of the main wing 4.

【0028】なお、気流W2 は、主翼4の受風面6側か
ら回転方向Aに直角に流れる風W1により、主翼4が回
転方向Aに回転することを想定した場合に於ける、主翼
4に相対的に流れる回転方向Aとは逆方向の気流W3
上記風W1 との合力方向の気流である。
The airflow W 2 is generated when the main wing 4 rotates in the rotation direction A due to the wind W 1 flowing at right angles to the rotation direction A from the wind receiving surface 6 side of the main wing 4. the rotational direction a flowing relatively to 4 which is the resultant force direction of the air flow between the air flow W 3 and the wind W 1 in the reverse direction.

【0029】なお、気流角φと迎え角αとブレード角δ
1 は、φ=α+δ1 の関係を有している。また、ブレー
ド角δ1 は、主翼4の長手方向に沿って適宜変化させる
のが好ましい。即ち、その場合は主翼4は長手方向に沿
ってブレード角δ1 は変化し、ねじれることとなる。
The airflow angle φ, the angle of attack α, and the blade angle δ
1 has a relationship of φ = α + δ 1 . Further, it is preferable that the blade angle δ 1 is appropriately changed along the longitudinal direction of the main wing 4. That is, in this case, the blade angle δ 1 of the main wing 4 changes along the longitudinal direction, and the main wing 4 is twisted.

【0030】なお、所定前縁角ψは、気流W2 と主翼4
の裏面9の(第9線分UVに対応する)前半の面との間
に僅かの(ひらき角)負角βをもつように設定される。
The predetermined leading edge angle ψ is determined by the airflow W 2 and the main wing 4
Is set to have a slight (open angle) negative angle β between the back surface 9 and the first half surface (corresponding to the ninth line segment UV).

【0031】副翼5は、主翼4の受風面6と同一の曲面
7a,7bを有する略均一薄肉とされる。
The sub wing 5 has substantially the same curved surfaces 7a and 7b as the wind receiving surface 6 of the main wing 4, and has a substantially uniform thickness.

【0032】そして、この副翼5は、主翼4に所定間隔
1 及び所定ずれ幅N2 をもって略平行に配置される。
The sub wings 5 are arranged substantially parallel to the main wing 4 with a predetermined interval N 1 and a predetermined shift width N 2 .

【0033】具体的には、副翼5は、次のようにして取
付けられる。
Specifically, the sub wing 5 is attached as follows.

【0034】即ち、気流W2 に平行であると共に、主翼
4の後縁10を通る線分B1 を引く。
That is, a line segment B 1 that is parallel to the airflow W 2 and passes through the trailing edge 10 of the main wing 4 is drawn.

【0035】次いで、主翼4の前縁8より気流W2 に垂
線B2 を引き、線分B1 とその垂線B2 との交点Cを副
翼5の前縁に位置づける。さらに、副翼5のブレード角
δ2を主翼4のブレード角δ1 と同一に設定する。
Next, a perpendicular B 2 is drawn from the leading edge 8 of the main wing 4 to the airflow W 2 , and the intersection C between the line segment B 1 and the perpendicular B 2 is positioned at the leading edge of the sub wing 5. Further, the blade angle δ 2 of the sub wing 5 is set to be the same as the blade angle δ 1 of the main wing 4.

【0036】このように配置させることにより、副翼5
は、主翼4に対して矢印Aで示す回転方向に平行な方向
へ所定ずれ幅N2 だけずれると共に、回転方向に垂直な
方向へ所定間隔N1 をもつこととなる。
By arranging in this manner, the sub wing 5
, Together displaced by a predetermined shift width N 2 in a direction parallel to the rotational direction indicated by arrow A relative to the main wing 4, and have a predetermined interval N 1 in the direction perpendicular to the direction of rotation.

【0037】なお、上記所定間隔N1 と所定ずれ幅N2
は、周速比によって定まり、上述のようにして設定され
る所定間隔N1 と所定ずれ幅N2 以上の間隔及びずれ幅
は不必要である。
The predetermined interval N 1 and the predetermined shift width N 2
It is determined by the circumferential speed ratio, the predetermined interval N 1 and the predetermined shift width N 2 or more intervals and the shift width is set as described above is unnecessary.

【0038】なお、図3に示す如く、副翼5…は、長さ
寸法が風車半径の略2分の1とされ、風車の外周寄りに
取付けられている。
As shown in FIG. 3, the length of each of the sub-wings 5 is approximately one half of the radius of the wind turbine, and is attached to the outer periphery of the wind turbine.

【0039】なお、風車1の外周縁に於ける周速比は2
以上5以下に設定するのが好ましく、特に好ましくは、
周速比を3とする。そして、例えば、長さ1mの主翼4
の周速比を3とすると、軸心Lでは周速比は0となり、
軸心Lと先端の間の周速比は、0と3の間で比例的に決
まる。
The peripheral speed ratio at the outer peripheral edge of the wind turbine 1 is 2
It is preferably set to at least 5 and at most 5, particularly preferably
The peripheral speed ratio is set to 3. Then, for example, the main wing 4 having a length of 1 m
Is 3, the peripheral speed ratio at the axis L is 0,
The peripheral speed ratio between the axis L and the tip is proportionally determined between 0 and 3.

【0040】また、主翼4及び副翼5の翼弦長M1 ,M
2 は、基端に次第に大きくされている。なお、周速比か
ら、剛性率を求め、翼弦長が計算された。
The chord lengths M 1 , M of the main wing 4 and the sub wing 5
2 is progressively larger at the proximal end. In addition, the chord length was calculated by calculating the rigidity from the peripheral speed ratio.

【0041】次に、(図1にもどって)この実施例の風
車1の使用状態を説明する。
Next, the use state of the wind turbine 1 of this embodiment (returning to FIG. 1) will be described.

【0042】気流角φをもって流入してきた気流W2
より、主翼4には、ベルヌーイの定理により説明される
揚力が発生する。かつ、主翼4の裏面9側には負角βに
より負の圧力が発生する。
The lift W described by Bernoulli's theorem is generated in the main wing 4 by the air flow W 2 flowing at the air flow angle φ. Further, a negative pressure is generated on the back surface 9 side of the main wing 4 due to the negative angle β.

【0043】さらに、副翼5にも主翼4の受風面が受け
るのと同じ揚力が発生する。従って、複翼3全体として
の揚力D1 は、主翼4の揚力とその裏面9側の負の圧力
と副翼5の揚力とを加算したものとなる。
Further, the same lift as the wind receiving surface of the main wing 4 receives on the sub wing 5 is generated. Therefore, the lift D 1 of the double wing 3 as a whole is the sum of the lift of the main wing 4, the negative pressure on the back surface 9 side thereof, and the lift of the sub wing 5.

【0044】D2 は気流W2 に対する抗力であり、この
抗力D2 と揚力D1 との合力D3 により複翼3が回転す
る。具体的には、合力D3 の回転方向Aの分力により複
翼3が回転する。
D 2 is a drag against the airflow W 2 , and the double wing 3 is rotated by a resultant D 3 of the drag D 2 and the lift D 1 . Specifically, the double wing 3 is rotated by a component force of the resultant force D 3 in the rotation direction A.

【0045】このように、複翼3には、ベルヌーイの定
理によって説明される主翼4の揚力に、負角βによる負
の圧力が加わり、さらに副翼5による揚力が加わるた
め、極めて大きなトルクが得られる。そして、単位直径
当たりの風車効率{(回転エネルギー/風のエネルギ
ー)×100(%) }を著しく増大できる。
As described above, a negative pressure due to the negative angle β is applied to the lift of the main wing 4 described by Bernoulli's theorem, and a lift due to the sub wing 5 is applied to the double wing 3. can get. And the wind turbine efficiency per unit diameter {(rotational energy / wind energy) × 100 (%)} can be significantly increased.

【0046】また、周速比が小さい場合には大きなトル
クが得られるため、風力発電に利用するために複数の歯
車からなる増速機を使用すれば良い。
Further, when the peripheral speed ratio is small, a large torque can be obtained. Therefore, it is sufficient to use a speed increaser composed of a plurality of gears for use in wind power generation.

【0047】また、図例では、複翼3…を8枚備えてい
るが、このような多翼形とすれば、風車の始動風速を小
さくできると共に弱風の場合でも回転することができ
る。
Further, in the illustrated example, eight double blades 3 are provided. However, such a multi-blade type can reduce the starting wind speed of the wind turbine and rotate even in the case of a weak wind.

【0048】なお、複翼3…は8枚以外にも、2枚〜7
枚あるいは9枚,10枚等の複数枚とするも好ましい。
The double wings 3...
It is also preferable to use a plurality of sheets such as nine sheets or nine or ten sheets.

【0049】次に、本発明の風車の製造方法の一例を示
す。
Next, an example of a method for manufacturing a wind turbine according to the present invention will be described.

【0050】先ず、図2に示した第9線分UVと第3円
弧QSUと第1円弧OQと第10線分OXと小円弧VXに
て囲まれる図形を、図8に示す分割i=0,1,2,…
16の各位置毎に厚紙上に描き、これを切り抜いて型紙を
製作する。
First, the figure enclosed by the ninth line segment UV, the third arc QSU, the first arc OQ, the tenth line segment OX, and the small arc VX shown in FIG. , 1,2, ...
For each of the 16 positions, draw on cardboard, cut out this and make a pattern.

【0051】そして、この型紙を所定間隔毎に起立させ
て並べ、石膏で固めて原型を作る。
Then, the pattern papers are erected at predetermined intervals and arranged, and hardened with gypsum to form a prototype.

【0052】次いで、上記原型をもってエポキシ樹脂の
樹脂型を作り、この樹脂型にて主翼4をエポキシ樹脂で
複製する。
Next, a resin mold of an epoxy resin is made using the above-mentioned prototype, and the main wing 4 is duplicated with the epoxy resin using the resin mold.

【0053】その後、主翼4の受風面6に対応する樹脂
型の面を利用して、この面に離型剤を塗布乾燥した後、
ガラスクロスを3枚重ねてラミネートし、エポキシ樹脂
で固めて副翼5を複製する。
After that, using a resin mold surface corresponding to the wind receiving surface 6 of the main wing 4, a release agent is applied to this surface and dried.
Three glass cloths are laminated and laminated, and hardened with epoxy resin to duplicate the sub wing 5.

【0054】この副翼5は、主翼4の長手方向の中間か
ら先端にわたる部分について形成する。
The sub wing 5 is formed at a portion extending from the middle to the tip of the main wing 4 in the longitudinal direction.

【0055】こうして複製した主翼4に副翼5を、図4
に示すような金具11…にて取付ける。この取付けの際、
副翼5は、主翼4に所定間隔N1 及び所定ずれ幅N2
もって略平行に配置する(図1参照)。
The sub wing 5 is replaced with the sub wing 5 in FIG.
Attach it with the metal fittings 11 as shown in. During this installation,
The sub wings 5 are arranged substantially parallel to the main wing 4 with a predetermined interval N 1 and a predetermined shift width N 2 (see FIG. 1).

【0056】次に、図5は、他の実施例を示し、この例
では、風車1は一枚ものの翼12…を備えている。即ち、
この翼12は、図1に示した複翼3の主翼4と同一のもの
である。
Next, FIG. 5 shows another embodiment. In this embodiment, the wind turbine 1 has a single blade 12. That is,
The wing 12 is the same as the main wing 4 of the double wing 3 shown in FIG.

【0057】図6は、図1に示した複翼3の変形例を示
し、この場合は、図1の副翼5に所定間隔N1 及び所定
ずれ幅N2 をもってさらに別の副翼5を配置したもので
ある。
FIG. 6 shows a modification of the double wing 3 shown in FIG. 1. In this case, another sub wing 5 is provided on the sub wing 5 of FIG. 1 with a predetermined interval N 1 and a predetermined shift width N 2. It is arranged.

【0058】図7は、複翼3の他の実施例を示し、この
場合は、2枚の異なる長さ寸法の副翼5,5を備えてい
る。
FIG. 7 shows another embodiment of the double wing 3 in which two sub wings 5 and 5 having different lengths are provided.

【0059】次に、翼12または主翼4の具体例を、下記
の表1に示す。なお、表1中のiは、図8に於て、翼先
端をi=0とし、回転中心の軸心Lをi=20として、そ
の間を20等分して各位置を示す数字(番号)である。
Next, specific examples of the wing 12 or the main wing 4 are shown in Table 1 below. Note that i in Table 1 is a numeral (number) indicating each position in FIG. 8 with i = 0 at the blade tip, i = 20 at the axis L of the center of rotation, and equally dividing the interval by 20. It is.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【発明の効果】本発明は、上述の如く構成されるので、
次に記載する効果を奏する。
Since the present invention is configured as described above,
The following effects are obtained.

【0062】請求項1記載の風車によれば、翼12への気
流W2 と翼12の第9線分UVに対応する面との間に負角
βをもたせるように翼12を取付けることにより、ベルヌ
ーイの定理により説明される揚力に、さらに負角βによ
る負の圧力を加えることができる。従って、大きなトル
クを得ることができ、風車効率を増大できる。
According to the wind turbine of the first aspect, the wings 12 are attached so as to have a negative angle β between the airflow W 2 to the wings 12 and the surface of the wings 12 corresponding to the ninth line segment UV. , A negative pressure due to the negative angle β can be applied to the lift described by Bernoulli's theorem. Therefore, a large torque can be obtained, and the windmill efficiency can be increased.

【0063】請求項2記載の風車によれば、複翼3…の
揚力は、主翼4…に於けるベルヌーイの定理により説明
される揚力に負角βによる負の圧力を加え、さらに副翼
5…による揚力を加えたものとなり、極めて大きなトル
クを得ることができ、風車効率を一層増大できる。
According to the wind turbine of the second aspect, the lift of the double wings 3 is obtained by applying a negative pressure due to the negative angle β to the lift described by Bernoulli's theorem on the main wings 4. , And an extremely large torque can be obtained, and the windmill efficiency can be further increased.

【0064】また、請求項1記載の風車及び請求項2記
載の風車によれば、従来の風車よりも直径を小さくして
も、従来と同程度のトルクを得ることができる。
Further, according to the wind turbine according to the first aspect and the wind turbine according to the second aspect, even if the diameter is smaller than that of the conventional wind turbine, it is possible to obtain the same torque as the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る風車の一実施例の要部断面図であ
る。
FIG. 1 is a sectional view of a main part of an embodiment of a wind turbine according to the present invention.

【図2】主翼を説明する図である。FIG. 2 is a diagram illustrating a main wing.

【図3】風車の正面図である。FIG. 3 is a front view of the windmill.

【図4】複翼の斜視図である。FIG. 4 is a perspective view of a double wing.

【図5】他の実施例の正面図である。FIG. 5 is a front view of another embodiment.

【図6】変形例の横断面図である。FIG. 6 is a cross-sectional view of a modified example.

【図7】複翼の他の実施例の側面図である。FIG. 7 is a side view of another embodiment of the double wing.

【図8】要部を説明する図である。FIG. 8 is a diagram illustrating a main part.

【図9】従来例の横断面図である。FIG. 9 is a cross-sectional view of a conventional example.

【図10】従来例の横断面図である。FIG. 10 is a cross-sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

3 複翼 4 主翼 5 副翼 6 受風面 7a 曲面 7b 曲面 12 翼 O 第1中点 E 第2中点 F 第3中点 X 第1点 X′ 第2点 H 第1垂線 I 第2垂線 J 第3垂線 K 第4垂線 Q 第1交点 O1 第2交点 S 第3交点 O2 第4交点 U 接点 V 第5交点 N1 所定間隔 N2 所定ずれ幅 XX′ 第1線分 OP 第2線分 OQ 第3線分 OO1 第4線分 XR 第5線分 QS 第6線分 SO2 第7線分 X1 1 第8線分 UV 第9線分 OX 第10線分 YY′ 直線 OQ 第1円弧 VX 小円弧 QST 第2円弧 QSU 第3円弧 ρ 所定角度 ψ 所定前縁角Reference Signs List 3 double wing 4 main wing 5 sub wing 6 wind receiving surface 7a curved surface 7b curved surface 12 wing O 1st midpoint E 2nd midpoint F 3rd midpoint X 1st point X '2nd point H 1st perpendicular I 2nd perpendicular J third perpendicular line K fourth perpendicular Q first intersection O 1 second intersection S third intersection point O 2 fourth intersection U contacts V fifth intersection N 1 a predetermined distance N 2 predetermined shift width XX 'first line segment OP second segment OQ third line segment OO 1 fourth line XR fifth line segment QS sixth segment SO 2 seventh line X 1 R 1 eighth line UV ninth line segment OX 10 segment YY 'linear OQ First arc VX Small arc QST Second arc QSU Third arc ρ Predetermined angle 所 定 Predetermined leading edge angle

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1点Xと第2点X′を結ぶ第1線分X
X′を引き、その第1線分XX′の第1中点Oより所定
角度ρをもって第2線分OPを引き、上記第2点X′に
立てた第1垂線Hと上記第2線分OPとの第1交点Q
と、上記第1中点Oと、を結ぶ第3線分OQの第2中点
Eより第2垂線Iを引き、該第2垂線Iと、上記第1線
分XX′の第1中点Oを通ると共に直交する直線YY′
と、の第2交点O1 を中心として第4線分OO1 を半径
とする第1円弧OQを引き、さらに、上記第1線分X
X′に対して所定の前縁角ψをもって第5線分XRを引
き、該第5線分XRと上記直線YY′との第3交点S
と、上記第1交点Qと、を結ぶ第6線分QSの第3中点
Fより第3垂線Jを引き、該第3垂線Jと上記直線Y
Y′との第4交点O2 を中心として第7線分SO2 を半
径とする第2円弧QSTを引き、さらに、その第2円弧
QSTに接すると共に上記第5線分XRに平行な第8線
分X1 1 を引き、上記第1点Xと、この第1点Xに立
てた第4垂線Kと上記第8線分X1 1 との第5交点V
と、を結ぶ小円弧VXを引き、上記第2円弧QSTと上
記第8線分X1 1 との接点Uと上記第5交点Vとを結
ぶ第9線分UVと、上記接点Uにて上記第9線分UVに
連続する第3円弧QSUと、上記第1円弧OQと、上記
第1中点Oと上記第1点Xとを結ぶ第10線分OXと、上
記小円弧VXと、を形成し、この第9線分UVと第3円
弧QSUと第1円弧OQと第10線分OXと小円弧VXに
て囲まれる横断面形状を有する翼12…を複数枚放射状に
備えたことを特徴とする風車。
1. A first line segment X connecting a first point X and a second point X '.
X 'is drawn, a second line segment OP is drawn at a predetermined angle ρ from the first middle point O of the first line segment XX', and a first perpendicular line H and a second line segment set at the second point X 'are drawn. First intersection Q with OP
, A second perpendicular I is drawn from a second midpoint E of a third segment OQ connecting the first midpoint O and the first midpoint of the second perpendicular I and the first segment XX ′. A straight line YY 'passing through O
When the fourth line segment OO 1 about the second intersection point O 1 pulling the first arc OQ whose radius of addition, the first line segment X
A fifth line segment XR is drawn at a predetermined leading edge angle に 対 し て with respect to X ′, and a third intersection S between the fifth line segment XR and the straight line YY ′ is drawn.
, A third perpendicular J is drawn from a third midpoint F of a sixth line segment QS connecting the first intersection Q and the third perpendicular J and the straight line Y.
Pull the second arc QST to the seventh segment SO 2 and the radius around the fourth intersection point O 2 of the Y ', further, the parallel to the fifth segment XR together with contact with the second arc QST 8 A line segment X 1 R 1 is drawn, and the first point X, and a fifth intersection V between the fourth perpendicular line K set at the first point X and the eighth line segment X 1 R 1
And a ninth line segment UV connecting the contact point U between the second arc segment QST and the eighth line segment X 1 R 1 and the fifth intersection point V, and the contact point U. A third circular arc QSU continuous with the ninth line segment UV, the first circular arc OQ, a tenth line segment OX connecting the first middle point O and the first point X, and the small circular arc VX; And a plurality of radially provided wings 12 having a cross-sectional shape surrounded by the ninth line segment UV, the third arc segment QSU, the first arc segment OQ, the tenth segment segment OX, and the small arc segment VX. A windmill characterized by the following.
【請求項2】 第1点Xと第2点X′を結ぶ第1線分X
X′を引き、その第1線分XX′の第1中点Oより所定
角度ρをもって第2線分OPを引き、上記第2点X′に
立てた第1垂線Hと上記第2線分OPとの第1交点Q
と、上記第1中点Oと、を結ぶ第3線分OQの第2中点
Eより第2垂線Iを引き、該第2垂線Iと、上記第1線
分XX′の第1中点Oを通ると共に直交する直線YY′
と、の第2交点O1 を中心として第4線分OO1 を半径
とする第1円弧OQを引き、さらに、上記第1線分X
X′に対して所定の前縁角ψをもって第5線分XRを引
き、該第5線分XRと上記直線YY′との第3交点S
と、上記第1交点Qと、を結ぶ第6線分QSの第3中点
Fより第3垂線Jを引き、該第3垂線Jと上記直線Y
Y′との第4交点O2 を中心として第7線分SO2 を半
径とする第2円弧QSTを引き、さらに、その第2円弧
QSTに接すると共に上記第5線分XRに平行な第8線
分X1 1 を引き、上記第1点Xと、この第1点Xに立
てた第4垂線Kと上記第8線分X1 1 との第5交点V
と、を結ぶ小円弧VXを引き、上記第2円弧QSTと上
記第8線分X1 1 との接点Uと上記第5交点Vとを結
ぶ第9線分UVと、上記接点Uにて上記第9線分UVに
連続する第3円弧QSUと、上記第1円弧OQと、上記
第1中点Oと上記第1点Xとを結ぶ第10線分OXと、上
記小円弧VXと、を形成し、この第9線分UVと第3円
弧QSUと第1円弧OQと第10線分OXと小円弧VXに
て囲まれる横断面形状を有する主翼4…と、該主翼4…
に所定間隔N1 及び所定ずれ幅N2 をもって略平行に配
置されると共に該主翼4…の上記第1円弧OQと上記第
10線分OXから成る受風面6と同一の曲面7a,7bを
有する略均一薄肉の副翼5…と、を有する複翼3…を、
複数枚放射状に備えたことを特徴とする風車。
2. A first line segment X connecting a first point X and a second point X '.
X 'is drawn, a second line segment OP is drawn at a predetermined angle ρ from the first middle point O of the first line segment XX', and a first perpendicular line H and a second line segment set at the second point X 'are drawn. First intersection Q with OP
, A second perpendicular I is drawn from a second midpoint E of a third segment OQ connecting the first midpoint O and the first midpoint of the second perpendicular I and the first segment XX ′. A straight line YY 'passing through O
When the fourth line segment OO 1 about the second intersection point O 1 pulling the first arc OQ whose radius of addition, the first line segment X
A fifth line segment XR is drawn at a predetermined leading edge angle に 対 し て with respect to X ′, and a third intersection S between the fifth line segment XR and the straight line YY ′ is drawn.
, A third perpendicular J is drawn from a third midpoint F of a sixth line segment QS connecting the first intersection Q and the third perpendicular J and the straight line Y.
Pull the second arc QST to the seventh segment SO 2 and the radius around the fourth intersection point O 2 of the Y ', further, the parallel to the fifth segment XR together with contact with the second arc QST 8 A line segment X 1 R 1 is drawn, and the first point X, and a fifth intersection V between the fourth perpendicular line K set at the first point X and the eighth line segment X 1 R 1
And a ninth line segment UV connecting the contact point U between the second arc segment QST and the eighth line segment X 1 R 1 and the fifth intersection point V, and the contact point U. A third circular arc QSU continuous with the ninth line segment UV, the first circular arc OQ, a tenth line segment OX connecting the first middle point O and the first point X, and the small circular arc VX; Wings 4 having a cross-sectional shape surrounded by the ninth line segment UV, the third arc segment QSU, the first arc segment OQ, the tenth segment OX, and the small arc segment VX;
Are arranged substantially in parallel with a predetermined interval N 1 and a predetermined shift width N 2, and the first arc OQ of the main wings 4.
A double wing 3 having a substantially uniform thin sub-wing 5 having the same curved surface 7a, 7b as the wind receiving surface 6 composed of 10 line segments OX,
A windmill comprising a plurality of radially arranged windmills.
JP4190056A 1992-06-23 1992-06-23 Windmill Expired - Fee Related JP2922722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4190056A JP2922722B2 (en) 1992-06-23 1992-06-23 Windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4190056A JP2922722B2 (en) 1992-06-23 1992-06-23 Windmill

Publications (2)

Publication Number Publication Date
JPH06159222A JPH06159222A (en) 1994-06-07
JP2922722B2 true JP2922722B2 (en) 1999-07-26

Family

ID=16251612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4190056A Expired - Fee Related JP2922722B2 (en) 1992-06-23 1992-06-23 Windmill

Country Status (1)

Country Link
JP (1) JP2922722B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2322423B1 (en) * 2007-06-21 2010-01-26 Manuel Torres Martinez HORIZONTAL SHAFT AEROGENERATOR SHOVEL.
EP2078852B2 (en) * 2008-01-11 2022-06-22 Siemens Gamesa Renewable Energy A/S Wind turbine rotor blade
EP2107235A1 (en) * 2008-04-02 2009-10-07 Lm Glasfiber A/S A wind turbine blade with an auxiliary airfoil

Also Published As

Publication number Publication date
JPH06159222A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
EP1649163B1 (en) Vertical-axis wind turbine
US20080075599A1 (en) Fluid energy converter
EP2682602B1 (en) Wind turbine blade and wind-powered electricity generator provided with same
Reupke et al. Slatted-blade Savonius wind-rotors
CA2193972A1 (en) The multi-unit rotor blade system integrated wind turbine
US10066597B2 (en) Multiple-blade wind machine with shrouded rotors
US8562299B2 (en) Blade for a device for generating energy from a fluid flow
JP3935804B2 (en) Wing and wind power generator provided with the same
US20100266414A1 (en) Fluid energy converter
JPS5928754B2 (en) Vertical axis wind turbine blade
JP2922722B2 (en) Windmill
CN107476935B (en) Vertical axis wind blade, wind wheel and wind power generation device
JP2009299641A (en) Fluid wheel having elastically deformable wing
US20120321481A1 (en) Spinnable Bladed Device For Operation In Air, Water Or Other Fluid Medium
JP2018119483A (en) Blade and wind turbine using the same
US6457671B1 (en) Funneled rotary foil
JP5433553B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
JP3987960B2 (en) Fluid machinery
JP3875618B2 (en) Wind turbine for horizontal axis wind power generator
JP5574915B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
WO2007017930A1 (en) Magnus wind turbine device
JPS61500926A (en) Wind rotating body parts
WO2018135093A1 (en) Rotor
JP5780636B2 (en) Axial turbine turbine with flat blades with a curved plate or cylinder as the leading edge
US3282352A (en) Dual air screw propeller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees