JP2920774B2 - Superconducting circuit fabrication method - Google Patents
Superconducting circuit fabrication methodInfo
- Publication number
- JP2920774B2 JP2920774B2 JP2023953A JP2395390A JP2920774B2 JP 2920774 B2 JP2920774 B2 JP 2920774B2 JP 2023953 A JP2023953 A JP 2023953A JP 2395390 A JP2395390 A JP 2395390A JP 2920774 B2 JP2920774 B2 JP 2920774B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- film
- superconductor
- josephson
- paste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002887 superconductor Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 9
- 238000007650 screen-printing Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- 229910002480 Cu-O Inorganic materials 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Chemically Coating (AREA)
Description
【発明の詳細な説明】 (イ) 技術分野 本発明は、超電導回路の作製方法に関し、更に詳しく
は積層された異種の超電導膜の境界面に格子不整合によ
るジョセフソン接合を形成させることによる超電導回路
の作製方法である。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a superconducting circuit, and more particularly, to a superconducting method by forming a Josephson junction due to lattice mismatch at an interface between stacked different superconducting films. This is a method for manufacturing a circuit.
(ロ) 従来技術 一般に高性能のジョセフソン素子を作製するために
は、超電導体表面の評価が極めて重要であり、特にこれ
はジョセフソン素子の特性上、a)表面の組成と構造、
b)表面自己酸化膜、c)バリア膜、およびd)超電導
体/バリア界面の4つの評価が重要である。即ち、 a)超電導体表面の組成と構造は、超電導体表面層の局
部的なTc(臨界温度)やエネルギーギャップに直接関係
するため、超電導体の表面状態がジョセフソン素子の特
性に直接関係する。(B) Conventional technology Generally, in order to produce a high-performance Josephson device, it is extremely important to evaluate the surface of the superconductor. In particular, this is because of the characteristics of the Josephson device, a) surface composition and structure,
Four evaluations are important: b) surface self-oxidation film, c) barrier film, and d) superconductor / barrier interface. A) Since the composition and structure of the superconductor surface are directly related to the local Tc (critical temperature) and energy gap of the superconductor surface layer, the surface state of the superconductor is directly related to the characteristics of the Josephson device. .
b)トンネル接合型のジョセフソン素子の多くはトンネ
ルバリアとして自己酸化膜を用いることが多いが、その
酸化膜がバリアとして有効であるかどうか、その組成,
膜質,膜厚はジョセフソン素子の特性に直接関係するの
で、表面酸化層の生成機構と共に重要である。b) Many tunnel-junction type Josephson devices use a self-oxide film as a tunnel barrier. Whether the oxide film is effective as a barrier, its composition,
Since the film quality and thickness are directly related to the characteristics of the Josephson device, they are important together with the formation mechanism of the surface oxide layer.
c)自己酸化膜によらない人工バリア膜においても、膜
質と膜厚はバリアの高さと厚さに直接関係しており、ジ
ョセフソン電流を決定する重要な要件となる。c) Even in an artificial barrier film not based on a self-oxidized film, the film quality and thickness are directly related to the height and thickness of the barrier, and are important requirements for determining the Josephson current.
d)バリア膜形成に伴なう拡散や反応による下部電極お
よび上部電極への影響は近接効果などを通してジョセフ
ソン素子のI−V特性に関係してくるので、その界面状
態を的確に把握する必要がある。d) The influence on the lower electrode and the upper electrode due to the diffusion and reaction accompanying the formation of the barrier film is related to the IV characteristics of the Josephson element through a proximity effect or the like. There is.
上記の超電導体表面の測定評価手段としては、通常は
光電子分光,オージェ電子分光,電子線回折およびX線
電子分光(XPS)等が使用される。As the means for measuring and evaluating the superconductor surface, photoelectron spectroscopy, Auger electron spectroscopy, electron beam diffraction, X-ray electron spectroscopy (XPS) and the like are usually used.
酸化物超電導体を用いたジョセフソン素子の作製方法
は、あまり報告されていないが、代表的な従来法として
は次の3法がある。即ち、 Y1Ba2Cu3O7-xやBi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10
等の臨界温度(Tc)の高い酸化物超電導材料では、コヒ
ーレント長さ(ξ)が短く、結晶軸のa,b,c軸によって
数Å〜数十Åと長さが異なるが、金属系超電導体に比較
して数桁小さい。このために、上記のようなTcの高い酸
化物超電導材料を用いてジョセフソン素子を作製する場
合、イオンビーム法等により直接描画する方法で、数Å
〜数十Åの線幅でパターニングする方法。Although few reports have been made on a method of manufacturing a Josephson device using an oxide superconductor, the following three typical methods are typical. That is, Y 1 Ba 2 Cu 3 O 7 -x, Bi 2 Sr 2 Ca 2 Cu 3 O 10 , Tl 2 Ba 2 Ca 2 Cu 3 O 10
In oxide superconducting materials with high critical temperatures (Tc), the coherent length (ξ) is short, and the length varies from several Å to tens of に よ っ て depending on the crystal axes a, b, and c. Several orders of magnitude smaller than the body. For this reason, when a Josephson element is manufactured using an oxide superconducting material having a high Tc as described above, a method of directly drawing by an ion beam method or the like is used for several times.
A method of patterning with a line width of up to several tens of square meters.
酸化物超電導体間に金属薄膜のAuやAg薄膜を形成
し、これらAu,Ag金属中に酸化物超電導体からの電子対
の浸み出し効果の数十Å〜100Å程度の距離を生かし
て、ジョセフソン素子を形成する方法。A metal thin film Au or Ag thin film is formed between the oxide superconductors, and in these Au and Ag metals, a distance of about several tens to 100 mm of the effect of leaching of electron pairs from the oxide superconductor is utilized, A method for forming a Josephson element.
多結晶の酸化物超電導薄膜を形成し、その結晶粒子
間に形成されるジョセフソン結合を用いてジョセフソン
素子を作製する方法。A method in which a polycrystalline oxide superconducting thin film is formed, and a Josephson element is manufactured using Josephson bonds formed between crystal grains.
しかしながら、上記の代表的なジョセフソン素子作製
方法には各方法とも問題点が多い。即ち、 の直接描画法では、生産性が悪い。However, each of the above-described typical Josephson element manufacturing methods has many problems. That is, the productivity is poor in the direct drawing method.
の金属薄膜形成法では、Au,Ag金属のコヒーレント
長さ(ξ)が長くなり、ジョセフソン結合を形成し易く
なるが、これらの金属薄膜を形成した後エッチングして
回路パターンを形成する訳であるが、これらの金属薄膜
のエッチングが難しい。According to the metal thin film forming method, the coherent length (ξ) of Au and Ag metal becomes longer, and it becomes easier to form Josephson bonds. However, after forming these metal thin films, they are etched to form a circuit pattern. However, it is difficult to etch these metal thin films.
の多結晶薄膜を用いる方法では、臨界電流密度(J
c)が数十〜数百A/m2と小さいため、ジョセフソン素子
の性能の向上が望めない。In the method using a polycrystalline thin film, the critical current density (J
Since c) is as small as several tens to several hundreds A / m 2 , improvement in the performance of the Josephson device cannot be expected.
(ハ) 発明の開示 本発明は、上記のような欠点を解決するものであり、
超電導回路パターンを作製するに際して、異種の超電導
膜を積層状に形成し、該膜間の境界面の格子不整合によ
るジョセフソン接合を形成させる超電導回路の作製法を
提供するものである。(C) DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks,
An object of the present invention is to provide a method of manufacturing a superconducting circuit in which different types of superconducting films are formed in a stack when a superconducting circuit pattern is formed, and a Josephson junction is formed by lattice mismatch at a boundary surface between the films.
即ち、本発明は、基板上に超電導体の粉末を含有する
ペーストを塗布しこれを焼成して第1超電導膜を形成し
た後、該膜上に上記超電導体と異なる超電導体の粉末を
含有するペーストを塗布しこれを焼成して第2超電導膜
を形成することにより、積層された第1超電導膜と第2
超電導膜との境界面に格子不整合によるジョセフソン接
合を形成させることを特徴とする超電導回路の作製方法
である。That is, in the present invention, after a paste containing a superconductor powder is applied on a substrate and baked to form a first superconducting film, the film contains a superconductor powder different from the superconductor on the film. A paste is applied and fired to form a second superconducting film, so that the laminated first superconducting film and the second superconducting film are formed.
A method for manufacturing a superconducting circuit, characterized by forming a Josephson junction due to lattice mismatch at a boundary surface with a superconducting film.
上記において、第1超電導体がY1Ba2Cu3O7-x等のY-Ba
-Cu-O系の酸化物超電導体であり、第2超電導体がBi2Sr
2Ca2Cu3O10等のBi-Sr-Ca-Cu-O系の酸化物超電導体であ
って、上記ペーストの塗布法として各種法があるが、ス
クリーン印刷法が好ましい。In the above, the first superconductor is Y-Ba such as Y 1 Ba 2 Cu 3 O 7 -x.
-Cu-O based oxide superconductor, the second superconductor is Bi 2 Sr
A Bi-Sr-Ca-Cu- O based oxide superconductor such as 2 Ca 2 Cu 3 O 10, various methods is as a coating method of the paste, but a screen printing method is preferable.
次に、Y1Ba2Cu3O7-x酸化物超電導体とこれと異種のBi
2Sr2Ca2Cu3O10酸化物超電導体を用いた場合を例とし
て、本発明を説明する。Next, Y 1 Ba 2 Cu 3 O 7 -x oxide superconductor and Bi
The present invention will be described by way of an example using a 2 Sr 2 Ca 2 Cu 3 O 10 oxide superconductor.
まづ、Y1Ba2Cu3O7-x酸化物超電導粉とBi2Sr2Ca2Cu3O
10酸化物超電導粉の所定量を、有機溶剤と有機バインダ
ーによって作製したビヒクル中にそれぞれ別個に均一に
分散させて、Y1Ba2Cu3O7-x超電導ペーストとBi2Sr2Ca2C
u3O10超電導ペーストを作製する。 First , Y 1 Ba 2 Cu 3 O 7 -x oxide superconducting powder and Bi 2 Sr 2 Ca 2 Cu 3 O
A predetermined amount of 10 oxide superconducting powder, respectively were separately uniformly dispersed in a vehicle produced by organic solvent and an organic binder, Y 1 Ba 2 Cu 3 O 7 -x superconductive paste and Bi 2 Sr 2 Ca 2 C
u 3 O 10 Superconducting paste is prepared.
次に、酸化物基板であるMgO多結晶基板上にY1Ba2Cu3O
7-x超電導ペーストをスクリーン印刷機によって印刷
し、所定条件で焼成して、Y1Ba2Cu3O7-x超電導厚膜を形
成して第1超電導膜とし、該第1超電導膜上にBi2Sr2Ca
2Cu3O10超電導ペーストを上記と同様にスクリーン印刷
機で印刷した後、焼成して第2超電導膜を積層状に形成
させる。Next, Y 1 Ba 2 Cu 3 O was placed on the MgO polycrystalline substrate as an oxide substrate.
The 7 -x superconductive paste was printed by a screen printing machine, and fired under predetermined conditions, to form the Y 1 Ba 2 Cu 3 O 7 -x superconductor thick film as the first superconducting layer, on the first superconductor film Bi 2 Sr 2 Ca
After the 2 Cu 3 O 10 superconducting paste is printed by a screen printer in the same manner as described above, it is baked to form a second superconducting film in a laminated state.
かくして、積層されたY1Ba2Cu3O7-x超電導厚膜とBi2S
r2Ca2Cu3O10超電導厚膜との境界面には、格子不整合に
よるジョセフソン接合が形成されて、酸化物超電導のジ
ョセフソン素子が作製されるのである。Thus, the stacked Y 1 Ba 2 Cu 3 O 7 -x superconducting thick film and Bi 2 S
At the interface with the r 2 Ca 2 Cu 3 O 10 superconducting thick film, a Josephson junction due to lattice mismatch is formed, and a Josephson element of oxide superconductivity is produced.
以上、本発明法を後記の実施例を含めてY1Ba2Cu3O7-x
酸化物超電導体ならびにBi2Sr2Ca2Cu3O10酸化物超電導
体の場合につき説明したが、本発明法が他の酸化物超電
導体を始め、他の金属系,化合物系超電導体にも適用で
きることは勿論である。As described above, the method of the present invention includes Y 1 Ba 2 Cu 3 O 7 -x
Although the case of oxide superconductors and Bi 2 Sr 2 Ca 2 Cu 3 O 10 oxide superconductors has been described, the method of the present invention can be applied to other metal superconductors, other metal superconductors, and compound superconductors. Of course, it can be applied.
次に、本発明を実施例により説明する。 Next, the present invention will be described with reference to examples.
(ニ) 実施例 実施例 1 あらかじめY1Ba2Cu3O7-x超電導ペーストとBi2Sr2Ca2C
u3O10超電導ペーストを作製しておき、MgO多結晶基板上
にY1Ba2Cu3O7-x超電導ペーストをスクリーン印刷機を用
いて厚さ10μmに印刷し、O2ガス雰囲気200cc/分,1000
℃で10分間焼成した。(D) Examples Example 1 Y 1 Ba 2 Cu 3 O 7 -x superconducting paste and Bi 2 Sr 2 Ca 2 C
Leave produce u 3 O 10 superconducting paste, a Y 1 Ba 2 Cu 3 O 7 -x superconductive paste MgO polycrystal substrate was printed in a thickness of 10μm by using a screen printing machine, O 2 gas atmosphere 200 cc / Min, 1000
Baking at ℃ for 10 minutes.
このY1Ba2Cu3O7-x超電導厚膜を形成させたMgO多結晶
基板上に、Bi2Sr2Ca2Cu3O10超電導ペーストを上記のス
クリーン印刷機を用いて厚さ10μm印刷し、O2ガス雰
囲気200cc/分で,860℃で10時間焼成した。かくして、酸
化物超電導体を用いたジョセフソン素子を作製した。This Y 1 Ba 2 Cu 3 O 7 -x superconductor thick film on the MgO polycrystalline substrate to form a thickness 10μm printed using Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting paste of the screen printing machine Then, it was baked at 860 ° C. for 10 hours in an O 2 gas atmosphere at 200 cc / min. Thus, a Josephson device using the oxide superconductor was manufactured.
このジョセフソン素子の電気的特性を測定した結果、
ジョセフソン接合特有のシャピロステップ電圧が確認さ
れた。As a result of measuring the electrical characteristics of this Josephson element,
A Shapiro step voltage unique to the Josephson junction was confirmed.
実施例 2 実施例1と同様にY1Ba2Cu3O7-x超電導ペーストとBi2S
r2Ca2Cu3O10超電導ペーストを供試し、YSZ(安定化ジル
コニア)多結晶基板上にY1Ba2Cu3O7-x超電導ペーストを
スクリーン印刷機で厚さ10μm印刷し、O2ガス200cc/
分の雰囲気で1000℃×10分間焼成した。Example 2 As in Example 1, Y 1 Ba 2 Cu 3 O 7 -x superconducting paste and Bi 2 S
The r 2 Ca 2 Cu 3 O 10 superconducting paste was tested, and Y 1 Ba 2 Cu 3 O 7 -x superconducting paste was printed on a YSZ (stabilized zirconia) polycrystalline substrate by a screen printing machine to a thickness of 10 μm, and O 2 Gas 200cc /
For 10 minutes at 1000 ° C.
このY1Ba2Cu3O7-x超電導厚膜を形成させたYSZ多結晶
基板上にBi2Sr2Ca2Cu3O10超電導ペーストを上記と同様
にして厚さ10μm印刷し、O2ガス200cc/分の雰囲気で8
60℃×10時間焼成した。かくして、実施例1と同様に酸
化物超電導体を用いたジョセフソン素子を作製した。On the YSZ polycrystalline substrate on which the Y 1 Ba 2 Cu 3 O 7 -x superconducting thick film was formed, Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting paste was printed in a thickness of 10 μm in the same manner as described above, and O 2 8 in an atmosphere of 200 cc / min gas
It was baked at 60 ° C for 10 hours. Thus, a Josephson device using the oxide superconductor was manufactured in the same manner as in Example 1.
このジョセフソン素子の電気的特性を測定した結果、
ジョセフソン接合特有のシャピロステップ電圧が確認さ
れた。As a result of measuring the electrical characteristics of this Josephson element,
A Shapiro step voltage unique to the Josephson junction was confirmed.
(ホ) 発明の効果 本発明法によれば、超電導ペーストを使用し、スクリ
ーン印刷法によって超電導膜を形成するので、パターニ
ングが容易であり、異種の積層超電導膜の境界面に格子
不整合によるジョセフソン接合を形成させることができ
るから、素子の構造が簡単で、高性能のジョセフソン素
子を作製することができる効果がある。(E) Effects of the Invention According to the method of the present invention, since a superconducting film is formed by a screen printing method using a superconducting paste, patterning is easy, and Joseph by lattice mismatch at the interface between different types of laminated superconducting films. Since a son junction can be formed, there is an effect that the structure of the element is simple and a high-performance Josephson element can be manufactured.
また、従来法に比べて製造工程が極めて簡単であり、
ペーストの使用量等も少ないので、生産性が良好である
等の利点がある。Also, the manufacturing process is extremely simple compared to the conventional method,
Since the amount of the paste used is small, there are advantages such as good productivity.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−145878(JP,A) 特開 平1−227489(JP,A) 特開 平1−226783(JP,A) 特開 平1−212484(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 39/00 H01L 39/22 H01L 39/24 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-145878 (JP, A) JP-A-1-227489 (JP, A) JP-A 1-226783 (JP, A) 212484 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 39/00 H01L 39/22 H01L 39/24
Claims (2)
有するペーストを塗布し、これを焼成して第1超電導厚
膜を形成した後、該厚膜上にBi-Sr-Ca-Cu-O系超電導体
の粉末を含有するペーストを塗布し、これを焼成して第
2超電導厚膜を形成することにより、積層された第1超
電導厚膜と第2超電導厚膜との境界面に格子不整合によ
るジョセフソン接合を形成させることを特徴とする超電
導回路の作成方法。A first superconducting thick film is formed by applying a paste containing a powder of a Y-Ba-Cu-O-based superconductor on a substrate and firing the paste to form a Bi- A first superconducting thick film and a second superconducting thick film are laminated by applying a paste containing a powder of Sr-Ca-Cu-O-based superconductor and firing it to form a second superconducting thick film. Forming a Josephson junction due to lattice mismatch at a boundary surface between the superconducting circuit and the substrate.
許請求の範囲第1項記載の超電導回路の作製方法。2. The method for manufacturing a superconducting circuit according to claim 1, wherein said coating method is a screen printing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023953A JP2920774B2 (en) | 1990-02-02 | 1990-02-02 | Superconducting circuit fabrication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023953A JP2920774B2 (en) | 1990-02-02 | 1990-02-02 | Superconducting circuit fabrication method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03228385A JPH03228385A (en) | 1991-10-09 |
JP2920774B2 true JP2920774B2 (en) | 1999-07-19 |
Family
ID=12124912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023953A Expired - Fee Related JP2920774B2 (en) | 1990-02-02 | 1990-02-02 | Superconducting circuit fabrication method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2920774B2 (en) |
-
1990
- 1990-02-02 JP JP2023953A patent/JP2920774B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03228385A (en) | 1991-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4900709A (en) | Method of patterning superconducting oxide thin films | |
US4891355A (en) | Method for producing superconducting circuit | |
US4908348A (en) | Barrier layer arrangement for conductive layers on silicon substrates | |
DE69015721T2 (en) | Method of manufacturing a superconducting circuit. | |
DE60031784T2 (en) | IMPROVED HIGH TEMPERATURE SUPER PLATE COATED ELEMENTS | |
US4994434A (en) | Method of forming a barrier layer arrangement for conductive layers on silicon substrates | |
JP2920774B2 (en) | Superconducting circuit fabrication method | |
US5424281A (en) | Oxide-superconduction grain boundary tunneling device | |
US3816173A (en) | Fabrication of variable current density josephson junctions | |
DE69011582T2 (en) | Method of making superconducting articles. | |
JPH05267726A (en) | Pinning structure for superconducting film and method of formation therefor | |
JP3425422B2 (en) | Superconducting element manufacturing method | |
US6160266A (en) | Superconducting device and a method of manufacturing the same | |
Miura et al. | Properties of a YBCO/insulator/YBCO trilayer and its application to a multilayer Josephson junction | |
JP2786130B2 (en) | High temperature superconducting thin film structure | |
JP3058515B2 (en) | Superconducting Josephson device and its manufacturing method | |
JP2899287B2 (en) | Josephson element | |
US6147360A (en) | Superconducting device and a method of manufacturing the same | |
DE69009247T2 (en) | Method of manufacturing a superconducting article. | |
JPH0240992A (en) | Structure of superconductor wiring | |
JP2819743B2 (en) | Preparation method of high temperature superconducting thin film | |
JP3085492B2 (en) | Micro-bridge type Josephson device and stacked type Josephson device | |
JP3076503B2 (en) | Superconducting element and method of manufacturing the same | |
US5629269A (en) | Process for forming oxide superconducting films with a plurality of metal buffer layers | |
JP3473201B2 (en) | Superconducting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080430 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080430 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |